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ABSTRACT 
 
The Deep Space Network (DSN) is a central part of 
NASA's infrastructure for communicating with active 
space missions, from earth orbit to beyond the solar 
system. Consisting of more than a dozen major ground 
antennas at three sites spaced around the globe, it must 
be carefully scheduled to satisfy the requirements of 
the various mission users, subject to many constraints. 
We describe our recent work in modeling the 
complexities of user requirements, and then scheduling 
and resolving conflicts on that basis. We emphasize 
our innovative use of background “intelligent 
assistants” that carry out search asynchronously while 
the user is focusing on various aspects of the schedule. 
These assistants can provide guidance to the user about 
feasible and optimal solutions to the problem they are 
working on. 
 

1. INTRODUCTION 
 
The NASA Deep Space Network (DSN) is an 
international network of antennas that supports 
interplanetary spacecraft missions and radio and radar 
astronomy observations for the exploration of the solar 
system and the universe. The network also supports 
selected Earth-orbiting missions. The DSN consists of 
three deep-space communications facilities placed 
approximately 120 degrees apart around the world: at 
Goldstone, in California's Mojave Desert; near Madrid, 
Spain; and near Canberra, Australia. This geographic 
placement permits constant observation of spacecraft 
as the Earth rotates.  
 
Each of the DSN sites supports antennas of sizes 26m, 
34m, and 70m, along with a variety of receivers and 
other equipment that can be configured to support all 
the different kinds of communications requests that 
must be handled. Fig. 1 shows a picture of one of a the 
largest antennas, the 70m antenna at Goldstone, 
California, along with one of the 34m antennas at this 
same complex. 
 

The missions supported by the DSN include all of 
NASA's deep space missions, such as the planetary 
exploration spacecraft at Mars (the Mars Exploration 
Rovers Spirit and Opportunity, Mars Odyssey, Mars 
Global Surveyer) and Saturn (Cassini-Huygens); 
cometary explorers such as Deep Impact and Stardust; 
and missions such as Voyagers 1 and 2 that are leaving 
the solar system entirely. Other missions supported 
include observatories such as Chandra (X-ray) and 
Spitzer (Infrared), in Earth orbit or near Earth orbit. A 
total of about 20 spacecraft are currently allocated 
resources in a typical near-term scheduling period. 
 

 
Fig. 1: The 70m antenna at the Deep Space Network 
Goldstone complex in the California Mojave desert. At 
the right can be seen one of the 34m antennas. 
 
In this paper we will describe the nature of the DSN 
scheduling problems, i.e. the allocation of DSN 
resources to the missions that request them. We will 
discuss our progress in modeling the requirements of 
the missions, and in generating schedules that meet 
these requirements. We will discuss the process of 
conflict resolution and our approach to automating 
what is currently a manual and iterative process. Key 
elements of our approach include tools for visualizing 
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the schedule in various ways, and “intelligent 
assistants” that can asynchronously examine the 
schedule and search for possible solutions to conflicts 
that it contains. We conclude with a discussion of 
future research and implementation directions. 
 

2. THE DEEP SPACE NETWORK 
SCHEDULING PROBLEM 

 
Currenly, DSN schedules are manually generated out 
one year in the future. The nearer term portion of the 
schedule (up to 8 weeks out) considers the specific 
equipment and personnel to be allocated to a 
communications event. Beyond this interval, the 
schedule is concerned primarily with scheduling 
tracks, each of which is an allocation of an antenna to a 
mission over a specific time period. Tracks are 
typically one to eight hours in duration and must be 
placed within a viewperiod for that particular mission, 
i.e. when the spacecraft is visible (within specified 
geometric limits) from that antenna. A typically week 
will contain about 370 scheduled tracks. In this paper 
we are concerned with mid-range (8-week to 6-month) 
and long-term (beyond 6-months) schedules. 
 
2.1 Constraints 
 
Among the constraints that come into play when 
generating the DSN schedule are the following: 
• A spacecraft can only be scheduled to use an 

antenna when it is within view: this is primarily a 
geometric constraint and can be pre-computed 
ahead of time into a set of usable viewperiods for 
each mission/antenna pair 

• No two spacecraft can use the same antenna at the 
same time, with the exception that multiple 
spacecraft in view can downlink at the same time, 
but only one can uplink. Thus, for example, the 
multiple missions currently at Mars can share 
antennas for some activities. 

