
FPGA Development for High Altitude Subsonic
Parachute Testing

James E.Kowalski, Konstantin G. Gromov and Edward H. Konefat

Jet Propulsion Laboratory,

California Institute of Technology

FPGA Development for High Altitude Subsonic
Parachute Testing

James E.Kowalski, Konstantin G. Gromov and Edward H. Konefat
Jet Propulsion Laboratory, California Institute of Technology

Abstract

This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth
qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control
storage of telemetry data from multiple sensors throughout launch, ascent, deployment and descent phases
of the subsonic parachute test.

 The FPGA used was a Xilinx Virtex-E, embedded on a COTS PCMCIA card with dual SRAM buffers.
Software on a SBC reads filled SRAM using Direct Memory Access (DMA), and stores the data in a flash
disk.

The FPGA design is guided by a spreadsheet of memory partitions based on data rates from each sensor.
Accumulators are used to compress some of the high rate data. A prioritized queue is used to control the
servicing of received data from multiple sources. The memory transfer rate is high enough to allow single
depth buffering.

Section I. covers requirements. Section II details methodology. Section III presents implementation results
including functional verification, resource utilization, and timing.

Data post processing and reformatting is in Section IV. Section V describes some of the test results.

This research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

Introduction

This paper describes a rapid, top down requirements-driven design of an FPGA used in a
qualification test program for a next generation Mars subsonic parachute(1). The field
programmable gate array (FPGA) processes raw sensor data, and it controls storage of
telemetry data from multiple sensors throughout; launch, ascent, deployment and descent
phases of the subsonic parachute test. Using an FPGA was instrumental to a quick turn-
around in this development, because it enabled modular reusability of heritage Verilog,
VHDL source code and design libraries to meet the new system requirements. The
system requirements specific to FPGA: development, design methodology, chip
organization and verification are covered in this paper. The system was simulated,
integrated and ground tested in a comparable environment prior to conducting the actual
field tests. Three high altitude subsonic drop tests were conducted in the fall of 2004
from Ft. Sumner, New Mexico successfully recording of deployment, inflation, and
inflated performance of the subsonic parachute with this new design.

System Requirements

The instrument set is designed and tested to operate and survive a wide variety of
conditions. After ground-level power-on, it ascends to and dwells at high altitude. After
release and a period of free fall, the parachute opens and descends to ground. Location
and recovery could take as long as a day following impact. Data must be recorded from
power-on to impact without loss. The following requirements are specific to the
development of the FPGA:

1. Design and development window of four months.
2. Low mass, low power, PCMCIA form factor module.
3. Ability to receive and format data from various sources at various rates

compressing by integration the highest rate data.
4. Store it to memory via DMA while continuing to receive and process new

data for over 10-hours test duration.
5. Operate in a high altitude, low pressure and extreme thermal environment.

Each field test requires a switch on of the instrumentation 2.5 hours prior to launch, a
typical 2-hour ascent and a 1-hour descent. The memory storage is designed for 10-hours
test duration. Sufficient margin is included to account for possible delays in launch, or an
atypical, prolonged period at the release altitude.

HASP FPGA Design Methodology

The methodology for this design was to use existing Verilog modules wherever possible,
adapting as necessary. Heritage IMU data receiver and serial interfaces from MER were
used with minor modification. The Annapolis Wildcard, with its VHDL library, was the
design platform. Hierarchical design and verification were used, simulating each module
before integrating to the next level, then simulating the next higher level.

There are no deep logic levels in this design. The clock cycle, at 25 ns, was fast enough
to allow all data sources to be written to memory, even if all their packed 32-bit words
became available at the same time. This meant that only a single level of queue depth was
needed for each source. A clock cycle was long enough, since there are no complex data
operations, to process the data with large margins. The HASP memory interface module
is the most complex, and it is at the heart of the design for this new application.

FPGA Chip Organization

The High Altitude Subsonic Parachute FPGA has a VHDL shell, called the HASP PE.
VHDL was used to be compatible with the Wildcard development system, which
contains a wide library of tested design elements, including bus interfaces and DMA. The
HASP PE used these for interfacing to the Wildcard memory chips and via DMA to the
host computer. The HASP PE also maps the pins of the HASP_core verilog to the
Wildcard PCMCIA I/O pins.

The HASP_core contains:

• the imu_data_rx, interface module for Northrop LN200 Inertial Measurement
Unit, designed for MER and modified slightly,

• 6 Accumulators – summing four each of 16-bit delta x, y and z velocity and angle
readings from imu_data_rx,

• the ADC interface, which controls two twelve bit analog to digital converters
• serial receiver for GPS data,
• serial receiver for magnetometer data, and
• the memory interface module.

