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Abstract 
 

One inherent characteristic of requirements 
engineering is a lack of certainty during this early 
phase of a project. Nevertheless, decisions about 
requirements must be made in spite of this uncertainty. 
Traditionally, we have handled this uncertainty by 
continually revisiting requirements at later stages of a 
project when some of the uncertainty has been 
eliminated. However, we can supply a better level of 
decision support if we can model and tolerate 
uncertainty in various requirements. 

Here we describe the context in which we are 
exploring this, and some initial work to support 
elicitation of uncertain requirements, and to deal with 
the combination of such information from multiple 
stakeholders. 
 
1. Introduction 
 

One of the most important techniques for 
requirements engineering and early design phases in 
the engineering of complex systems is the capture of 
human expertise.  The expertise of its engineers is a 
critical resource for the Jet Propulsion Laboratory 
(JPL) and NASA whose use must be exploited and 
leveraged effectively.  In early lifecycle phases, this 
expertise takes the form of expert judgments.  These 
early phase judgments are vital, but are, by nature, 
characterized by some level of uncertainty.  However, 
in many cases, expert engineers not only can make 
judgments, but can also make meta-judgments.  That 
is, they can make judgments about the degree of 
certainty that they have in their judgments.   

Uncertainty can be precisely modeled through an 
appropriate probability distribution.  Most engineers 
understand this idea.  However, many are not 

sufficiently expert in this area of statistical modeling to 
permit them to specify all of the parameters of a 
probability distribution to model their own uncertainty.  
They clearly would understand the meaning of the 
mean of a probability distribution, and have a rough 
feeling for the standard deviation of a distribution 
(although they may not be able to specify a number for 
the appropriate deviation or variance.)  Typically, their 
understanding of other distribution parameters is even 
less complete than that of the standard deviation. 

In this work, we propose ways of capturing this 
uncertainty through some visualizations of probability 
distributions.  By allowing engineers to manipulate 
these visualizations, they can capture, for example, 
their degree of uncertainty in a judgment of the amount 
of risk in a particular action without their having to 
understand probability distribution parameters at a 
deep level. 

This work is couched in the context of requirements 
engineering and early-phase design activities for space 
mission and supporting technology at JPL.  This 
context specifically includes the Defect Detection and 
Prevention (DDP) tool and method that has been 
developed and is used at JPL.  The DDP tool and 
methods are discussed in the next section.   

The primary focus of this work is the importance of 
uncertainty modeling in requirements engineering and 
early-phase design of complex systems.  In section 3 
we describe uncertainty modeling through probability 
distributions, our visual tool for capture of this 
information, ways of combining information from 
multiple experts, and potential uses of this meta-
information.  In section 4, we describe more 
specifically how this meta-information can be used in 
the context of the DDP process and tool; section 5 
covers related work.  
 



 
 
2. Context – DDP and requirements 
 

 “Defect Detection and Prevention” (DDP) is a risk 
analysis process and custom software developed and 
used at JPL. DDP’s primary use is risk assessment in 
the early stages of projects. To do this, risk 
information is elicited from experts, using the DDP 
software to capture their information on-the-fly, to 
present the growing aggregation of their information 
via various visualizations, and assist them in decision-
making based on that information. For more details, 
see [4]. 

The risk information gathered in the course of DDP 
sessions is an instance of the human expertise with 
which this paper is concerned. In DDP, this includes 
experts’ judgments on risk-related information: the 
risks themselves - what are they, which “objectives” 
(a.k.a. “goals” or “requirements”) they threaten (and 
by how much – in common risk parlance, their 
“severity”), and their likelihoods; the aforementioned 
objectives, and their relative importance; and finally 
the so-called “mitigations” (options for reducing risks) 
– their costs, which risks they reduce, and by how 
much.  

The sum total cost of all the identified options for 
reducing risks usually far exceeds the resources 
available; hence one of the primary purposes of using a 
method such as DDP is to determine a cost-effective 
selection of mitigations. It is apparent that this is an 
optimization problem – objectives, risks and 
mitigations comprise a model: mitigations are options 
(each one can be chosen, or not), and for a given 
selection of mitigations, the cost (sum of costs of the 
selected mitigations) can be computed, and the benefit 
(sum of expected attainment of objectives, taking into 
account the risks that threaten them, where those risks 
have been reduced by the selected mitigations) can 
also be computed.  