• Tracks have setup and teardown durations, that 
typically range from 10 minutes to an hour. (The 
combined setup, track and teardown is called an 
activity.) These setups and teardowns can be 
scheduled outside of the spacecraft viewperiod, 
but generally cannot overlap other activities on the 
same antenna. 

 
2.1 Requirements 
 
The missions that use the DSN initially specify their 
requirements in high-level terms of hours/week per 
antenna, with more detailed specifications 
communicated informally (verbally or email) by the 
missions to the schedulers. One of the challenges faced 

in automating the DSN scheduling problem is that of 
defining a representation that can capture the details 
and subtleties of the individual mission's requirements. 
The representation must be highly expressive, since 
mission requirements can incorporate any of the 
following elements: 
 
• And/Or groupings and alternatives. Missions must 

be able to specify conjunctions of requirements 
(such as multiple antennas at the same or different 
times). Such a conjunction means that all of the 
subrequirements must be satisfied at the same 
time, in order for the requirement to be satisfied. 
In addition, disjunctive requirements may be 
specified, such that at most one requirement of a 
set of alternatives must be satisfied. In general, 
these requirements can be organized into an 
AND/OR tree, which is an ideal way to capture the 
combination of groupings (and) and alternatives 
(or) that arise when specifying a mission's 
requirements in detail. 

• Timing. Tracks may have specified start times and 
durations, both of which may have allowable 
ranges. 

• Antennas. Missions may specify one or more 
alternative antennas on which a track may be 
scheduled. They may specify groups of antennas, 
any one of which is acceptable for a particular type 
of track. 

• Repetitions. Track repetitions may be specified in 
general as requirements, over some time period, on 
the number of tracks, their durations, overlap, and 
time gaps to neighboring tracks. All of these 
quantities may have ranges on them. So, for 
example, a mission might specify repetition 
requirements such as "seven tracks/week, of 
duration 5 to 8 hours, with no gap longer than 20 
hours between adjacent tracks".  

• Overrides. In some cases, missions need to 
override a general requirement with a more 
specific one based on knowledge of ongoing 
activities. For example, a general requirement for a 
telemetry downlink every 10 hours may be 
superceded around the time of a maneuver with a 
requirement for continuous coverage. 

• Activity start and end times for most missions 
must be scheduled on five-minute boundaries. 

There have been a number of previous investigations of 
DSN scheduling automation. The Operation Mission 
Planner (OMP-26) used heuristic search to allocate 
26m antennas to missions, and linear programming to 
adjust track time intervals [1]. Other automation 
projects were research efforts and were never 
deployed. LR-26 was a customisable heuristic 



scheduler that utilized Lagrangian relaxation [2], while 
the Demand Access Network Scheduler (DANS) 
employed an iterative repair technique [3]. Other 
graphical planning tools that have been used for 
forecasting, analysis, and interactive scheduling 
include TIGRAS [4] and FASTER [5]. Our approach 
combines some of the strengths of these systems, as 
well as incorporating innovative elements in both 
scheduling search and in schedule visualization. 
 
Other scheduling domains pose problems that have 
similar characteristics to the DSN mid- and long-term 
scheduling problem. The Air Force Satellite Control 
Network (AFSCN) also schedules large numbers of 
satellites and ground stations, but limited to one day at 
a time. For this oversubscribed problem, there appear 
to be significant “plateaus” in the search space, that 
make strategies that take larger search steps more 
effective [6, 7]. Another related problem is that of 
fleets of Earth observing satellites, with onboard 
resource limitations as well as tight viewperiod 
constraints [8]. In this problems, where the requests are 
prioritised, the goal of finding a best subset to fit on a 
schedule has been addressed by a greedy approach with 
texture-based heuristics [9]. 
 

3. AUTOMATING DSN SCHEDULING 
 
Our approach to automating the DSN scheduling 
problem is illustrated in the architecture diagram of 
Fig. 2. At the top are shown schematically the DSN 
data sources such as viewperiods and current 
schedules, in various stages of completion and conflict 
resolution. This information is available via web 
services and network databases. 
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Fig. 2. Architectural overview of automated DSN 
scheduling 

 
The Interactive User Environment, depicted in the 
lower left of Fig. 2, consists of several interacting 
components, including a graphical requirements editor, 
a timeline display function, and intelligent assistants 
that provide information to the user about possible 
scheduling decisions. 
 
