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Summary: We have developed a low-complexity for lossless com-

pression of multispectral or hyperspectral data.

Algorithm Overview:

• Predictive compression

• Uses the sign algorithm for prediction

– an adaptive filtering algorithm that is a relative of the

least mean square (LMS) algorithm

• Prediction residuals are encoded using Golomb power-of-2

codes

– method is very similar to residual encoding in LOCO-I
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Overview of the LMS Algorithm and the Sign Algorithm

Purpose: Estimate a desired signal dk from an input vector uk

using a linear estimator that is adaptively updated from previous
results.

Summary:

• Form estimate: d̂k = wT
k uk

• Calculate estimation error: ek = d̂k − dk

– When used as part of a predictive compression scheme,
ek is encoded in the compressed bitstream

• Update filter weights:

LMS algorithm: wk+1 = wk − µukek

Sign algorithm: wk+1 = wk − µuk sgn(ek)

Here µ is the “adaptation step size” parameter
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For clarity of

presentation, we

label the samples

s0, . . . , s19.

Naive approach to predictive compression using

the given neighborhood:

Apply LMS or sign algorithm with dk = s0 and uk =



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. . . however, this performs poorly!
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Our solution: compute simple preliminary estimates s̃i in each
band at the spatial location of the sample being predicted, and
subtract from the input samples.

s̃15 = (s16 + s17 + s18 + s19)/4

s̃10 = (s11 + s12 + s13 + s14)/4

s̃5 = (s6 + s7 + s8 + s9)/4

s̃0 = (s1 + s2 + s3 + s4)/4

Use uk =




s1 − s̃0
s2 − s̃0
s3 − s̃0
s5 − s̃5

s10 − s̃10
s15 − s̃15




and dk = s0 − s̃0.
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Miscellaneous specifics of our implementation:

• Sign algorithm is used for weight adaptation

• Estimation error is encoded using Golomb power-of-2 codes

in a manner very similar to residual encoding in LOCO-I

• Dataset is divided into 32-line parts, which are compressed

independently

• Each spectral band has its own prediction weights, main-

tained independently of the prediction weights for other spec-

tral bands

• For each 32-line part, the adaptation step size parameter µ

is initialized to 0.00008, and multiplied by 0.75 after each of

the first 10 lines
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Algorithm features:

• Robust; there is no need to know in advance much about

the degree of spectral or spatial correlation

– However, the µ schedule may have to be appropriate for

the dynamic range of the data

• Simple; it would be well-suited for implementation on a DSP

or in an FPGA

• Low computational complexity

– Can be implemented in such a way that the operations

per sample are:

∗ 6 integer multiplies

∗ ∼ 25 integer add, subtract, or bit shift operations

∗ Golomb coding operations
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Compression effectiveness comparisons are given in the next four
slides. Methods compared:

Fast lossless: our algorithm

ICER-3D: lossless results for ICER-3D, a 3-D-wavelet-based compressor

JPEG-LS: JPEG-LS applied to the spectral bands independently

Rice/USES: algorithm used in USES chip, with the multispectral predictor
option. (Note that this can be improved on with an externally computed
predictor.)

Differential JPEG-LS: JPEG-LS applied to the differences between the suc-
cessive spectral bands

SLSQ and SLSQ-OPT: two versions of Spectral-oriented Least SQuares
(SLSQ) [Rizzo et al., 2005]. Algorithms with complexity roughly similar
to that of ours.

3-D CALIC: a nontrivial extension of the basic (2-D) CALIC algorithm to
multispectral imagery

M-CALIC: multiband CALIC, another extension of CALIC to multispectral
imagery

ASAP: Adaptive Selection of Adaptive Predictors [Aiazzi et al., 2001]; more

computationally intensive than any of the other compressors in the tables
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Bit rates achieved for compression of scenes from the uncali-

brated 2001 Hawaii and 2003 Maine AVIRIS datasets. Results

are given in bits/sample.

