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Abstract 

This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth 
qualification test program for a new Mars subsonic parachute.  The FPGA is used to process and control 
storage of telemetry data from multiple sensors throughout launch, ascent, deployment and descent phases 
of the subsonic parachute test. 

 The FPGA used was a Xilinx Virtex-E, embedded on a COTS PCMCIA card with dual SRAM buffers.  
Software on a SBC reads filled SRAM using Direct Memory Access (DMA), and stores the data in a flash 
disk.  

The FPGA design is guided by a spreadsheet of memory partitions based on data rates from each sensor.  
Accumulators are used to compress some of the high rate data.  A prioritized queue is used to control the 
servicing of received data from multiple sources.  The memory transfer rate is high enough to allow single 
depth buffering. 

Section I. covers requirements. Section II details methodology. Section III presents implementation results 
including functional verification, resource utilization, and timing. 

Data post processing and reformatting is in Section IV. Section V describes some of the test results. 

This research was carried out at the Jet Propulsion Laboratory, California 
Institute of Technology, under a contract with the National Aeronautics and 
Space Administration. 

 

Introduction 
 
This paper describes a rapid, top down requirements-driven design of an FPGA used in a 
qualification test program for a next generation Mars subsonic parachute(1).  The field 
programmable gate array (FPGA) processes raw sensor data, and it controls storage of 
telemetry data from multiple sensors throughout; launch, ascent, deployment and descent 
phases of the subsonic parachute test.  Using an FPGA was instrumental to a quick turn-
around in this development, because it enabled modular reusability of heritage Verilog, 
VHDL source code and design libraries to meet the new system requirements.  The 
system requirements specific to FPGA: development, design methodology, chip 
organization and verification are covered in this paper.  The system was simulated, 
integrated and ground tested in a comparable environment prior to conducting the actual 
field tests.  Three high altitude subsonic drop tests were conducted in the fall of 2004 
from Ft. Sumner, New Mexico successfully recording of deployment, inflation, and 
inflated performance of the subsonic parachute with this new design.  



System Requirements 
 
The instrument set is designed and tested to operate and survive a wide variety of 
conditions.  After ground-level power-on, it ascends to and dwells at high altitude. After 
release and a period of free fall, the parachute opens and descends to ground. Location 
and recovery could take as long as a day following impact. Data must be recorded from 
power-on to impact without loss. The following requirements are specific to the 
development of the FPGA: 

 
1. Design and development window of four months. 
2. Low mass, low power, PCMCIA form factor module. 
3. Ability to receive and format data from various sources at various rates 

compressing by integration the highest rate data. 
4. Store it to memory via DMA while continuing to receive and process new 

data for over 10-hours test duration. 
5. Operate in a high altitude, low pressure and extreme thermal environment.  

 
Each field test requires a switch on of the instrumentation 2.5 hours prior to launch, a 
typical 2-hour ascent and a 1-hour descent.  The memory storage is designed for 10-hours 
test duration.  Sufficient margin is included to account for possible delays in launch, or an 
atypical, prolonged period at the release altitude.   

HASP FPGA Design Methodology 
 
The methodology for this design was to use existing Verilog modules wherever possible, 
adapting as necessary. Heritage IMU data receiver and serial interfaces from MER were 
used with minor modification. The Annapolis Wildcard, with its VHDL library, was the 
design platform.  Hierarchical design and verification were used, simulating each module 
before integrating to the next level, then simulating the next higher level.  
 
There are no deep logic levels in this design. The clock cycle, at 25 ns, was fast enough 
to allow all data sources to be written to memory, even if all their packed 32-bit words 
became available at the same time. This meant that only a single level of queue depth was 
needed for each source. A clock cycle was long enough, since there are no complex data 
operations, to process the data with large margins.  The HASP memory interface module 
is the most complex, and it is at the heart of the design for this new application.  
 