The Scheduling Server, shown in the lower right of 
Fig. 2, incorporates two major approaches to schedule 
generation and repair: a local heuristic search 
technique, and a set of systematic backtrack 
algorithms. 
 
In the following we describe each of these elements in 
more detail. 
 
 
3.1 Interactive User Environment 
 
The variety and complexity of the requirements 
described above provide a challenge for users. To help 
create and modify mission requirements, we have 
developed a graphical requirements editor that handles 
the full expressiveness of the requirements 
specification for the DSN. Fig. 3 shows a screen 
snapshot of this editor: on the left is a tree that 
represents the AND/OR tree of requirements and sub-
requirements. As a node is selected, all of its attributes 
are displayed on the right side of the panel where they 
may be edited by the user, including the selection of 
antennas, timing, segmentation, and repetition. 
Requirements may be saved for further editing, or sent 
on to the scheduler as described below. 
 

 
Fig. 3: The graphical requirements editor. 
 
The timeline display provides the user with visual 
insight into the evolving schedule. We have adapted a 
standard Gantt-chart view and added additional 
features to make it easier to navigate and drill down for 
more information. These features include: 



•  activity start and end times, as well as setup and 
teardown times indicated by faint gray bars 

• conflict indicators where tracks are claiming the 
same resources at the same time 

 

 
Fig. 4: Gantt view with annotations and conflict 
indicators 
• a mouse-over table display of the attributes of any 

displayed track 

• a schedule difference display that visually 
highlights tracks added, tracks deleted, and tracks 
changed. Changed tracks can be clicked with the 
mouse to reveal a table display of the track 
attributes before and after, color encoded to show 
exactly which attributes have changed 

• a metric-shaded background, to help visually spot 
regions of interest in the schedule. In the example 
shown, the shading is by gap duration in a 24h 
period, such the bright shades of red indicate times 
with a scarcity of contacts.  

 

 
Fig. 5: Gantt view with schedule difference display 
 

 
Fig. 6: Example of metric shaded background in the 
Gantt view 
 
3.2 Local Heuristic Search 
 
We have adapted the Aspen scheduler [10] to schedule 
all of the requirement types described above. This 
adaptation consists of two major components: 
 
(1) a mapping from mission requirements (as 

described above) into Aspen's native modeling 
language [10]. A large portion of this mapping 

makes straightforward use of Aspen's built-in 
modeling features, including tasks and their 
hierarchical expansion into subtasks; temporal 
relationships; states; resources (consumable and 
nonconsumable); and parameters and their 
relationships. In some cases we have exploited 
Aspen's extension point mechanism to define 
external functions that can be invoked by Aspen. 
Details are provided in [11]. 

 (2) a set of heuristics to drive Aspen's iterative repair-
based search. These heuristics are based on 
“conflicts” in the schedule, such as state, resource, 
or temporal constraint violations, un-expanded 
hierarchical tasks, or un-propagated parameter 
dependencies. Part of the conflict selection and 
repair process incorporates randomness to help 
ensure a broad exploration of the search space. For 
a further description of the heuristics, see [11]. 

 
We have conducted experiments to gauge the 
performance of Aspen in this domain, with satisfactory 
results. In one experiment, we generated a full artificial 
schedule of 1861 tracks from periodic track requests in 
39 CPU minutes. Modifications to this schedule were 
much faster: emergency antenna downtime or 
additional tracks were scheduled in 0.2 CPU seconds. 
 
While the stochastic heuristic search technique 
embodied in Aspen has many advantages in this 
domain, it also has some disadvantages. The most 
important of these is that Aspen's search is not 
complete: if may fail to find a solution even if one 
exists. If solutions are sparse, the local search process 
may simply fail to find any in the time allotted (the 
"needle in a haystack" situation). To address this, we 
have complemented Aspen's search approach with 
several systematic search algorithms, as described in 
the next section. 
 
3.3 Systematic Backtrack Search 
 
We have implemented several systematic search 
algorithms based on constraint propagation and 
backtracking search. This approach, when 
appropriately limited in scope, can definitively answer 
the question of whether a solution exists, and can 
additionally provide suggestions as to which 
requirements are overconstraining a problem, thus 
making it unsolvable. 
 