The memory interface module contains:

• the memory interface state machine,
• downlink write state machine which formats and writing downlink packets,
• the downlink interface module,
• 6 18-bit accumulators to reduce the data frequency to downlink,
• buffer registers to build up 32-bit memory data words to be written into the

partitions for each of the input data types,
• interface timeout counters for the downlink write state machine,
• time-tag registers,
• counters for indexing ADC data, and
• buffer_request and buffer_active registers.

The design strategy was to write data to memory in partitions which were sized to match
the data volume and rates for each of the data sources. This was accomplished by using a
spreadsheet (Table 1.) that calculated the partition beginning and end addressees for each
data source.

The Wildcard’s two 128K x 32 memories were used as ping pong buffers. When one of
the data partitions became full, the last addresses for each partition were written into
another partition, called last, to serve as pointers to the end of valid data when
reconstructing the data stream. The write select then would be switched, so the newly
filled chip could offload to the host computer via DMA transfer, while writing continued
to the other memory.

The FPGA clock frequency is 40 MHz. The memory interface protocol for the Wildcard,
over the LAD (Local Address Data) bus operated at 40 MHz, allowing fast transfers. The
Wildcard has a programmable oscillator with a range from 0.5 to 100 MHz. The IMU
delivers 13 16-bit words of data at 400 Hz, with a bit rate of 1.0152 Mbps transmissions.
We used accumulators to sum the x, y, and z delta velocity and delta angle, decreasing
the storage rate to 100 Hz. During a 10 ms interval, 16 12-bit samples are taken from
each of two ADC’s; 10 bytes of data would be transmitted by the GPS receiver (9600
baud). See Fig.1.

IMU_IF

ADC_IF

GPS_IF

MAG_IF

STA_REG

adc1_data[23:0]

10 bytes

10 bits

100 Hz

6 bytes

3600 wds/sec

88+ bytes @ 50 Hz

40 Kbps

MEM_ADDR

MEM_DATA

ACK

HASP Memory Interface

MEM_INTERFACE
Dwn_Link

MEM_WR
LAD_MUX

adc_dv

16 dbl samples

start_adc

gps_data[7:0]
gps_dv

mag_data[7:0]
mag_dv

IMU_EOD

MEM_REQ

13 words + co

acc4

13 words

one_pps

Fig.1 HASP FPGA Interfaces

HASP Memory Partitioning

pkts wds/pkt partition size start_dec hex end_dec hex
4440

 imu 5 22200 1 1 4 22200 56B8

 adc 16 71040 22201 56B9 15AE4 93240 16C38

 gps 2.5 11100 93241 16C39 5B0E4 104340 19794

 mag 4 17760 104341 19795 65E54 122100 1DCF4

 sta 2 8880 122101 1DCF5 773D4 130980 1FFA4

 last_wr 6 130981 1FFA5 7FE94 130986 1FFAA

total 130986
J. Kowalski

9/9/2004

Table 1. HASP Memory Partitions

Note: The packets (pkt) referenced in the spreadsheet are the amount of data from each source during a 10 ms interval. The IMU
outputs its raw data at 400 Hz. Four consecutive outputs were summed in 6 accumulators in the memory interface module. The
integrated data rate of 100 Hz became the standard unit for the spreadsheet.

Implementation and Verification

Simulation
The simulation approach used was hierarchical verification. Testbenches were
constructed at low level for functional verification of the design. When a module had
been thoroughly simulated, the design was incorporated into the next level, and re-
simulated. A preliminary version of the HASP memory module was written and
simulated using input test data before the other data source modules were ready. This
simulation was sufficient for the accumulators to pass on data, write to memory and
exercise the downlink function. The memory buffer switchover was verified by starting a
simulation with the addresses near their maximum.

Hardware Implementation
As each interface module was developed, after thorough simulation at block and chip
level, synthesis was performed with Synplify Pro. FPGA physical design processing was
done with the Xilinx Webpack place and route software. See Table 2.

Timing Verification
The unit was designed with a clock sufficiently fast to meet the requirements, but slow
enough to allow generous slack in the data path to conserve power. The 19-bit
accumulator adders were the longest logic paths. The Xilinx place and route software was
given aggressive target of 10 ns cycle time to meet, while the actual cycle need was 25
ns. Only one net failed to meet the constraint, and it achieved a cycle time of 17.6 ns. As
a sanity check, limited back annotated simulation was performed.

Environmental Testing
The field test operating conditions include high altitude Earth atmosphere, low pressure
environment to replicate a Mars entry conditions at subsonic speeds. The FPGA has to
survive and operate in this near vacuum. Some modifications were made to enhance the
host SBC’s conductive thermal path allowing heat to be dissipated in the absence of air
that would cool the device. A full thermal vacuum test was conducted to verify FPGA
operation in near vacuum for an extended duration.

