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Introduction 
The grand challenge that is the focus of this conference targets the development of a 
practical methodology for software verification: a practical verification tool that would 
work like a language compiler does today. The objective of software verification is of 
course to reduce the number of design and coding defects in software products, and 
ultimately to reduce the number of failures in the use of a product. It is safe to assume 
that virtually all non-trivial software in use today has defects. Some of these defects are 
merely cosmetic in nature, but some can also cause real damage: damage that can be 
measured in terms of time and money lost, and in some cases in terms of lives lost. The 
greater the damage that can be caused by a software defect, the greater our desire is to 
prevent it. 
 
It has often been argued that with the right training, discipline, and tools it should be 
possible to produce zero-defect code. Very few things in life, though, are zero-defect – 
not even the things that can be considered life critical. Traffic lights and elevators can 
fail, ambulances and fire engines can fail, even the phone system and your hard-disk 
drive can fail. If an elevator company promised to have developed a zero-defect elevator 
you would have every reason to be suspicious. The reason that we trust, for example, 
elevators is that they are designed to explicitly take the possibility of component failure 
into account to prevent system failure. 
 
Building Reliable Systems from Unreliable Parts 
Hardware designers know how to construct reliable systems from unreliable parts. In 
building these systems, the designer starts from the knowledge that any component in the 
system might fail, while securing that such failures can not cause the failure of the system 
as a whole. When an elevator fails, the car does not come crashing down, because the 
system was designed to handle this type of defect. We have yet to learn how to apply 
similar principles in the construction of reliable software systems. 
 
Although there is a strong need to improve software verification techniques, the purpose 
of this position paper is to point out that our ultimate objective is not necessarily to 
produce zero-defect software, but to produce ultra-reliable software systems. This 
position has implications for the type of work we plan to do, as we will outline in more 
detail in the remainder of this paper. 
 
 
 



Blue Screens of Death 
Non-critical software applications are often designed in a monolithic fashion. When the 
application crashes, e.g. when it hits a divide by zero error, the only recourse one then has 
is to restart the application. This approach is of course not adequate to use in the 
construction of systems that must be ultra-reliable, for instance because human life 
depends on its correct and continued functioning. When, for instance, a spacecraft 
experiences the failure of one of its components during a launch or landing procedure, a 
complete restart of the software may in itself cost the loss of the mission. In manned 
space flight, a few minutes spent in rebooting the crew’s life support system may have 
similarly unintended consequences. Systems like this have to be ultra-reliable, even if 
some of their software parts are not. 
 
Simplicity and Redundancy 
There are two primary strategies for achieving system reliability. The first strategy is to 
use a design that emphasizes simplicity and robustness. A simple design is easier to 
understand, easier to test or verify, and easier to operate. The second strategy is to exploit 
redundancy. If the probability of failure of individual components is statistically 
independent, the chance of having both a prime and a backup component fail at the same 
time can be made very small. If, for instance, all components have the same probability p 
of failure, then the probability that all N components fail at the same time in an N-
redundant system would be pN. In a nutshell, simplicity seeks to reduce the value of p, 
while redundancy seeks to increase the value of N. Trivially, for all values of N ≥ 1 and 0 
< p < 1 both of these techniques can lower the probability of failure pN for the system. 
 
Unfortunately, one of the basic premises used in the redundancy argument that we used 
above, the statistical independence of the failure probabilities of individual components, 
can be very hard to achieve for software components. Well-known are the experiments 
performed in the eighties by Knight and Leveson with N-version programming 
techniques, which demonstrated that different programming teams tend to make the same 
types of design errors when working from a common set of (often flawed) design 
requirements. [KL86] Independently, Sha also pointed out that a decision to apply N-
version programming cannot be made independently of budget and schedule decisions. 
With a fixed budget, each of N independent development efforts will inevitably receive 
only 1/N-th of the total project resources. If we compare the expected reliability of N 
development efforts, each pursued with 1/N-th of the project resources, with one targeted 
effort that can consume all available resources, the tradeoffs become very different. [S01] 
 
Redundancy in the traditional sense, in the way that has proven to work well with 
hardware systems, therefore cannot be duplicated easily in software systems. By 
combining the strategies of simplicity and redundancy in a slightly different way, though, 
we may be able to build larger software systems that are indeed significantly more 
reliable than any of their individual parts. 
 
Software Architectures for Fault Containment 
Consider a standard architecture consisting of software modules with well-defined 
interfaces. Each module performs a separate function. The modules are chosen to 



minimize information flow across module boundaries. We will assume here, primarily for 
simplicity but without loss of generality, that the only way for modules to interact is 
through message passing over trusted channels. Modules execute (at least logically) on 
independent hardware, to secure that the crash of one module cannot affect other modules 
in any other way than across its module interface. A failed module may stop responding, 
or fail to comply with the interface protocols by sending erroneous requests or responses. 
We will make a further convenient assumption that module failures can be detected either 
through consistency checks that are performed inside a module, or by peer modules that 
check the validity of messages that cross module boundaries. 
 

One could make the argument that a failure that cannot be detected at runtime it is not 
a failure that can be remedied. We will have to accept that not all conceivable types of 
failures can be defended against with this or any other fault containment discipline. 
We restrict our attention to those cases where a remedy is at least in principle possible. 

 
In our proposed software architecture each software module is provided with a backup. In 
normal operations, this backup module is idle. When a fault is detected, the faulty module 
is switched offline and the backup module replaces it. (Naturally, the backup module can 
have its own backup, and so on, but we will not pursue this generalization here.) 
 