FPGA Chip Organization 
 
The High Altitude Subsonic Parachute FPGA has a VHDL shell, called the HASP PE. 
VHDL was used to be compatible with the Wildcard development system, which 
contains a wide library of tested design elements, including bus interfaces and DMA. The 
HASP PE used these for interfacing to the Wildcard memory chips and via DMA to the 
host computer. The HASP PE also maps the pins of the HASP_core verilog to the 
Wildcard   PCMCIA I/O pins. 



 
 
 
The HASP_core contains: 

• the imu_data_rx, interface module for Northrop LN200 Inertial Measurement 
Unit, designed for MER and modified slightly, 

• 6 Accumulators – summing four  each of 16-bit delta x, y and z velocity and angle 
readings from imu_data_rx, 

• the ADC interface, which controls two twelve bit analog to digital converters 
• serial receiver for GPS data, 
• serial receiver for magnetometer data, and 
• the memory interface module. 

 
The memory interface module contains:  

• the memory interface state machine, 
• downlink write state machine which formats and writing downlink  packets,  
• the downlink interface module,  
• 6 18-bit accumulators to reduce the data frequency to downlink, 
• buffer registers to build up 32-bit memory data words to be written into the 

partitions for each of the input data types, 
• interface timeout counters for the downlink write state machine,  
• time-tag registers,  
• counters for indexing ADC data, and 
• buffer_request and buffer_active registers. 

 
 
The design strategy was to write data to memory in partitions which were sized to match 
the data volume and rates for each of the data sources. This was accomplished by using a 
spreadsheet (Table 1.) that calculated the partition beginning and end addressees for each 
data source. 
 
The Wildcard’s two 128K x 32 memories were used as ping pong buffers. When one of 
the data partitions became full, the last addresses for each partition were written into 
another partition, called last, to serve as pointers to the end of valid data when 
reconstructing the data stream. The write select then would be switched, so the newly 
filled chip could offload to the host computer via DMA transfer, while writing continued 
to the other memory.    
 
The FPGA clock frequency is 40 MHz. The memory interface protocol for the Wildcard, 
over the LAD (Local Address Data) bus operated at 40 MHz, allowing fast transfers. The 
Wildcard has a programmable oscillator with a range from 0.5 to 100 MHz. The IMU 
delivers 13 16-bit words of data at 400 Hz, with a bit rate of 1.0152 Mbps transmissions. 
We used accumulators to sum the x, y, and z delta velocity and delta angle, decreasing 
the storage rate to 100 Hz.  During a 10 ms interval, 16 12-bit samples are taken from 
each of two ADC’s; 10 bytes of data would be transmitted by the GPS receiver (9600 
baud). See Fig.1. 
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Fig.1 HASP FPGA Interfaces



HASP Memory Partitioning

pkts wds/pkt partition size start_dec hex end_dec hex
4440

   imu 5 22200 1 1 4 22200 56B8
    

   adc 16 71040 22201 56B9 15AE4 93240 16C38
    

   gps  2.5 11100 93241 16C39 5B0E4 104340 19794
     

   mag 4 17760 104341 19795 65E54 122100 1DCF4
      

   sta  2 8880 122101 1DCF5 773D4 130980 1FFA4
     

   last_wr 6 130981 1FFA5 7FE94 130986 1FFAA

total 130986
J. Kowalski

9/9/2004  
 
 
Table 1.  HASP Memory Partitions 
 
Note: The packets (pkt) referenced in the spreadsheet are the amount of data from each source during a 10 ms interval. The IMU 
outputs its raw data at 400 Hz. Four consecutive outputs were summed in 6 accumulators in the memory interface module. The 
integrated data rate of 100 Hz became the standard unit for the spreadsheet. 
 



Implementation and Verification 
 
Simulation 
The simulation approach used was hierarchical verification. Testbenches were 
constructed at low level for functional verification of the design. When a module had 
been thoroughly simulated, the design was incorporated into the next level, and re-
simulated. A preliminary version of the HASP memory module was written and 
simulated using input test data before the other data source modules were ready.  This 
simulation was sufficient for the accumulators to pass on data, write to memory and 
exercise the downlink function.  The memory buffer switchover was verified by starting a 
simulation with the addresses near their maximum.   
 
