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Outline

• Introduction (JPL, SWAT Team, …)
• Generation of THz signals
• Multiplied sources

– Power amplifiers
– Planar diode technology
– State-of-the-art

• Challenges 
• Concluding remarks
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TERAHERTZ TECHNOLOGY

• Despite great scientific interest since at least the 1920’s, the THz frequency 
range remains one of the least tapped regions of the electromagnetic spectrum. 

• Sandwiched between traditional microwave and optical technologies where 
there is a limited atmospheric propagation path, little commercial emphasis has 
been placed on THz systems.  This has, perhaps fortunately, preserved some 
unique science and applications for tomorrow’s technologists. 

• For over 25 years the sole niche for THz technology has been in the high 
resolution spectroscopy and remote sensing areas where heterodyne and 
Fourier transform techniques have allowed astronomers, chemists, Earth, 
planetary and space scientists to measure, catalog and map thermal emission 
lines for a wide variety of lightweight molecules. 

• As it turns out, no where else in the electromagnetic spectrum do we receive so 
much information about these chemical species. In fact, the universe is bathed 
in THz energy, most of it going unnoticed and undetected.  

Introduction
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NASA:

• Earth and Space Science have been dominant sponsors thus far 

• Planetary atmospheres and the search for volcanic and life 
signatures may soon take front row seats

• Currently there is no consistent long term support partly due to 
the lack of any large missions 

Other:

• THz applications are expanding rapidly and have entered the 
commercial market

• World-wide interest in THz technology has led to commercial as 
well as governmental support in the US, Europe and Japan

• Parallel funding and additional development efforts under other 
sponsors are essential to sustain future development

THz Markets
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Spacecraft with THz on-board

Space-borne
SWAS—measurement of water
UARS-MLS—ozone monitoring
MIRO—rendezvous with a comet

Future
HIFI on Herschel Space Observatory—Early universe study
SAFIR—Astrophysics mission
VESPER—Venus Discovery Mission
SIGNAL—Mars Scout Mission

Earth Orbiter/Sounder

Planetary Sounder

Airborne Platform (DC8/SOFIA)
High Altitude Balloon
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LO Sources
• Solid state oscillators (IMPATTs, Gunn diodes etc)

– Limited to about 300 GHz (2nd harmonic operation)
– Limited bandwidth 
– Few commercial vendors

• FIR chemical lasers
– Bulky, huge power supply, narrow-band …

• Quantum Cascade Lasers
– Rapidly maturing technology
– Cryogenic operation, narrow-band

• MMIC based VCOs, Amplifiers, multipliers etc
– Limited to about ~300 GHz with current technology

• Diode based multiplier technology
– Very high cutoff frequency
– Can be designed for broadband operation
– Can be designed to handle large input power
– Can work cryogenic as well as at room temperature
– Used for a number of space missions



8
ESA Workshop, May 2003, Imran Mehdi/JPL

Multipliers for Space

Requirements
– Figure of merit

• Frequency
• Power
• Bandwidth
• Efficiency

– Output power:
• Milliwatt’s for Schottky mixers
• 10’s of microwatts for SIS mixers, 
• 1-2  microwatts for HEB mixers

– Mechanical--stability, compact, low mass, thermal 
viability

– Environmental--radiation, vibration, thermal
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MMIC PA Chip/Modules

• 0.1 um PHEMT process
• 50 um thick substrate
• ft = 200 GHz
• 64 finger device cell (output)
• on-chip bias network
• 50 ohm matching in/out
• 2.3 mm x 1.8 mm

•>> details at 10:30 am
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Power combined amplifier modules

HIFI PA module output power at 300K
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Flight Qualified PA performance at 120K

Typical PA module at 120K(3dBm Pin)
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6-anode 170 GHz chip

First generation discrete chips

Performance at room temperature
(Erickson, STT 2000)
• Able to handle 220 mW of input power 
• > 30% efficiency, 65 mW at 150 GHz

Q:  Can this approach be extended in frequency?

Whisker contacted anode
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Anodes: circular versus rectangular
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A:  Yes—but it gets very difficult to implement
Solution: Integrate circuitry with device !

Q: Can this technology be scaled higher?