Note that in a traditional system the failing module is its own backup. Upon a failure 
one simply restarts the module that failed and hopes that the cause for failure was 
transient. We suggest that we can defend against a substantially larger class of defects 
if the backup module is distinct from the primary module and deliberately constructed 
to be significantly simpler than the primary module. 
 

As indicated earlier, if the primary and backup modules are constructed within an N-
version programming paradigm, we do not necessarily gain additional reliability from 
this type of system structure. This system structure will not adequately defend against 
design and coding errors. Some of the same design errors may be made in the 
construction of both modules, and if the two modules are of similar size and complexity, 
they should be expected to contain a similar number of residual coding defects (i.e., 
coding defects that escape code testing and verification). Our proposal is to make the 
backup modules significantly simpler than the primary modules. 

 
Simplified Redundancy 
The backup modules in our proposed architecture are constructed as simplified versions 
of the primary modules. Specifically, these backup modules can be designed and build by 
the same developer(s) that design and build the primary modules. The primary module is 
build for performance; the backup module is build for correctness. The main purpose for 
a system architecture of this type is that the backup modules are easier to verify 
thoroughly. The statistically expected number of residual defects in a backup module 
should be lower than that of the primary module, because they contain less code. 
 
The basic premise is that the backup module guarantees continuity of operation, though 
in a somewhat degraded state of operation (e.g., slower and likely with reduced 



functionality). The backup gives the system the opportunity to recover from unexpected 
failures: the primary module is offline and can be diagnosed and possibly restarted, while 
the backup module takes care of the most urgent of tasks in the most basic of ways.  If 
code is developed in a hierarchical fashion, using a standardized software refinement 
approach, the backup module could encapsulate an earlier level in the refinement of the 
final module: a simpler version of the code that is not yet burdened with all features, 
extensions, and optimizations that will support the final version, but that does perform the 
most critical and basic duties in the most straightforward way. 
 
If this approach can be made to work (we have yet to do a realistic case study) we would 
expect the backup modules to be significantly smaller in size (e.g., in lines of code) than 
the primary modules. By virtue of being smaller and simpler, the expected number of 
residual defects in this code should also be smaller. We will tacitly assume here that the 
number of design and coding defects is proportional to the size of a module, just like the 
number of syntax and grammar mistakes in English prose is proportional to the length of 
that prose. If now the primary module has a probability of failure due to residual defects 
of p and for the backup module the probability of failure is q, we would expect to have 1 
> p > q > 0 (ignoring the boundary cases where we have either certainty of failure or 
absolute perfection). Because the backup module contains less code, and implements less 
functionality, it offers fewer opportunities for design and coding defects. The module 
with its backup now fails with probability (p.q) which should be smaller than the 
probability p for the same module without the backup. 
 
Fault Detection and Secure Fall-Back 
We have assumed that we can tell, in a sufficiently broad number of cases, when a 
software module fails to perform its intended function due to a design or coding error. 
There are several ways in which this could work, at least in principle, but none are truly 
satisfactory. The module code can contain assertions that check for the validity of inputs 
and outputs (standard pre and post-condition checks), and verify that essential invariants 
are maintained in the module code. But if we assume that the nature of the residual 
software defects is unpredictable and to first approximation will exhibit itself as a random 
divergence of the intended or desired code, the conclusion will be inevitable that a 
module cannot reliably detect all occurrences of defects in its own code. Modules can, 
however, be reasonably expected to check each other. If a module, for instance, detects 
that faulty input is provided to it across its module interface, the module could declare the 
peer module that provided the input to be faulty, reject the input, and command the 
suspect module to switch-over to its backup. There is a close correspondence here to 
security related problems in mainstream software design: how can a module trust that its 
peer is reliable? [R98, W89] 
 
There is also another problem that has to be addressed. Even supposing that we would 
have, or will be able to develop, a reliable defect detection discipline, how precisely can 
we arrange things in such a way that the switch-over from a primary module to its backup 
(or vice versa) does not itself introduce a system failure? cf. [AB85, RL81] We do not 
have answers to these questions, but suggest them as a potentially fruitful area of research 
in reliable software systems design. 



 
Synopsis 
We suggest that to achieve software reliability we should not only be investigating ways 
to achieve zero-defect code, but also more broadly ways to produce fail-proof systems, 
that is the art of building reliable software systems from unreliable software components. 
The principal method of structuring code we propose to investigate is fairly simple. The 
code is structured into modules that can fail largely independently. Modules 
communicate only via well-defined interfaces. Each module is provided with at least one 
backup that can take over basic operations when the primary module fails. The backup 
module is constructed to be significantly simpler, smaller, and more reliable than the 
primary that it supports, possibly performing less efficiently and providing less 
functionality. 
 
This basic mode of operation is used today in the hardware design of spacecraft. 
Spacecraft typically do not just have redundant components on board, but also 
components of different types, providing different grades of service. Most spacecraft, for 
instance, have both a high-gain and a low-gain antenna. When the high-gain antenna 
becomes unusable, the more reliable low-gain antenna is used, be it at a significantly 
reduced bit-rate. Perhaps not surprisingly, this same principle has also been applied on a 
modest scale in the design of mission critical software, though not always systematically. 
The MER rover software, for instance, was designed to support two main modes of 
operations: the fully functional mode with all its features and functions enabled and a 
minimal basic mode of operation that has been referred to as the “crippled mode.” It was 
precisely this “crippled mode” that made it possible for the software engineers to recover 
from a serious software anomaly that struck one of the rovers early in its mission. [RN05] 
Our proposal is to use these principles more systematically, throughout the software 
design and all safety or mission critical components. 
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