 
Hardware Implementation  
As each interface module was developed, after thorough simulation at block and chip 
level, synthesis was performed with Synplify Pro. FPGA physical design processing was 
done with the Xilinx Webpack place and route software.  See Table 2. 
 
Timing Verification 
The unit was designed with a clock sufficiently fast to meet the requirements, but slow 
enough to allow generous slack in the data path to conserve power. The 19-bit 
accumulator adders were the longest logic paths. The Xilinx place and route software was 
given aggressive target of 10 ns cycle time to meet, while the actual cycle need was 25 
ns. Only one net failed to meet the constraint, and it achieved a cycle time of 17.6 ns. As 
a sanity check, limited back annotated simulation was performed. 
 
Environmental Testing 
The field test operating conditions include high altitude Earth atmosphere, low pressure 
environment to replicate a Mars entry conditions at subsonic speeds.  The FPGA has to 
survive and operate in this near vacuum.  Some modifications were made to enhance the 
host SBC’s conductive thermal path allowing heat to be dissipated in the absence of air 
that would cool the device.  A full thermal vacuum test was conducted to verify FPGA 
operation in near vacuum for an extended duration.     
 



Device Utilization   
Logic Utilization Used Available Utilization Note(s)
Number of Slice Flip Flops: 3,214 6,144 52%  
Number of 4 input LUTs: 3,510 6,144 57%  
Logic Distribution:      
Number of occupied Slices: 2,824 3,072 91%  
Number of Slices containing only related 
logic: 2,824 2,824 100%  

Number of Slices containing unrelated logic: 0 2,824 0%  
Total Number 4 input LUTs: 3,808 6,144 61%  
Number used as logic: 3,510     
Number used as a route-thru: 264     
Number used as Shift registers: 34     
Number of bonded IOBs: 200 260 76%  
Number of Tbufs: 1 3,200 1%  
Number of Block RAMs: 10 32 31%  
Number of GCLKs: 3 4 75%  
Number of GCLKIOBs: 3 4 75%  
Number of DLLs: 2 8 25%  
Number of Startups: 1 1 100%  
Number of RPM macros: 2     

Routing Performance Summary 
Property Value 
Final Timing Score: 1205701 
Number of 
Unrouted Signals: All signals are completely routed. 

Number of Failing 
Constraints: 0 

Failing Timing Constraints (total failing = 1) 

Constraint(s) Requested Actual Logic 
Levels 

* NET "clocks_in.m_clk" PERIOD = 10 ns 
HIGH50%  10.000ns 17.066ns 5

Table 2. Xilinx Place and Route Results 



 

FPGA and Sensor Interface Test 
 
The FPGA interfaces were connected to each sensor: IMU, GPS and ADC units.  The 
tests ran for ten hours, showing that the data could be stored and retrieved using post 
processing software. 

Post Processing  
 
An executable file was compiled using C++ to aid in data reconstruction, because data 
was stored to flash disk in a packed format.  The post processing code used the partition 
start addresses and the last address pointers that were saved for every buffer switchover.  
It unpacks, formats, and writes each of the data types into its own separate file, 
reconstructing the original data stream. 

Field Test Results  
 
Three high altitude subsonic drop tests were conducted in the fall of 2004 from Ft. 
Sumner, New Mexico successfully recording of deployment, inflation, and inflated 
performance of the subsonic parachute with this new FPGA design.  The data was 
retrieved for post flight analysis and reconstruction of events.  The rapid development of 
this FPGA was vital in obtaining the data for understanding the physical environment of 
deployment, inflation, and inflated performance of the parachute (1,2,3).  

Conclusion  
 
The use of an FPGA was shown to be instrumental to a quick turn-around in this 
development. The memory partition spreadsheet enabled quick design modifications as 
data sizes and rate requirements evolved.  Heritage Verilog and VHDL augmented 
original design to successfully meet the new system requirements.   
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