The systematic search algorithms we have 
implemented are based on the following: 
• search over time and resource assignments that 

start from the existing schedule (with or without 
constraint violations), so that alternatives “close” 
to the existing schedule are searched first 



• tracks to assign are selected using a most 
constrained first heuristic 

• backtracking is “fail fast”, such that whenever any 
track has all domain values (times and resources) 
in conflict, the search immediately backtracks 

• node and arc consistency is maintained based on 
track duration, view period windows, and resource 
availability 

In addition to a basic backtracking search algorithm, 
we have also implemented an A* optimizing search, 
based on an objective that is a function of the time and 
resource assignments for each track. For the purposes 
of this discussion, the objective we consider is a 
“minimum change” measure, i.e. we seek the schedule 
with the smallest possible shifts in track times and 
antenna assignments.  
 
Systematic search can be exponentially costly even 
with these techniques, so we bound its application by 
considering the following: 
• limit to only a subset of the fully expressive 

requirements language 

• limit the time horizon of the schedule considered 

• limit the activities to consider, by locking a 
substrate of activities on the schedule and search 
only over a subset which is allowed to move 

• limit the CPU time expended in the search 
 
Our experience to date indicates that frequently there 
are “pockets” of conflicts that occur together, which 
have limited impact on the schedule as a whole. In this 
situation, systematic search can be bounded and yet 
still provide valuable insight into solution possibilities.  
 
To investigate the performance of the systematic 
search algorithms, we ran a number of experiments on 
mid-range and short-term schedules. These first of 
these was on a 14 week period after the initial conflict 
resolution process. We considered each day in the 
schedule separately, and ran three different systematic 
search algorithms on each: 
• BT1: standard depth-first backtrack search 

• BT2: same, but tracks were prohibited from 
changing their antenna assignments 

• A*: search for all “minimum change” schedules 
 
The results are illustrated in Fig. 7. Of the 98 days 
examined, 28 had track resource/timing conflicts, 
ranging from one to four per day. Of those 28 days, 
one had no feasible solution, and would have to have 
requirements relaxed in some manner by the respective 
missions. The other 27 had solutions that were quickly 

found with BT1, in an average time of 10ms. The 
typical change was relatively small: an average 1.9±1.4 
tracks were changed, with a total time shift (summed 
over all tracks) of 6.8±11.5 hours. BT2 only found one 
improvement over the solutions found by BT1. Most of 
the solutions found by BT1 (16 out of 27) were optimal 
by the “minimum change” metric described above. In 5 
cases, the A* search found better solutions, and in 6 
cases A* was stopped at a 1000s run time limit before 
finding any optimal solutions. The computational cost 
of A* was both higher and more varied than BT1 or 
BT2: the mean run time was 18±52s.  
 
 

98 days
(RAP weeks 13-26)

70 days show no
track resource

conflicts

28 days have track
resource conflicts

1 day has no
solution

27 days have
solutions found with

BT1

5 days: A* found
better solution than

BT1

16 days: A* found
same solution as

BT1

6 days: A* found no
solution after 1000s

- mean 1.6±0.8
- range 1-4

71%

29%

- 19 days have same
   ant. sol'ns
- BT2 found only one
   improvement
- runtime 0.01±0.02s
- # ant. chg 0.6±1.2
- Σ time chg 6.8±11.5h
- # track chg 1.9±1.4

- A* expanded ~7-10K
    search nodes
- queue contained >106

    nodes

- A* runtime 18±52s
- # ant. chg 0.3±0.6
- Σ time chg 2.3±5.5h
- # track chg 1.5±0.8

 
Fig. 7: Experimental results on a 98-day schedule span 
 
As noted, this schedule represents the time after initial 
conflict resolution has been worked on by the 
schedulers and the mission users. We also selected a 2-
week schedule snapshot taken before this conflict 
resolution process, and ran the same experiments. The 
results are shown in Fig. 8. In this case 13 of the 14 
days show conflicts, all of which were quickly resolved 
with BT1. The typical changes were much larger, 
however: an average 4.0±4.2 tracks were changed, with 
a total time shift of 19.7±26.9h. This reflects the less 
effort expended to resolve conflicts at this stage in the 
scheduling process. The A* algorithm found better 
solutions for 6 days, and no improvements for another 
4 days. The A* runtime showed greater variability at 
71±229s. 



