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Abstract 
Flight simulators are becoming more sophisticated and 
realistic, and the requirements of those using them are 
becoming more demanding. Air traffic control simulation 
for such simulators is now approaching the real problem of 
air traffic control, where several aircraft need to be 
scheduled for safe approach and landing or for safe passage 
through the air space that an air traffic controller is 
responsible for. Also, the computational resources available 
to dedicate to air traffic control simulation are sparse, given 
that most simulations focus on a realistic graphical user 
interface and aircraft physics modeling. We provide a 
formulation of the air traffic control problem and a solver 
for this problem that makes use of temporal constraint 
networks and simple geometric reasoning. We provide 
results showing that this approach is practical for realistic 
simulated problems. 

Introduction  
Current flight simulators that run on home computers are 
sophisticated and realistic. Part of this realism is the 
interaction with airport traffic control towers. This 
interaction includes ground traffic control and air traffic 
control. Automated air traffic control is addressed in detail 
in [3], but the amount of computation required can be 
prohibitive for a lightweight application such as a game. 
We focus on the problem of simulating a realistic air traffic 
controller without “breaking the bank” with respect to 
computational resources. 
 

Air traffic control 
The job of the air traffic controller (ATC) is to ensure that 
all aircraft in a controlled air space are safe from collision 
and afforded fair access to the air space. This requires 
knowledge about each aircraft in the air space being 
controlled. This controlled air space is called the bubble. 
 

Upon entering the bubble, aircraft pilots announce their 
intensions to the ATC. Given this information, the ATC 
provides instructions to all aircraft in the bubble to ensure 
that 1) no two aircraft ever come within a prescribed 
distance to each other, 2) all aircraft reach their 
destination, 3) no aircraft is overly delayed. Also, the ATC 
tries to keep communications to a minimum. 
 
This requires the ATC to reason about the paths through 
the air that the aircraft will travel, the capability of each 
aircraft with respect to minimum and maximum speeds and 
minimum turning radius, and the timing of aircraft passing 
through shared air space. 

The air traffic control problem 
Here we formalize the air traffic control problem (ATCP). 
The ATCP is, given a safe distance s that all aircraft must 
maintain from other aircraft, a collection of airports, 
aircraft and aircraft destination, and a bubble, generate a 
set of commands to the aircraft that allow each aircraft to 
land or pass through the bubble without violating any 
operating constraints. 

An example 
We now describe a scenario to illustrate the capabilities of 
our technique.  

1. Consider an airport with no aircraft in its bubble. 
Obviously, no commands need to be sent to any 
aircraft. 

2. Then, an aircraft A enters the bubble and 
requests/expects landing instructions. Given that 
this is the first aircraft to land, the ATC opts for a 
full procedure approach and routes the aircraft to 
an initial approach fix (IAF, i.e., let the pilot 
navigate the approach).  

3. Then, an aircraft B enters the bubble. B is much 
faster than A, and the ATC discovers that B can 



start its approach before A if a direct path is 
taken. The ATC chooses this route, and the plan 
is updated. 

4. Then, an aircraft C enters the bubble. If B’s 
approach were modified, then C could land 
directly, then B, then A, but the ATC does not 
modify existing routes (while possible, changing 
existing routes is avoided in practice as it is a 
technically and theoretically harder problem). 
Instead, an alternate vectoring is chosen that 
accommodates the landing of B, then C, then A. 

5. B lands. 
6. A fast aircraft D enters the bubble, and no set of 

vectors can accommodate it without violating 
constraints. D is then put into a holding pattern 
and is scheduled to land after A. 

7. A slows unexpectedly, resulting in instructions to 
D not to exceed a certain speed. 

 
 
An airport consists of: 
• a 3d coordinate position that represents the start of the 

runway 
• a vector landingDirection representing the direction in 

which aircraft land 
• a distance length representing the length of the runway 

 
Notationally, for an airport p, we would refer to the 
associated vector as p. landingDirection.  
 
An aircraft consists of: 
• a coordinate in 3d space position that represents the 

location of the aircraft 
• a vector direction defining direction of travel 
• a minimum rate of travel minSpeed  
• a maximum rate of travel maxSpeed 
• a nominal rate of travel nomSpeed 
• a current rate of travel speed 
• a maximum climb rate maxClimb  
• a nominal climb rate nomClimb 
• a maximum dive rate maxDive (represented as a 

negative climb rate) 
• a nominal dive rate nomDive 
• a current climb/dive rate zRate 
• a minimum height minAltitude 
• a maximum height ceiling 
• a turn-rate function (that returns values the form of 

radians/second) maxTurnRate(speed) that indicates the 
maximum rate of a turn for a given speed 

• a turn-rate nomTurnRate(speed) that indicates the 
nominal rate of a turn for a given speed 

• a set of airports landingSites containing the airports that 
this aircraft could land at 

• a coordinate in 3d space destination that indicates either 
the point at which the aircraft wishes to leave the bubble 
or p.position for some p ∈ landingSites. 

