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Motivation
• Most mobile robots are unreliable.  

• Small field robots have availability less than 50%    
(Carlson & Murphy, 2003)

• Those mobile robots that are highly reliable (e.g., NASA 
rovers) are very expensive.

• How can we increase the reliability of non-NASA mobile 
robots without the high cost?  

• How can we design NASA rovers to be “just reliable 
enough”, rather than making them as reliable as possible?
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Motivation

• In order to improve robot reliability we need:

• To understand what reliability is, and in what ways 
robots are falling short.

• To be able to predict reliability of robots and robot 
teams.

• To compare different designs to determine which 
provide more reliability for less cost.
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Background

• “To understand what reliability is, and in what ways 
robots are falling short..”

• Reliability engineering is an old field.  Why aren’t 
we applying it to robots?

• Carlson and Murphy (2003,2004) use reliability 
metrics for the analysis of robot failures and 
identify failures by subsystem.

• Ebert and Stratton (2005) provide a list of common 
robot failures.
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Background

• “To be able to predict reliability of robots and robot 
teams.”

• Bererton and Khosla (2002) use reliability concepts to 
predict performance of repairable and nonrepairable 
robot teams.

• In prior work, we identify relevant models from 
reliability engineering, and demonstrate how they can 
be used to predict the probability that a robot will 
continue operating long enough to complete a mission 
task.
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Background
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Objective

• “To compare different designs to determine which 
provide more reliability for less cost.”

• In the current paper, we develop a method for 
predicting the probability of entire robot teams 
performing multiple tasks.
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Problem Statement

• Mission: A group of robots must traverse together for 
some number of days, and they must all be alive at 
the end.

• Problem: For this mission, compare the performance 
of repairable robot (RR) and nonrepairable robot 
(NR) teams.
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Considerations

• If the reliability of the individual robots is the same, it 
seems obvious that the RR team will have greater 
probability of completing the mission.

• However, the cost of developing and implementing 
repairability is non-trivial.  If we use NR, we can apply 
those funds to increase the reliability of the robots.  

• If cost is equalized in this way, it is not obvious which 
team will have the greater probability of mission 
completion.
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Considerations
• There are other equalizers to consider as well.  For 

instance, more reliable components tend to be larger. 
For a NASA rover, volume is highly constrained.  In a 
given payload volume we can therefore send a larger 
number of low-reliability robots.  What is the break-
even point in this tradeoff? 

• How does the preference for lower reliability RR vs. 
higher reliability NR change if time is critical?  

• How do changes in mission parameters affect the 
preference?
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Modularity

• All robots are considered to be composed of multiple 
hardware modules.  

• For RR, there are some number of spare modules 
available which can replace failed modules.  Module 
replacement is carried out by a robot other than the 
failed robot, i.e. “cooperative repair.”
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Modularity
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Project Accomplishments and their significances 
per WBS element 

Modular Design Synthesis Using NASA’S Hierarchical System 
Terminology
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Project Accomplishments and their significances 
per WBS element 

Modular Design Synthesis Using NASA’S Hierarchical System 
Terminology
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Module Definition

• A module can be an ASSEMBLY, SUBASSEMBLY or PART.

• A particular mission design requirements will circumscribe 
what type of modules can be employed. 
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Representation

• The NR teams in this simple mission have only one 
type of task - Transit.  It is repeated some number of 
times.  If any robot fails during any Transit, then the 
mission fails.  

• We also consider NR teams where there are an 
excess of robots, so for instance three robots start 
the mission, and only two need to survive.
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Representation

• The RR teams have two possible tasks - Transit, and 
Repair.  If a robot fails during a Transit task, and 
there are spare modules available, then another 
robot must execute a Repair.  If there are no spare 
modules left then the mission fails. 

• We describe the possible mission+team 
configurations using the nomenclature (N,D,M) where 
N is the number of robots, D is the number of days to 
traverse, and M is the number of spare modules.
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Representation
• The space of all possible task sequences can be 

represented in tree form.  
• Example: Two NR traverse for two days (2,2,0):

Start

|
R1 transit 
R2 transit

|
status

| |
R1+R2+ Else

| |
R1 transit 
R2 transit FAIL

|
status

| |
R1+R2+ Else

|

SUCCESS FAIL
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Representation

• Repairability adds considerable complexity.  

