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Abstract— We report a Quantitative Structure-Activity 
Relationships (QSAR) study using Genetic Function 
Approximations (GFA) to describe the polymer-carbon 
composite sensor activities in the JPL Electronic Nose (ENose), 
when exposed to chemical vapors at parts-per-million (ppm) 
concentration levels. A unique QSAR molecular descriptor set 
developed in this work combines the default analyte property 
set (thermodynamic, structural etc.) with sensing film-analyte 
interactions that describes the sensor response. These 
descriptors are calculated using semi-empirical and molecular 
modeling tools. The QSAR training data set consists of 15-20 
analyte molecules specified by NASA for applications related 
to Life Support and Habitation in space. Statistically validated 
The applicability of these QSAR models was also tested 
independently to predict the sensor activities for test analytes 
not considered in the training set. 
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I. INTRODUCTION 
The JPL electronic nose (ENose) consists of polymer-

carbon composite sensing films used to detect organic vapors 
and other environmental contaminants for Life Support and 
Habitation in space applications [1,2]. The measured sensor 
responses are conductivity changes in polymer-carbon 
composite films upon exposure to target vapors (or analytes) 
at parts-per-million (ppm) concentrations. Training an array 
for a given set of analytes and a given set of environmental 
conditions (temperature, pressure, and humidity) is time 
consuming; in addition, developing training sets and 

calibration information may decrease the useful lifetime of 
the sensors. The ability to predict sensor responses 
accurately will be of great help in characterizing sensing 
materials.  The JPL ENose polymers fall in four categories 
(i) Hydrogen bond basic (ii) Dipolar and hydrogen bond 
basic Moderate dipolarity (iii) weak hydrogen bonding and 
weakly dipolar (iv) weak or no hydrogen-bonding. 

Previous modeling efforts [3-5] to predict the response of 
polymer-film based sensors, primarily on pure polymer 
films, use Linear Solvation Energy Relationships (LSER) 

and solubility parameters to obtain a good correlation 
between the calculated and measured responses. Modeling 
efforts in the past for polymer-carbon composite sensing 
films based on solubility parameters [6], have taken into 
account only the effect of polymer-analyte interactions and 
assumed that neither carbon nor analyte in the film play a 
role in sorbing analyte molecules or in contributing to the 
response of the film. This model of sensor response may not 
represent a complete picture of response in polymer-carbon 
composite sensors. 

We report a Quantitative Structure-Activity Relationships 
(QSAR) study using Genetic Function Approximations 
(GFA) with a unique molecular descriptor set, to describe the 
activities of the JPL ENose polymer-carbon sensors. In our 
work, the sensor activity for a given analyte is defined as the 
coefficient, A1, which is correlated to the sensor response as 
y=A1x + A2x2, where x is the concentration of analyte. A2 is 
generally three to five orders of magnitude smaller than A1. 
The unique QSAR descriptor set combines the default 
analyte properties (structural, spatial, topological, 
conformational, and thermodynamic) with descriptors for 
sensing film-analyte interactions, which describes the sensor 
response. The modeled analyte descriptors are calculated 



using QSPR techniques. The polymer-analyte interaction 
energies that describe sensor response are calculated using 
molecular modeling tools. 

 

II. EXPERIMENTAL DETAILS 
The JPL ENose array consists of 32 sensors made from 

16 polymer-carbon composite films. As previously 
described, the training of the JPL ENose sensors is done by 
delivering measured concentrations of analyte with 
controlled humidity at a given sensor substrate temperature. 
Response data for each analyte and each sensor are fit to an 
equation of the form y=A1x + A2x2, where x is the analyte 
concentration and y is the normalized change in resistance. 
To develop sensor activity model that is concentration 
independent, the QSAR studies uses coefficient A1 as the 
sensor activity to be correlated with molecular descriptors. 
The poly(styrene-co-maleic acid) sensing film response  is 
selected  for this study.  The choice of the current system is 
to further add to our previous understanding by developing a 
model that relates the sensor activity to molecular 
descriptors. The analytes and concentration ranges 
considered for this study are shown in TABLE I.   