In practical applications of DDP the experts have 
provided us with dozens to hundreds each of 
objectives, risks and mitigations, and thousands of 
connections among them. This highlights the need to 
follow an effective process for elicitation of such 
information. It also highlights the need for computer 
support for investigations of the accumulation of this 
information – (e.g., for 50 mitigations, there are 250 
ways of selecting from among them). For this purpose 
we have applied heuristic search techniques – the 
familiar ones of Simulated Annealing and Genetic 
Algorithms, and some novel machine-learning based 

techniques involving abduction and treatment 
learning.  See [2, 10].  

An important point to note is that these studies are 
typically done early in the development lifecycle – the 
time when there is maximum influence on the 
development to follow (because few commitments 
have been made), and yet foresight is hazy. Typically 
the novel aspects of whatever we are considering 
means that information from past projects is of only 
partial guidance, and that expert judgments must be 
utilized. As a result uncertainty pervades this process. 

Our reaction to date has been to deal with this at the 
decision end of the process. The DDP process gathers 
expert judgments in the form of discrete point-
estimates (e.g., this risk’s likelihood is 0.7), or, on 
occasion, min/max range estimates (e.g., this risk’s 
likelihood is at least 0.6 and at most 0.8). The DDP 
software computes with these point (or range) values. 
During the decision-making phase we compensate for 
the uncertainty that lies behind these numbers: for 
example, when using heuristic search to locate a 
(nearly) optimal solution for a given cost bound, we do 
not limit out attention to the one “best” solution 
returned by the search, rather, we explore interesting 
alternatives in the neighborhood of that “best” 
solution.   These include sensitivity analysis, data 
clustering, and visualization of these clusters. [3] 

There are good reasons to seek to deal with 
uncertainty from the information elicitation phase 
onwards. How this can be done efficiently and 
effectively is the goal of the remainder of this paper. 

 
3. Uncertainty Modeling 
 

One of the weaknesses of the DDP ontology is that 
it does not attempt to model the uncertainty in the 
expert opinion that is collected. However, experts 
frequently entertain a degree of uncertainty about the 
opinions they express. Furthermore, they are often 
quite capable of reflecting deeply on this uncertainty 
and describing it in a way that can be represented 
mathematically.  (In a later section, we refer to some of 
the literature in related fields in which experts have 
been able to provide this type of insight.)  

For example, although an expert may be uncertain 
about the exact cost of a mitigation, she may be willing 
to specify a simple distribution over the possible costs 
most closely matching her uncertainty, e.g., the mean 
and standard deviation of a Gaussian distribution. 
Similarly, when rating risk, experts can often quantify 
their certainty over the risk likelihood via a 
distribution. Eliciting and explicitly representing this 
uncertainty provides us with a wealth of information 



that can potentially reduce the space of viable options 
further by preferring those based on greater certainty. 
Having a measure of the certainty of experts’ 
judgments, or lack thereof, is surely a valuable asset to 
a project manager.  With minimal training about the 
meaning of probability distributions, we believe that 
experts at NASA and elsewhere will be able to provide 
such information about their certainty.  

Successfully solving this problem requires 
addressing four issues: representation of uncertainty, 
elicitation of uncertainty, resolution of disagreements 
between experts, and effective utilization of this 
information in the decision-making process.  
 
3.1. Uncertainty representation 

 
By far the most common formalism for representing 

uncertainty is probability theory. This is due in no 
small part to its clear, well-understood semantics. In 
contrast, many alternative proposals for codifying 
expert uncertainty (e.g., certainty factors) can create 
unintended inconsistencies in a knowledge base. [13] 
Much of the recent work in artificial intelligence on 
representing uncertainty has focused on compact 
representations of multivariate distributions (e.g., 
Bayesian networks). This work is largely irrelevant 
from the perspective of our work, however, because 
the distributions describing certainty are always over 
single variables. Thus, it is sufficient to select 
distributions from standard parametric families such as 
Gaussians (for continuous variables) or binomials (for 
discrete variables). 
 