Substrateless Technology

Frame ≈ 12 µm thick

250 µm
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A: Yes—but GaAs thickness difficult to scale
Solution: remove most of the GaAs substrateàmembrane devices

Q: Can this technology be scaled higher?
A: Demonstrated up to 2700 GHz!

430 µm

Devices beyond 1 THz

• Membrane is 3 microns thick
• Extensive use of beam-leads
• Extremely simplified assembly
• Bias less design

1200 GHz tripler chip
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Thermal Modeling

Modeled system has: 
1. No convection, heat escapes 

through beam leads only.
2. Temperature dependent 

GaAs thermal conductivity.
3. Assumes dissipated power is 

75% of input power
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Preliminary Diode thermal imagingPreliminary Diode thermal imaging

• Expected lifetime at 300K (400K anode) with Pin=150mW: approx. 0.8 years.
• Expected lifetime at 120K (177K anode) with Pin=150mW: >>1 Million years!!

Temperature profile

- Diode was assembled in an open 
multiplier block.

- Convection was not considered.
- DC power was used to mimic RF heating.

Measured and calculated temperature at hottest 
anode
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JPL Schottky Diode Model

• Builds on work done by groups at University of Virginia, 
University of Michigan, Chalmers University, and Helsinki

• Model includes  time-dependent velocity saturation, 
carrier inertia and shunt capacitance in the undepleted
active layer, tunneling through the Schottky barrier and 
heating of the junction at high powers. The model is 
calibrated using ensemble Monte Carlo calculations of 
material parameters, but otherwise no parameters are 
fitted other than to DC I-V measurements

• Chip temperature and diode transport properties are 
solved iteratively

• Diode model for given input power and temperature is 
used in a harmonic balance technique 
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Time-dependent Undepleted Epi Current Saturation Model

V(t) Cd = εA
w

R1 = w   
n1µ1A

R0 = w   
n0µ0A VTOT(t)

di = Vtot(t) – V(t)
dt Li
dn1 = n1s(V) – n1(t)
dt τ

µ0 = low field mobility
µ1 = upper valley mobility ~ 400 cm2/Vs
n = n0 + n1
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200 GHz Doubler Power Sweep at 212 GHz
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400 GHz Doubler, 300 K, 50 mW
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400 GHz Doubler, 120 K, 50 mW
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DC reverse constant current stress

Reverse bias degradation over time is possibly due to trapping of positive 
charges in the passivation near the Si3N4/GaAs interface. Charges may be 
generated by impact ionization at high reverse fields.

Does reverse current amplitude degrade anode (before failure)?

% change in voltage for constant reverse 
current

-40

-30

-20

-10

0

10

0 200 400 600 800 1000
Time (min)

%
 c

ha
ng

e
295K -1uA
295K -5uA
295K -10uA



25
ESA Workshop, May 2003, Imran Mehdi/JPL

200 4000

0

-100

-200

100

200

-200

x (nm) 

y 
(n

m
) +0.86 eV

-7.0 eV

e h e

e h

impact ionization

Depletion zone
GaAs

Si N3   4
Anode

Impact ionization from 
electrons accelerated in 
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Time dependence given by:
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σ=trap cross section,  k=constant
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Accumulation of positive charge near anode 
perimeter
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• The voltage waveform across the diode for a given input power is 
strongly dependent on matching and anode characteristics.

• The reverse and forward currents can be calculated via harmonic
balance techniques but there is no easy way to measure them.
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Simulation of a 200 GHz doubler 
Currents & Performance (Vbr = 10.4 V) 

Pav = 25 mW/diode, I = current at junction
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RF induced Voltage Swing @100 GHz input
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Note: This behavior is highly dependent on frequency and circuit design.