III. MODEL DEVELOPMENT  

A. QSAR Descriptors: Analyte properties and Sensor                   
response 

            TABLE I: ANALYTE LIST AND CONCENTRATION RANGE 
TESTED IN PARTS-PER-MILLION (PPM) FOR ENOSE OPERATION 
(760 TORR, 23 °C).  DATA ARE TAKEN AT A CONSTANT 
HUMIDITY OF 5000 PPM WATER (APPROXIMATELY 18% 
RELATIVE HUMIDITY). 

The QSAR descriptors considered for the study 
include those that describe intrinsic analyte properties as 
well as sensor response. 

The default analyte descriptors for QSAR studies 
[7] that describe the intrinsic analyte properties fall into 
Electronic, Spatial, Structural, Thermodynamic and 
Topological categories.  Sensor response at a molecular 
level is described by interactions between the sensing film 
and the analyte. Descriptors for sensor response include 
interaction energies of the sensing film components 
(polymer and carbon-black) with the analyte molecules 
(target molecule and water). Also added to the default 
descriptor set, is the vapor pressure of the analytes at 300K. 
The rationale behind using vapor pressure as a descriptor, is 
based on functional dependence of the sensing film partition 
coefficient to the bulk  analyte concentration (hence the 
vapor pressure). 

The pair interaction energies considered to 
represent the sensor response descriptors are:  polymer-
analyte, CB-analyte, polymer-water, and CB-water, analyte-
analyte and analyte-water. Depending on the type of 
interactions considered, the suffixes could be polymer (p), 
carbon black (cb), analyte (a), or water (w). For example 
interaction energy between the polymer (p) and the target 
analyte (a) is denoted by Epa.   

 

A combined descriptor set that includes the default 
analyte descriptors along with sensor response descriptors 
was used in the QSAR studies to correlate the sensor 
coefficients A1 with the molecular descriptors.  

B. QSAR Descriptor calculations  
Default analyte descriptors were predicted by 

empirical and semi-empirical Quantitative Structure 
Property Relationships (QSPR) using the commercial 
software Cerius2 [8] on a Silicon Graphics O2 workstation.  

Details on the molecular models and forcefield 
used for the sensing film-analyte interaction calculations are 
discussed elsewhere [7,9]. The sensing film-analyte 
interaction energies were calculated using Monte Carlo 
simulation techniques. Interaction energy between the 
polymer and an analyte molecule, Epa, was calculated by 
fixing the polymer structure in space and sampling the 
analyte molecule around the polymer, then averaging the 
energy calculated over all the random analyte configurations 
generated around the polymer. In this study we used 105 
configurations. Epw, Ep-cb, Ecb-a, Ecb-w, Ecb-cb, Eaa, and Eaw 
descriptors were calculated similarly. The BLENDS module 
in the Cerius2 software performs the calculations based on 
the methodology described above.  
 

Analyte Concentration tested 
Low - High   (ppm) 

  1.  Acetone  
  2.  Ammonia  
  3.  Chlorobenzene  
  4.  Dichloromethane  
  5.  Ethanol   
  6.  Isopropanol  
  7.  Xylenes (mixed) 
  8.  Tetrahydrofuran  
  9.  Trichloroethane  
10.  Acetonitrile  
11.  Ethylbenzene  
12.  Freon113  
13.  Hexane  
14.  Methyl ethyl  ketone  
15.  Methane  
16.  Methanol  
17.  Toluene  
18.  Benzene   
19.  Indole  
20.  Dichloroethane  

 
 

64 -   600 
6 -     60 
3 -     30 
10 -   150 
200 - 6000 
30 -   400 
33 -   300 
13 -   120 
7 -   200 
1 -     25 
20 -   180 
15 -   500 
15 -   150 
15 -   150 
1600 - 50000 
6 -   100 
5 -     50 
10 -   100 
25 -   450 
10 -   100 

 



 

 

C. QSAR equation: model development and  sensor 
activity representation 

The first step in the QSAR model development 
process is to investigate the number of terms  (Nterm) and the 
functional forms (linear or linear-quadratic or spline) to be 
used in the QSAR equations. Based on our previous 
experience [7], we have chosen to go with linear-quadratic 
equation with  3-4 terms . The reliability and significance of 
the developed QSAR models are determined by using 
statistical parameters such as correlation coefficient r2 and 
F. 