3.2 Uncertainty elicitation and capture 

 
The traditional approaches to probability elicitation 

developed in the decision analysis community include 
visual methods such as probability scales or wheels 
and indirect methods based on lotteries. [11] Again, 
much of the recent work on probability elicitation has 
focused on the challenging problem of effective 
elicitation techniques for complex, multivariate 
distributions [1, 14]. We do not encounter many of 
these challenges due to the fact that we only elicit 
distributions over single variables. Providing experts 
with standard parameterized families to choose from 
further simplifies the elicitation process. 

We have developed a modest tool to help capture 
estimates of uncertainty as represented by probability 
distributions.  As a starting point, we present a picture 
of a standard probability distribution whose mean is 
the value previously reported by the engineer.  (See 
Figure 1.)  We then allow the users to manipulate this 

visualization in ways that characterize their 
understanding of the uncertainty in this judgment.  In 
this version of the tool, the distributions are from the 
Beta distribution family. 

For example, the users may conclude that, if their 
judgment is wrong, then they have most likely 
underestimated the value. That is, the probability 
distribution is skewed to the right.  Or they may assert 
that they have a high degree of certainty, so that the 
standard deviation of the probability distribution 
should be smaller.  The interface makes this 
manipulation easy.  Figures 2 and 3 below illustrate 
this interface with these choices. 

 

 
 

Figure 1: Initial probability distribution 
given a mean 

 
The pertinent parameters for the selected 

probability distribution are captured from the interface, 
and saved with other project information.  Note that 
experts are allowed to manipulate the parameters in a 
visual way until they are satisfied.  They are not 
required to understand the associated parameters.  
(However, these parameters are available for their 
review, and for direct modification by those with a 
deeper level of knowledge and experience with such 
parameters.)   

 



 
Figure 2: Probability distribution skewed to 

right 
 

In using a process like DDP or similar collaborative 
methods and requirements elicitation or early-phase 
design, hundreds of opinions are elicited from experts.  
We cannot hope to ask these experts to evaluate the 
uncertainty probability for every one of these.  Instead, 
we can ask for this insight on an as-needed basis, that 
is, on the critical issues as determined by the 
abduction, treatment learning, and decision clustering 
phases. Of course, we also allow for experts to specify 
uncertainty even when not asked. Opinions for which 
no distribution has been explicitly specified we assume 
to have the default distribution of certainty, i.e., where 
the given value has a probability of 1 and all other 
values have a probability of 0. 
 

 
 
Figure 3: Probability with variance reduced 
 
3.3 Resolving differences among experts 
 

Given a measure of uncertainty over each variable 
gives the system additional power to distinguish 
between preferable worlds, as we will describe 
momentarily. However, an immediately obvious 
problem arises: multiple experts may specify different 
distributions over the same variable, but the system 
relies on each variable having a unique certainty 
distribution being associated with it. What is needed is 
a measure of the aggregate certainty with regards to 
each variable. The problem of aggregating probability 
distributions has long been studied in statistics and, 
more recently, in artificial intelligence. One simple 
technique that has received a great deal of attention is 
the Linear Opinion Pool or LinOP which computes a 
distribution that is a weighted sum of the experts’ 
distributions. 
 
Definition Given probability distributions P1, …, PL 

and non-negative parameters β1, …, βL such that 
Σiβi=1, the LinOP operator is defined such that, for 
any marginal instantiation X=x, 

LinOP({β1,P1}, …, {βL,PL})(x) = ΣiβiPi(x). ♦ 
 
For example, assume that we are trying to estimate 

the failure rate of a device called devX. We have 2 
experts A and B, whose opinions we seek to achieve 
our goal. 

 
Expert A: 
He thinks that devX will break with a probability of 

at most 0.2. (This is probably too high for a failure 
probability, but for the sake of simplicity we will use it 
in the example).  When asked to clarify what he means 
by ‘at most P=0.2’, he explains: 
 

• With a 30% probability, devX will fail to 
operate with a probability of 0.10 

• With a 30% probability, devX will fail to 
operate with a probability of 0.15 

• With a 40% probability, devX will fail to 
operate with a probability of 0.20 

Expert B: 
She thinks that devX will break down with a 

probability of at most 0.1. But she adds that there is an 
equal possibility that it may break with a probability of 
0.05. 

