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ABSTRACT 

 
We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown by 
molecular beam epitaxy.  The details of the devices growth and characterization as well as the results of chemical 
passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.   
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1. INTRODUCTION 
 
The closely lattice-match material system of InAs, GaSb, and AlSb, commonly referred to as the 6.1Å material system, 
has emerged as a fertile ground for the development of new solid-state devices.  The flexibility of the system in 
simultaneously permitting type-I, type-II staggered, and type-II broken-gap band alignments has been the basis for 
many novel, high-performance heterostructure devices in recent years, including the GaInSb/InAs type-II strained layer 
superlattice infrared detectors proposed by Smith and Mailhiot1 in 1987.  The type-II superlattice design promises 
optical properties comparable to HgCdTe, better uniformity, reduced tunneling currents, suppressed Auger 
recombination, and normal incidence operation2,3.    In 1990, Chow and co-workers first reported Ga1-xInxSb/InAs 
superlattice materials with high structural quality, LWIR photoresponse, and LWIR photoluminescence4. More recently, 
in 1997 researchers from Fraunhofer Institute demonstrated good detectivity (approaching HgCdTe, 8-µm cutoff, 77K) 
on individual devices5. 
As illustrated in Fig.1, the band-gap of a type-II superlattice (SL) is determined by the energy separation between the 
first conduction miniband and the top-most heavy-hole miniband, rather than the band-gap of a bulk material. Hence, 
the SL structure can, in principle, be tailored by adjusting constituent layer thicknesses and compositions to cover a 
wide wavelength range for infrared detection. 
In the type-II SL, heavy-holes are largely confined to the GaInSb layers and electrons are primarily confined to the InAs 
layers. However, because of the relatively low electron mass in InAs, the electron wavefunctions extend considerably 
beyond the interfaces and have significant overlap with heavy-hole wavefunctions. Hence, significant absorption is 
possible at the minigap energy (shown in Fig. 1 with the vertical arrow) which is tunable by changing layer thickness. It 
is also possible to obtain large optical absorption coefficients at cutoff wavelengths as long as ~20 µm by taking 
advantage of internal lattice-mismatch-induced strains in the InAs/GaInSb SLs2. Additionally, since the gap of each 
constituent bulk material is larger than the effective direct gap of the superlattice, dark currents are suppressed in 
comparison with their values in similar cutoff-wavelength bulk ternary alloys.  Another benefit of this structure for 
detector applications is that normal incidence absorption is permitted by selection rules, obviating the need for grating 
structures or corrugations that are needed in alternative quantum-well infrared photodetectors (QWIPs)6. Finally, Auger 
transition rates, which place intrinsic limits on the performance of such detectors and severely impact the lifetimes 
found in the bulk, narrow-gap detectors, can be reduced by judicious choices for the structure’s geometry and strain 
profile7.   
 
Despite these advantages, there are still several challenges confronting the application of type-II superlattices as narrow-
gap photodiodes, with the largest being the growth of thick, high quality strained layer superlattices and achieving an 
effective reduction of surface leakage currents and band-to-band as well as defect-assisted tunneling currents. Recent 
experimental results on such structures have shown real promise. For example, Fuchs and co-workers from the 
Fraunhofer Institute have demonstrated type-II InAs/GaInSb photodiodes having cutoff wavelengths ranging from 7.5 
to 12 µm with performance characteristics similar to those obtained from HgCdTe-based diodes and argued that 
improvements in material and device quality would significantly enhance device performance5.   
 



 
Figure 1. Schematic of the direct bandgap arising from the conduction and valence minibands in the 

GaInSb/InAs type-II superlattices. 

 
 
 

2. DEVICE GROWTH 
 
Superlattice photodiodes were grown in a Veeco Applied-Epi Gen III molecular beam epitaxy chamber equipped with 
valved cracking sources for the group V Sb2 and As2 fluxes, as wells as dual In sources for independently varying the 
growth rates of GaInSb and InAs.  Unintentionally doped p-type GaSb (100) substrates were placed in custom pyrolytic 
boron nitride holders with sapphire backing plates during growth.  The device recipe is similar to that used by Fuchs5, 
consisting of a 0.5µm Be-doped GaSb buffer layer, followed by a p-i-n superlattice 30ÅGa0.8In0.2Sb/36ÅInAs with the 
first 88 periods Be doped in the GaInSb layers, 15 undoped periods, and the final 50 periods doped with Si in the InAs 
layers.  The device is capped with a thin (200 to 300Å) layer of n-type InAs.   
 