fast JPEG-LS Rice/USES
scene lossless ICER-3D (2-D) multispectral

2003 Maine 1 2.92 3.38 5.00 4.02
2003 Maine 2 2.89 3.33 4.88 3.98
2003 Maine 3 2.98 3.49 5.21 4.12
2003 Maine 4 2.93 3.41 5.01 4.07
2003 Maine 5 2.86 3.27 4.70 3.93
2003 Maine 6 2.81 3.21 4.59 3.90
2003 Maine 7 2.79 3.18 4.54 3.87
2003 Maine 8 2.77 3.19 4.60 3.87
2003 Maine 9 2.84 3.28 4.75 3.95
2003 Maine 10 2.82 3.23 4.66 3.88
2003 Maine 11 2.77 3.19 4.56 3.85
2003 Maine 12 2.73 3.15 4.49 3.82
2003 Maine 13 2.80 3.24 4.68 3.89
2001 Hawaii 1 2.75 3.12 4.93 3.77
2001 Hawaii 2 2.85 3.32 5.19 4.00
2001 Hawaii 3 2.86 3.34 5.11 4.03
2001 Hawaii 4 2.79 3.17 4.70 3.89
2001 Hawaii 5 2.71 3.06 4.44 3.79
2001 Hawaii 6 2.46 2.72 3.79 3.39

average 2.81 3.23 4.73 3.89
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Bit rates achieved for compression of scenes from the calibrated
1997 AVIRIS datasets. Results are given in bits/sample.

fast JPEG-LS Rice/USES differential
scene lossless ICER-3D (2-D) multispectral JPEG-LS SLSQ SLSQ-OPT

Cuprite 1 4.89 5.14 7.13 6.00 5.44 5.03 4.90
Cuprite 2 5.02 5.34 7.50 6.13 5.58 5.09 4.97
Cuprite 3 4.92 5.16 7.16 6.00 5.45 5.06 4.92
Cuprite 4 4.98 5.21 7.16 6.05 5.51 5.10 4.96

Jasper Ridge 1 5.04 5.41 7.72 6.17 5.62 5.06 4.95
Jasper Ridge 2 5.02 5.37 7.67 6.12 5.59 5.05 4.94
Jasper Ridge 3 5.07 5.47 7.90 6.19 5.67 5.10 4.99
Jasper Ridge 4 5.07 5.47 7.87 6.22 5.67 5.11 5.00
Jasper Ridge 5 5.02 5.39 7.75 6.14 5.60 5.06 4.94
Low Altitude 1 5.37 5.70 7.81 6.53 5.97 5.38 5.30
Low Altitude 2 5.42 5.76 7.95 6.58 6.02 5.40 5.33
Low Altitude 3 5.30 5.58 7.57 6.42 5.88 5.33 5.23
Low Altitude 4 5.32 5.58 7.53 6.42 5.89 5.37 5.26
Low Altitude 5 5.37 5.63 7.60 6.47 5.91 5.40 5.30
Low Altitude 6 5.29 5.56 7.52 6.42 5.85 5.34 5.24
Low Altitude 7 5.29 5.60 7.64 6.43 5.88 5.34 5.24
Lunar Lake 1 4.99 5.19 6.98 6.02 5.49 5.12 4.99
Lunar Lake 2 4.94 5.14 6.96 5.97 5.44 5.07 4.93

Moffett Field 1 5.12 5.48 7.78 6.24 5.70 5.15 5.03
Moffett Field 2 5.11 5.40 7.57 6.20 5.60 5.08 4.98
Moffett Field 3 4.98 5.12 7.03 5.96 5.41 4.96 4.86

average 5.12 5.41 7.51 6.22 5.68 5.17 5.06
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Bit rates achieved for compression of the first half-scenes (256

lines) from four of the calibrated 1997 AVIRIS datasets. Results

are given in bits/sample.

fast
dataset lossless 3D-CALIC M-CALIC ASAP
Cuprite 4.86 5.23 4.97 4.87

Jasper Ridge 5.02 5.20 5.05 4.83
Lunar Lake 5.02 5.17 4.88 4.76

Moffett Field 5.06 4.92 4.73 4.60
average 4.99 5.13 4.91 4.76
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Bit rates achieved for compression of scenes from the calibrated

2001 Arizaro dataset. Results are given in bits/sample.

fast JPEG-LS Rice/USES
scene lossless ICER-3D (2-D) multispectral

2001 Arizaro 1 4.54 4.54 5.76 5.55
2001 Arizaro 2 4.51 4.49 5.71 5.51
2001 Arizaro 3 4.49 4.46 5.65 5.48
2001 Arizaro 4 4.50 4.49 5.71 5.52
2001 Arizaro 5 4.52 4.57 5.88 5.51
2001 Arizaro 6 4.54 4.64 6.12 5.52
2001 Arizaro 7 4.61 4.62 5.91 5.60
2001 Arizaro 8 4.67 4.68 6.01 5.65
2001 Arizaro 9 4.82 4.97 6.67 5.78
2001 Arizaro 10 4.61 4.70 6.11 5.59
2001 Arizaro 11 4.56 4.60 5.98 5.55

average 4.58 4.62 5.95 5.57
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