• With a 50% probability, devX will fail to 
operate with a P=0.05 

• With a 50% probability, devX will fail to 
operate with a P=0.10 

In order to combine the experts’ opinions into one 
distribution, we take the weighted average their 
distributions for each value of the failure rate variable. 



Suppose we trust both experts equally so that we 
weight their opinions equally, that is, wA = wB = 0.5. 
Then, for example, the LinOP aggregate probability 
for a 10% failure rate would be 
 

LinOP(A, B, devX fail at 10%) 
= ∑wiPi(devX fail at 10%) 
= wAPA(devX fail at 10%) + wBPB(devX fail 
at 10%) 

 = 0.5(0.3) + 0.5(0.5) = 0.4 
Doing the same calculation for all values of the failure 
rate variable, we get the distribution describing the 
aggregate uncertainty. 

In spite of its simplicity, intuitiveness, and 
popularity, LinOP has often been dismissed as a 
normative aggregation operator, primarily because it 
fails to satisfy some properties deemed reasonable of 
all such operators (such as commutativity of 
aggregation and conditioning – that is, the operations 
of aggregating a distribution with another distribution 
and conditioning it with evidence should commute), 
but also because the weights are often chosen in an ad 
hoc manner. However, Maynard-Reid II and 
Chajewska [9] show that when it is accurate to 
describe the experts as having arrived at their 
uncertainty by learning from their experience in a way 
that approximates maximum likelihood estimation, 
then LinOP is exactly the correct operator to use where 
the weights correspond to the amount of experience 
each expert has had. We believe that the experts in 
Team X approximate these criteria sufficiently well to 
legitimize the use of LinOP. 
 
3.4 Uncertainty Utilization 
 

Now, given that every variable has an uncertainty 
distribution associated with it (whether explicitly or 
implicitly), if the system encounters two solutions that 
are in all ways equally preferable but where one 
exhibits a lesser degree of certainty on some of its 
variables, the system can safely remove that solution 
from consideration. More precisely, we can use the 
additional uncertainty information to eliminate 
solutions estimated to have lower expected utility. The 
expected utility of a world is its probability multiplied 
by its utility. Decision theory has shown that the most 
rational choice in any decision problem is to select a 
world that maximizes expected utility. In our context, 
utility is a function that seeks to maximize requirement 
benefits while minimizing mitigation costs. However, 
we do not have direct access to the probability of each 
solution. Because of the difficulties inherent in 
eliciting such a global joint distribution, we elicit local 

distributions over variables instead as described above. 
Presumably, these would be the corresponding 
marginal distributions of the joint had it been 
specified. In general, we cannot compute the joint 
distribution – and, thus, expected utility – given only 
marginal probabilities. However, if we assume that all 
variables are mutually independent (both conditionally 
and unconditionally), then the expected utility of a 
solution reduces to the product of the probabilities of 
the individual variable values that define the solution 
and the utility of the solution. This independence 
assumption is strong, but we believe the approximation 
will prove acceptable in this domain and that the 
benefits in elicitation and expected utility computation 
savings will far outweigh the slight loss of accuracy.  
Finally, we replace the utility measure used by the 
search to rank solutions with the estimated expected 
utility measure so that solutions are chosen that 
maximize expected utility. 

Taken as a whole, our proposal incorporating 
uncertainty can be seen as an approximation of the 
decision-theoretic methodology. The local elicitation 
of uncertainty approximates the elicitation of a 
distribution over the solutions and the iterative 
combination of search, clustering, and localized 
expected utility maximization approximates the global 
expected utility maximization computation. We expect 
experimental results to show this strategy to 
outperform the original system that ignores 
uncertainty, modulo the validity of our assumptions. 

 
4. Application to DDP 
 

In subsection 3.4, we described expected utility 
maximization in general terms.  Here, we apply this to 
the specific case of incorporating uncertainty in DDP.   
The DDP process requires engineers and domain 
experts to make scores, or even hundreds, of 
judgments about requirements, their weights, risks, 
their a priori likelihoods, mitigations, their costs, and 
strengths of relationship among requirements and risks 
and among risks and mitigations.  We can clearly not 
ask these engineers and experts to take more of their 
valuable time to give probability estimates for each of 
these values.   However, we have tools that can help to 
pare down the number of decisions to the vital ones.  
Menzies’ treatment learning [2, 10] can determine 
which decisions are significant, and which are nearly 
irrelevant.  Decision clustering and visualization [3] 
can help managers reduce the search space of viable 
solutions to a set that, in addition to meeting cost and 
effectiveness objectives, meet their less measurable 
criteria. 