 
Figure 2. XRD scan of the superlattice diode near the GaSb (004) reflection. (Inset) Close-up of the substrate and 

zero-order superlattice peaks. 

 
 
Fig. 2 shows a typical X-ray diffraction scan of the 30ÅGa0.8In0.2Sb/36ÅInAs device structure near the 004 reflection of 
the GaSb substrate.  The overall periodicity of the structure as measured by the fringe spacing of the superlattice peaks 
is 64.4 Å, in good agreement with the recipe.  The high structural quality of the epilayers is evidenced by the multiple 
sharp satellite peaks as well as the Pendellosung fringes from the thin InAs cap layer.  The cross-sectional transmission 



electron microscopy (TEM) image of the device in Fig. 3 shows no structural defects related to interface dislocations or 
strain relaxation during the growth of the superlattice layer. 
 

 
Figure 3. Cross-sectional TEM image of the InGaSb/InAs superlattice on the GaSb buffer layer. 

 
Fig. 4 shows an atomic force microscope (AFM) scan of the surface of the epitaxial structure.  The surface is very 
smooth, and typically no large defects are visible on a 50x50µm scan of the wafer surface.  However, a high density of 
extremely shallow defects is apparent in the device growths.  These defects are only visible with the AFM, as they are 
one the order of a few nm in height.  Optical microscopy of the wafer surface reveals a density of roughly 200/cm2 of 
micron or larger sized defects.   This density of large defects is entirely within the acceptable range for this type of 
epitaxial growth, and does not preclude the material from being suitable for focal plane array applications. 
 

 
Figure 4. AFM image of the surface of the as-grown wafer. 



 
 
 
 

3. DEVICE PROCESSING 
 
 
Standard photolithographic techniques were used to pattern 200x200µm test detectors on the MBE-grown wafers.  
Samples were dry-etched in a reactive ion etching (RIE) chamber using a mixture of Cl2 and BCl3 gases to a depth of 
1.5µm.  Gold was evaporated onto the sample to form both the n and p-type contacts.  Fig. 5 shows the IV 
characteristics for these test devices as a function of temperature.   Excessive leakage causes the R0A product to deviate 
from the ideal curve as the devices are cooled, indicating the need for a change in fabrication technique to suppress this 
excess leakage current.   
 

 
Figure 5. Dark current vs. applied bias for 200x200 µm test devices at various temperatures. 

 

 
Figure 6.  R0A product as a function of temperature for the initial superlattice diodes. 

 



 
To this end, several passivation techniques were applied to a second set of diodes with a slightly thicker superlattice 
region.  All growth conditions were similar for the second set of diodes except for the addition of an extra 15 periods of 
undoped superlattice in the i-region.  In addition to the processing steps listed above, the following post-etch treatments 
were applied: 

A) 30 seconds in H2SO4:H2O (1:40); or 
B) 2 minutes 0.05M RuCl3 and mixed  1:1 with 0.1 M HCl. 

Chemically treated samples were tested as-is and with an additional chemical vapor deposition (CVD) of SiO2.  The 
CVD process was tested at two different temperatures: 250°C and 345°C. 
 
 
 

4. RESULTS 
 
IV curves for the 200x200µm devices are shown in Fig. 7.  Roughly a factor of 4 improvement between the best devices 
(RuCl3 treatment with a high temperature oxide) and the worst devices (H2SO4 treatment with high temperature oxide).  
Unfortunately, the effects of a given dielectric deposition are not consistent within a given chemical treatment, as the 
order of improvement for the RuCl3 treatment (low temperature oxide, no oxide, high temperature oxide) is different for 
the H2SO4 treatment (high temperature oxide, no oxide, low temperature oxide).  There are insufficient data to 
determine if the variation is caused by device to device processing variations, or if the H2SO4 and RuCl3 treatments 
actually are optimized by a low and high temperature oxide deposition, respectively.  
Unfortunately, in spite of the factor of four reduction in dark current, the devices are still too leaky for applications as 
high performance photodetectors. 
 

 
Figure 7.  IV characteristics at 70K for various chemically treated diodes. 

 
 

5. SUMMARY 
 
We have tested the effects of wet chemical passivation techniques on MBE-grown GaInSb/InAs superlattice 
photodiodes.  Although the material quality of the devices grown was excellent as evidenced by X-ray, TEM and AFM 
observations, the device performance is not yet good enough to allow these devices to be used in applications requiring 
high performance photodetectors.    
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