The response of a polymer carbon sensing film to a given 
analyte molecule is based on how the sensing film 
components (polymer and carbon black) in the polymer-
carbon composite interact with the analyte molecule. 
Therefore, the QSAR equation that we have chosen to 
represent a given sensor is selected from a set of cross-
validated equations generated by the GFA algorithm. The 
selected equation is the statistically most significant one 
(largest r2 value) of the equation set which also contains the 
polymer-analyte (Epa) descriptor 

IV. RESULTS AND DISUCUSSION 
The polymers selected for the current investigation is 
poly(styrene-co-maleic acid) (Figure 1), which falls in the 
fall in  Hydrogen bond basic category. The Pka of 
polystyrene-co-maleic acid  at 298 K was calculated [10]  as  
5.19 and 3.12. These two values correspond to  contributions 
by the two carboxylic acid groups in the maleic acid 
monomer of the , polystyrene-co-maleic acid  polymer 
dissociating H+ ions. 

 

Figure 1: Poly(styrene-co-maleic acid) monomer unit 

 

We have used a three term linear-quadratic form for the 
QSAR study.  After cross-validation, the statistically 
significant equation for the poly(styrene-co-maleic acid)  
containing the descriptor Epa  was:  
Calculated activity=       1.00E-06 VP2

- 1.48 Eaw
+ 0.39 Epa

                  (1) 

(r2=0.88, F =50.6) 

The term VP, refers to the vapor pressure of the analyte. The 

 

Figure 1.   

Figure 2: A plot of QSAR calculated vs. experimental sensor 

It should be noted that we do not expect to calculate the 

                   

strong interaction energy between the water and the two 
carboxylic groups in the polymer results in dominance of the  
analyte-water interaction energy term, hence the appearance 
of the Eaw in equation (1). A plot of QSAR calculated  versus 
experimental sensor activities (A1 coefficient) is shown in 
Figure 2. Equation (1) was used to predict the sensor 
coefficient A1 for the test analytes: benzene, dichloroethane 
and indole. As seen in Figure 2, similar to the previous case, 
the model works satisfactorily for the benzene and 
dichloroethane and  indole.  
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activity for the training and test analyte set using combined 
descriptor set. The calculated values for both the training 
and test analyte set are obtained using Equation (1). The r2 
value refers to the correlation between the calculated vs. the 
experimental values obtained for the training data set. 

exact value of the coefficient A1 using the QSAR approach 
described here.  It is likely that there are effects influencing 
sensor response which are not accounted for in the models 
of interaction energy or in the physico-chemical properties 
of the analyte.  For example, any addition of pathways for 
electronic conduction, such as ions in the polymer matrix, 
would result in a decrease in resistance, but such a decrease 
would not be accounted for in either the calculated 
interaction energies or in the default descriptor set. 
 



V. CONCLUSIONS 
Experimental data for a polystyrene-maleic acid carbon 

black sensor was correlated using QSAR with intrinsic 
analyte properties and molecular interaction energy terms. 
The model developed showed good correlation for the entire 
analyte set as well as analyte subsets.  The descriptors that 
predict the polymer-carbon sensor response indicate that the 
polymer-analyte interaction is not the only important 
interaction to consider.  In addition to predicting sensor 
response, it may be possible to elucidate the sensing 
mechanisms using this approach.  The approach will be 
extended to other polymer composite sensors used in the JPL 
ENose system.   
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