 
The bubble consists of: 

• a distance radius that represents the radius of the 
hemisphere of space in which the air traffic controller 
will be responsible for posting commands to the aircraft 

• a 3d coordinate position that represents the location of 
the bubble 

 
A solution consists of a set C of commands to the aircraft 
that allow each aircraft to land or pass through without 
violating any constraints. A command consists of: 
• a time executeTime that the command is to be given 

and executed by the aircraft 
• an aircraft aircaft that is the recipient of the command 
• a turn-rate turnRate that represents the rate to turn 
• a turn destination vector goalDirection 
• a climb/dive zRate 
• a goal altitude zDestination that indicates the altitude to 

climb or descend to 
• a goal rate of speed goalSpeed 

Note that in practice a command is usually agnostic with 
respect to most parameters, e.g., in the voice interface we 
would normally only expect to hear commands such as 
“turn to 215 degrees” or “descend to 1000 meters”. 
 
So, an ATCP consists of finding C given <P, A, b, s> such 
that, for all possible times, no aircraft is within the limit s 
of any other aircraft, no command is issued that violates 
the operational bounds of any aircraft, and all aircraft 
reach their destinations (where C is a set of commands, P 
is a set of airports, A is a set of aircraft, b is the bubble, and 
s is the minimum safe distance). 
 
But, in reality, we actually find ourselves executing a 
solution to the ATCP, only to learn that a new, heretofore 
unknown aircraft has entered the bubble and requires air 
traffic control. So, the actual solution to the ATCP needs 
to be incremental in nature—that is, it needs to start with a 
previous solution and then update that solution to 
accommodate unforeseen events. We call this is the online 
ATCP. 
 
We also desire a measurement of fairness. A fair ATCP 
solution is one that minimizes the delay for the aircraft. 
The simple metric we use for delay is the mean squared 
delay, where delay is measured as the difference between 
the time it takes to arrive at the destination and the time it 
would take for direct travel to the destination at nominal 
speed, turn rate, and dive rate. 
 
Finally, we desire ATCP solutions that require minimal 
“chat” with aircraft. The metric we use is the average 
number of commands sent to an aircraft. 

Preliminaries 
Here we provide some background on the basic algorithms 
and techniques to be used in our solution to the ATCP. 



Simple temporal networks 
We represent the plan of each aircraft as a series of 
timepoints in a temporal constraint network [2]. A 
temporal constraint network is an edge-labeled, directed 
graph where each node represents a moment in time and 
each edge represents a temporal relationship between the 
source node and the sink node of the edge. In a simple 
temporal network, each edge is labeled with the minimum 
and maximum difference allowed between the time 
assigned to the source node and the time assigned to the 
sink node. It is possible to know that a temporal constraint 
network is infeasible or that some of the minimum and 
maximum labels of the edges are more constrained due to 
other edges [xxx]. From this propagated network we can 
compute a schedule (i.e., an assignment of a specific time 
to each moment represented in the temporal constraint 
network). 
 
More formally, a STN is a 3 tuple <G, l, u>, where G = (N, 
E) is a directed graph with edge-label functions l(e ∈ 
E)→ℜ (i.e., minimum duration) and u(e ∈ E)→ℜ (i.e., 
maximum duration) A schedule is a vertex-label function 
T(n ∈N)→ℜ (i.e., the time of each timepoint) where,  
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Note that a relabeling of l and u that takes into 
consideration all intervals can be computed in either |N|3 or 
|N|2|E|, which ever is less. It should be noted that one 
candidate T after this relabeling is the solution indicated by 
assuming all intervals to be l(e ∈ E), that is, one possible 
execution is an execution where we use the shortest 
durations. 

Cylinder intersection 
We represent the path of an aircraft through the bubble as a 
cylinder in 3D space where the radius of the cylinder is the 
prescribed safety distance. If two of these cylinders 
intersect for different aircraft, then a proximity violation is 
possible. We use a simple form of cylinder intersection to 
compute this intersection. Specifically, we are interested in 
subdividing each cylinder into smaller sub-cylinders; 
where either no intersection occurs over the sub-cylinder, 
or an intersection occurs over the entirety of the sub-
cylinder, e.g., see Figure 1.  
 