• By plotting voltage vs. SQRT(Pcoupled) we can extrapolate 
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State-of-the-art Performance
375 GHz Doubler

• 4 anodes in balanced 
configuration

• 1017 cm-3 doping for good 
power handling
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190 GHz Doubler
• 6 anodes in balanced 

configuration
• 1017 cm-3 doping for good 

power handling
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190 & 375 GHz Doublers

190 GHz Doubler
• Measured power up to 90 mW at 120 K
• Measured 3 dB bandwidth > 13%

375 GHz Doubler
• Measured power up to 12 mW at 120 K
• Efficiency around 20%
• Nonlinear interaction between multipliers
• Pout limited by power handling
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Representative 150 & 300 GHz Doublers

150 GHz Doubler
• 6 anodes in balanced configuration
• 1017 cm-3 doping for good power 

handling

300 GHz Doubler
• 4 anodes in balanced 

configuration
• 1017 cm-3 doping for good 

power handling
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x2x2x2 Chain to 800 GHz
800D ES2 10210022- X1 SN001

LF2 4e17, 1p0x1p1-STM4 ~15 um thick IV#2301

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

700 750 800 850

Frequency, GHz

O
u

tp
u

t P
o

w
er

, m
W

Pout at 120K
Pout at 300K

• At 120K peak power of 2mW, 3dB BW of >6%

250 µm
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Planar LO chain at 1200 GHz

430
µm
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Broad Band Chain at 1200 GHz
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1600 & 1900 Chips

1600 GHz doubler
2 anodes
3 micron thick substrate
Anodes placed in the input guide

1900 GHz Tripler
2 anodes
3 micron thick substrate
Input coupling via probe
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1.1-1.9 THz Solid State Local Oscillators at 120 K
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THz Power Measurement

• Several power meter technologies available
– Golay cell, Keating meter, Erickson calorimeter, Bolometer

• Each meter brings specific calibration challenges
– Impedance mismatch / standing waves
– Waveguide losses
– Optical losses / coupling
– Atmospheric absorption
– Drift
– Sensitivity
– Maximum power limits

• Factor of 2 discrepancies are common
• Agreement to 30% may be possible with care

è The ultimate figure of merit is to pump a mixer.
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Measured output power
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The measured data can be fit to…

Description h0 f0 (GHz) 
Doubler, 295 K, Peak 0.45 600 
Doubler, 295 K, 5% B.W. 0.45 410 
Doubler, 120 K, Peak 0.50 650 
Doubler, 120 K, 5% B.W. 0.47 520 
Tripler, 120 K, Peak 0.32 490 
Tripler, 120 K, 5% B.W. 0.27 390 
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Measured chain performance

295 K 120 K
Design

Fre q (GHz) 5% B.W. (%) Peak (%) Freq (GHz) 5% B.W. (%) Peak (%)

190 GHz doubler 190 30.6 33.5 185 32.8 39

200 GHz doubler 194 28.1 31.8 200 29.4 38.3

375 GHz doubler 370 14.7 18.5

400 GHz doubler 385 14.9 18.3 370 28

750 GHz doubler 730 6.7 10.5

800 GHz doubler 775 10.4 13.5

1500 GHz 

doubler
1510 1.1 3.5

1510
2.6 5.2

600 GHz tripler 540 5.3 10 580 6.1 10

1200 GHz tripler 1200 1.3 1.9

1800 GHz tripler 1740 a a
0.2 1740 0.32 0.94

LO Chain efficiencies as function of temperature and bandwidth
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Output Power vs Block Temperature
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Challenges

• More efficient higher freq power amps? InP, pHEMT
• Improve bandwidth—better designs, re-configurable 
• Simplify chain construction—micro-machined blocks, 
increased integration
• Planar device/modeling—increase yield, increase 
throughput and uniformity, reduce time to completion
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Challenge: increase output frequency

Figure 1. Schematic of the all-solid-state source to 2500 GHz. Dashed outlined components are either 
commercially available or have already been demonstrated in our laboratory. Solid outlined 
components are to be developed under this proposal.
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Challenge: multipixel receivers

• To increase output power
• Multiple frequency coverage
• Multiple pixel coverage

Components available, architecture, system 
issues need to be studied

Kim et al
1 mW at 600 GHz
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Concluding Remarks

• Multiplier chains (200 to 1900 GHz) are now 
possible that are 

• Robust
• Broadband (5 to 10 %)
• Cool-able 
• Sufficient to pump SIS and HEBs 

• Frequency range of 2-3 THz is attainable
• Wider bandwidths (>10%) are attainable
• Higher output power is possible with power 

combining techniques
• Leverage current technology for large format arrays