Device Utilization
Logic Utilization Used Available Utilization Note(s)
Number of Slice Flip Flops: 3,214 6,144 52%
Number of 4 input LUTs: 3,510 6,144 57%
Logic Distribution:
Number of occupied Slices: 2,824 3,072 91%
Number of Slices containing only related
logic: 2,824 2,824 100%

Number of Slices containing unrelated logic: 0 2,824 0%
Total Number 4 input LUTs: 3,808 6,144 61%
Number used as logic: 3,510
Number used as a route-thru: 264
Number used as Shift registers: 34
Number of bonded IOBs: 200 260 76%
Number of Tbufs: 1 3,200 1%
Number of Block RAMs: 10 32 31%
Number of GCLKs: 3 4 75%
Number of GCLKIOBs: 3 4 75%
Number of DLLs: 2 8 25%
Number of Startups: 1 1 100%
Number of RPM macros: 2

Routing Performance Summary
Property Value
Final Timing Score: 1205701
Number of
Unrouted Signals: All signals are completely routed.

Number of Failing
Constraints: 0

Failing Timing Constraints (total failing = 1)

Constraint(s) Requested Actual Logic
Levels

* NET "clocks_in.m_clk" PERIOD = 10 ns
HIGH50% 10.000ns 17.066ns 5

Table 2. Xilinx Place and Route Results

FPGA and Sensor Interface Test

The FPGA interfaces were connected to each sensor: IMU, GPS and ADC units. The
tests ran for ten hours, showing that the data could be stored and retrieved using post
processing software.

Post Processing

An executable file was compiled using C++ to aid in data reconstruction, because data
was stored to flash disk in a packed format. The post processing code used the partition
start addresses and the last address pointers that were saved for every buffer switchover.
It unpacks, formats, and writes each of the data types into its own separate file,
reconstructing the original data stream.

Field Test Results

Three high altitude subsonic drop tests were conducted in the fall of 2004 from Ft.
Sumner, New Mexico successfully recording of deployment, inflation, and inflated
performance of the subsonic parachute with this new FPGA design. The data was
retrieved for post flight analysis and reconstruction of events. The rapid development of
this FPGA was vital in obtaining the data for understanding the physical environment of
deployment, inflation, and inflated performance of the parachute (1,2,3).

Conclusion

The use of an FPGA was shown to be instrumental to a quick turn-around in this
development. The memory partition spreadsheet enabled quick design modifications as
data sizes and rate requirements evolved. Heritage Verilog and VHDL augmented
original design to successfully meet the new system requirements.

References

1. High Altitude Test Program for a Mars Subsonic Parachute
R. Mitcheltree,PhD., R. Bruno, E. Slimko, C. Baffes, and E. Konefat, NASA Jet
Propulsion Laboratory; and A. Witkowski, Pioneer Aerospace Corporation,
South Windsor, CT
AIAA-2005-1659
18th AIAA Aerodynamic Decelerator Systems Technology Conference and
Seminar, Munich, Germany, May 23-26, 2005

2. Opportunities and limitations in low earth subsonic testing for qualification

of extraterrestrial supersonic parachute designs
A. Steltzner, J. Cruz, R. Bruno, Dr. R. Mitcheltree
NASA Jet Propulsion Laboratory
AIAA Aerodynamic Decelerators Conference , May 20-22, 2003
Parachutes for Mars and other planetary missions often need to operate at
supersonic speeds in very low density atmospheres. Flight testing of such
parachutes at appropriate conditions in the Earth's atmosphere is possible at
high altitudes.
http://techreports.jpl.nasa.gov/2003/03-1289.pdf
Updated/Added to NTRS: 2004-08-20

3. Mars Science Laboratory: entry, descent and landing system overview

J. W. Umland, A. Chen, E. Wong, T. Rivellini, Dr. B. Mitcheltree, A. Johnson,
B. Pollard, M. Lockwood, C. Graves, E. Venkataphy
NASA Jet Propulsion Laboratory
2004 IEEE Aerospace Conference , March 6-13, 2004

http://techreports.jpl.nasa.gov/2003/03-2088.pdf
Updated/Added to NTRS: 2004-09-03

http://ntrs.nasa.gov/index.cgi?method=display&redirect=http://techreports.jpl.nasa.gov/2003/03-1289.pdf&oaiID=oai:jpl-trs.jpl.nasa.gov:03-1289
http://techreports.jpl.nasa.gov/2003/03-2088.pdf

	FPGA Development for High Altitude Subsonic Parachute Testin
	FPGA Development for High Altitude Subsonic Parachute Testin
	This research was carried out at the Jet Propulsion Laborato
	Introduction
	System Requirements
	HASP FPGA Design Methodology
	FPGA Chip Organization
	Implementation and Verification
	Device Utilization
	Routing Performance Summary
	Failing Timing Constraints (total failing = 1)
	FPGA and Sensor Interface Test
	Post Processing
	Field Test Results
	Conclusion