Thus, we propose that the modeling of uncertainty 
be applied after the other tools (treatment learning, 
decision clustering, etc.) have isolated the most 
important decision variables.  We would then ask 
engineers and domain experts to give an estimate of 
the uncertainty in their previous single number 
estimates using the visual tool described in section 3.2.  
That is, we model their uncertainty with a probability 
distribution.  For example, if an expert is reasonable 
sure about an estimated probability of 0.2, he would 
use the tool to model this with a normal distribution 
with a fairly small standard deviation.  Thus, the expert 
would have to give three pieces of information about 
the probability distribution, e.g., normal, the mean, and 
the standard deviation.  (Of course, the visualization of 
the probability distribution allows the engineer to 
specify these parameters with implicitly given 
numerical values.)  If he was less sure, then he might 
give a larger estimate of the standard deviation.   

In another situation, an expert might report that the 
estimate of 0.2 that she previously reported is the most 
likely value, but that if it is wrong, it is more likely to 
be an over-estimate.  That is, the probability is skewed 
to the left.  As demonstrated in section 3.2, our 
uncertainty visualization tool allows this type of 
manipulation. 

 
5. Related Work 
 

In Section 3, we described some of work related to 
the concepts discussed there.  Here we mention some 
additional work related to the issue of combining 
probability distributions.  Resolving differences among 
distributions so as to combine them has long been a 
topic of research in statistics [5] and has recently 
captured the interest of artificial intelligence 
researchers as well [9, 12]. Although the LinOP 
operator we use is perhaps the most used operator due 
to its simplicity, many other operators have been 
proposed including LogOp (similar to LinOp but based 
on a product of logarithms instead), Bayesian 
updating, and iterative elicitation methods. Each 
method has tradeoffs – indeed, the literature is full of 
impossibility theorems. However, recent advances 
have been made by taking advantage of information 
available about the experts (e.g., their expertise or how 
they acquired their beliefs) or of structure inherent in 
their beliefs. 

Researchers have tackled this same problem in 
other domains including the fields of medicine (e.g., 
the highly successful Pathfinder system [6]), nuclear 
power [7], and fire management [8]. The approach of 
some of these efforts is to ask human experts to rate 

the uncertainty in their opinions.  This training of 
experts in “the practice of expressing knowledge and 
beliefs as probability distributions” mentioned above is 
one of the steps in the NUREG-1150 methodology 
described in Hora and Iman [7]. 
 
6. Future directions 
 

For this to be an effective addition to the DDP 
process, users need a short introduction to probability 
distributions to give them an understanding of the 
typical properties of each.  Some other previous efforts 
have found such training to be possible and effective.  
The current prototype is a separate Java application. 
To fully integrate it with the DDP tool, we need to add 
components to the DDP interface to support selection 
of probability.   

One question that remains to be addressed is this: Is 
there evidence that the added information about 
uncertainty makes a difference in the process.  We can 
make an intuitive argument that it does.  Suppose that 
experts agree that a large group of important decisions 
each have an uncertainty probability that is skewed 
uniformly in one direction.  Intuition would infer that 
the combinations of these values might conclude that 
the most likely solution is considerably shifted because 
of this skewed uncertainty.  Although this intuitive 
argument may be more or less compelling, a more 
precise study of this would have to be done to 
determine the real value of this extra information. 
 
7. Conclusions 
 
Requirements engineering and early-phase design of 
complex systems are inherently uncertain.  Engineers 
and domain experts use their training and experience to 
produce the best judgments possible in light of this 
uncertainty.  Typically, we are forced to endure this 
uncertainty early with hope of making more accurate 
judgments in later phase of the project.  Here we treat 
this uncertainty as an opportunity by collecting meta-
knowledge about uncertainty from engineers and 
experts and mining this information.  This gives 
project managers insight into potential strengths and 
possible areas of weakness in the requirements or 
design.  Since this meta-information about uncertainty 
is captured in early phases of a project, it can be 
leveraged to significantly improve the developing 
system. 
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