14 days
(preview weeks 31-32)

1 day shows no
track resource

conflicts

13 days have track
resource conflicts

all 13 days have
solutions found with

BT1

6 days: A* found
better solution than

BT1

4 days: A* found
same solution as

BT1

3 days: A* found no
solution after 1000s

- mean 3.0±2.0
- range 1-8

- 5 days have same
   ant. solutions
- BT2 found no
   improvements
- runtime 0.01±0.02s
- # ant. chg 1.8±2.5
- Σ time chg 19.7±26.9h
- # track chg 4.0±4.2

- A* runtime 71±229s
- # ant. chg 0.7±0.6
- Σ time chg 3.5±2.0h
- # track chg 2.4±1.7

 
Fig. 8: Experimental results on a 14-day schedule 
before conflict resolution 
 
 
3.3 Intelligent Assistants 
 
The conclusion from these experiments is that 
systematic search can help identify solution 
possibilities when sufficiently bounded. We have 
integrated this functionality into the user interface 
elements described above by implementing intelligent 
assistents, consisting of: 
• a filtering mechanism, currently text-based, to 

allow the user to focus attention on a subset of the 
schedule: by time, mission, resource, etc. 

• multiple background asynchronous search 
processes that run on the filtered problem and 
utilize the systematic search algorithms described 
above. 

A snapshot of this interface is shown in Fig. 9. The 
intelligent assistant background processes run 
automatically, starting whenever the filter criteria are 
changed by the user. They may be canceled by the user 
at any time, and they display current status as they run, 
both in a progress bar and in a textual status message. 
The BT1 and BT2 algorithms complete so quickly in 
our experiments (<10ms) as to be essentially 
instantaneous. The A* algorithm is much slower and 
more variable in duration: the status displayed in the 
progress bar shows how many of the total tracks have 
been successfully scheduled so far. In each case, when 
complete, the user can mouse over the status display to 

see a popup window with more detail, and can then 
click the “More” button to open a Gantt chart view of 
the schedule generated by the algorithm, along with 
highlighted differences from the original schedule. 
 

 
Fig. 9: Intelligent assistant dialog and display 
 
By being unobtrusive, the intelligent assistants can 
provide the user with additional information at the 
precise time when the user is interested. Results are 
displayed immediately when they are calculated, and 
the user can cancel an ongoing search simply by 
revising the search criteria, which also automatically 
starts a new search using the new criteria. If the 
assistant generates an interesting schedule, the user can 
“drill down” into the details in a very straightforward 
manner. 
 

4. DISCUSSION 
 
We have developed and described a “hybrid” approach 
to automating DSN scheduling. An overall schedule for 
some time period can be generated based on the 
complex merged requirements from the different 
missions: for this phase, we make use of the ASPEN 
framework which implements an iterative repair-based 
search strategy. We have complemented this with a set 
of systematic search algorithms that work on an 
appropriately bounded region of the search space. We 
have embedded these algorithms in intelligent 
assistants that run unobtrusively to provide timely 
information to the user engaged in rescheduling and 
resolving schedule conflicts. The intelligent assistants 
can provide feedback immediately as they reach their 
conclusions. For example, it may be possible for an 
intelligent assistant to rapidly determine that there are 
no feasible solutions to a specific conflict situation, so 
a user can move on to consider changing the 
requirements or negotiating with another mission. 
Similarly, the assistants may identify an optimal set of 
choices to resolve a conflict, so that the user's time can 
be better spent in choosing among them rather than 



trying to find a solution by manual experimentation. 
We have found that, while systematic search does not 
always find timely solutions, it frequently does very 
quickly provide valuable help to the interactive user. 
 
Future research and implementation directions include 
the following: 
• further integration of the iteratative repair and 

systematic search engines, to best exploit the 
advantages of each in a broader range of 
circumstances 

• investigation of modelling and performance 
tradeoffs in mapping mission requirements into 
representational elements for the scheduler engines 

• incorporating additional optimization criteria into 
the systematic search algorithm, to provide users 
with more insight into potential schedule 
modifications 
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