• Adding a single spare module increases the number 
of tasks considered from two to eight.  Illustrated by 
the tree for (2,1,1) on next slide.
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Representation
START

|
R1 transit 
R2 transit

|
status

| | | |
R1+R2+ R1+R2- R1-R2+ R1-R2-

| | |
R1 transit 
R2 transit

R1 Repair 
R2

R2 Repair 
R1 FAIL

| | |
status status status

| | | | | | | |
R1+R2+ R1+R2- R1-R2+ R1-R2- R1+R2+ Else R1+R2+ Else

| | | | | | | |

SUCCESS R1 Repair 
R2

R2 Repair 
R1 FAIL R1 transit 

R2 transit FAIL R1 transit 
R2 transit FAIL

| | | |
status status status status

| | | | | | | |
R1+R2+ Else R1+R2+ Else R1+R2+ Else R1+R2+ Else

| | | | | |

SUCCESS FAIL SUCCESS FAIL SUCCESS FAIL SUCCESS FAIL
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Solution

• The tree can be used to evaluate the probability of 
completing the mission, which is the sum of the 
probabilities of occurrence for all Success leaf nodes.

• The probability of occurrence for a leaf node is 
calculated by traversing the path from root to leaf and 
multiplying probabilities.
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Solution

• Possible ways of dealing with combinatorial 
explosion:

• Closed-form analytical solution.

• Limit search space through mission constraints.

• Heuristic pruning.

• Stochastic sampling.
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Solution

• Simplifications:

• Failure is assumed to occur only at the end of a 
task.

• We do not track different types of spare modules.

• We do not consider differences in cost of repair.

• We ignore simultaneous module failures, other 
than complete failure of the team.
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Solution

• In this paper - closed-form analytical solution.

• Procedure - draw out tree by hand for a few cases, 
express the P(survival, mission) of each in terms of 
the P(survival, task) for the Transit and Repair tasks, 
then generalize the equations by observing patterns.

• Example:
• P(N,1,0)= T+ (N robots, one day, no spares)
• P(N,1,1)=T+ + T-R+

• T+ is P(all robots alive) T- is P(exactly one robot dead)
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Solution

• After much derivation and generalization, arrive at a 
general equation in terms of number of robots N, 
number of days D and number of spare modules M. 
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Where DCj is the number of combinations of j in D.
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Example Application
• Two robots to be alive after a traverse of D days.
• All robots are identical and composed of three 

modules: propulsion, manipulation, sensing/power.
• MTTF for each module is given, along with number of 

hours each module is used for the Transit and Repair
tasks.

• Compare different team configurations (2 NR, 3 NR, 
2RR) for base case.

• Compare configurations again with reduced reliability 
for the basic task (Transit.)
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Example Application
Mission success for different team configurations.
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Example Application

• Mission success with lower Transit reliability.
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Example Application

• Reliability of all teams is lower when the basic task is 
less reliable.  However the RR team has a smaller 
drop in reliability.

• Indicates that repairability is more valuable when 
basic mission (i.e., modules and tasks) has lower 
reliability.
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Recent Work

• Deriving equations for the probabilities is only 
feasible for very simple problems.  

• Use stochastic sampling instead.
• Elimination of earlier simplifications:

• We now track different types of spare modules.
• We now deal with simultaneous module failures.

• This new method with results for a more complex 
mission published in recent ISAIRAS paper.
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Summary

• First general method for analytically predicting the 
probability of robot teams.

• Makes use of long-established models from reliability 
engineering.

• While the method in this paper has broad 
applicability, the amount of human labor involved 
makes it impractical for any but the simplest 
missions.  Follow-on work has increased usefulness 
by using stochastic sampling instead of analytical 
derivations.
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For More Information

• S. Stancliff, J. Dolan, and A. Trebi-Ollennu. “Towards a 
Predictive Model of Robot Reliability," CMU Technical Report 
CMU-RI-TR-??, August, 2005.

• S. Stancliff, J. Dolan, and A. Trebi-Ollennu, "Planning to Fail: 
Mission Design for Modular Repairable Robot Teams," in Proc. 
8th Int'l Symp. Artificial Intelligence, Robotics and Automation in 
Space (ISAIRAS-05), September, 2005.

• http://www.cs.cmu.edu/~reliability
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