 
Figure 1 Computing contending cylinders (shaded area) 

This is a simple process of finding where the distance 
between the infinite lines representing the center of each 
cylinder is exactly the sum of the diameters of the 
cylinders. If there is only one point where this occurs, then 
the cylinders touch, but do not intersect. If there are 2 
points (for each line), then the cylinders could intersect, 
and we need to check the actual starting and ending points 
of the cylinders. Of course, the lines could be parallel, and 
all points are contained, in which case the linear 
intersection of the cylinders is computed. 

Solving the ATCP 
The ATCP demands reasoning in both temporal and spatial 
realms. First, we make some simplifications that actually 
add to the fidelity of the simulation. Then, we decompose 
the problem into aircraft landing problems and 3d path 
finding problems. We abstract away the spatial geometry 
by encoding the problem as a simple temporal network 
(STN). We use the STN to provide us with temporal and 
spatial violation information. Finally, during execution and 
monitoring, we use the STN to dictate the command 
sequence, as well as change the command sequence in the 
event of off-nominal behavior on the part of aircraft. 

Simplifications 
To simplify the problem, we will divide the 3d airspace 
into stacks of 2d layers. This reflects how the space is 
usually divided up in real air traffic control [4], so this 
actually adds to the simulation.  
 
A further simplification is the pre-processing of the set of 
airports that are in the bubble, resulting in prescribed 
holding spirals and vectors of approach. Again, this 
reflects real ATC operations. This helps guide our search 
for a solution, and also affects some of our criteria, 
because we can give a vector-of-approach command that 
would be a series of turns and descents that result in a 
landing. 

Algorithms 
There are four components to the ATC algorithm. These 
are the controller, the plan, the vector generator, and the 
constraint verifier. See Figure 2. 
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Figure 2  ATC block diagram 

The controller 
The controller is event driven and quite simple. Three 
events kick off the controller: 

1. An aircraft enters the bubble. Try all vector 
options in a shortest path first order, checking 
each using the constraint verifier. When a solution 
is found, announce instructions to the appropriate 
pilot. 

2. An aircraft exits the bubble. Remove the aircraft 
from the plan. 

3. An aircraft changes location as prescribed by the 
plan. Update the plan with the new location/time 
of the aircraft. If needed, give instructions to the 
appropriate pilot. 

Thus, the controller is the input/output interface for the 
ATC algorithm. 

The plan 
The plan is a data structure that is used to verify current 
and hypothetical routings for each aircraft. It consists of 
the following: 
• a set of aircraft A 
• a simple temporal network STN = <G=(N, E), l, u> 
• an indexed set M that maps nodes to sets of nodes 
• a labeling function mutex(n ∈ N)→N’⊆ N, i.e., returns 

the set of timepoints that must be totally ordered (none 
can occur simultaneously) as explained in more detail 
below 

• a function addMutex(n1 ∈ N, n2 ∈ N) that adds the 
information that n1 and n2 cannot occur simultaneously 

• a mapping function aircraftt(n ∈ N) that returns the 
aircraft associated with timepoint n 

• addFlightPlan(G’, a) adds the flight plan represented 
by the directed graph G’ for the airplane a to the plan P. 
It is assumed that the flight plan is a valid path with 
respect to edge labels and topology. It then introduces 
ordering constraints at mutex points to avoid collisions. 
If no ordering is found, it returns false 

• removeAircraft(a) removes the associated aircraft and 
any flight plan associated with it 

• validate returns true if the plan is possible and modifies 
the edge labels if necessary 

 
An approach that an aircraft follows consists of a directed 
path in the STN. Since each aircraft gets its own unique 
path, we need to enforce that two aircraft are not in the 
same place at the same time. We use mutex to determine 
this. If two timepoints overlap in space, then we must 
ensure that they do not overlap in time. We do this by 
introducing temporal constraints. Figure 3 illustrates an 
example where the nodes n1, n2, n3, and n3 are mutex. Note 
that n1 and n2 are ordered already, as are n3 and n4; the 
decision to be made is this: does n1 follow n4 or does n3 
follow n2? The nodes were determined to be mutex-related 
by computing the contending cylinders of the flight paths. 

n4 n2

n1 n3
a b

 
Figure 3  Mutex nodes of aircraft a and b 

Operations on the plan include insertion of an aircraft, 
deletion of an aircraft, and updating an aircraft’s position 
and time. An aircraft is inserted into the plan by inserting 
its associated approach using the addFlightPlan method. 
 
To add a flight plan, we need to decide on an ordering for 
timepoints that are mutex (mutually exclusive with respect 
to time).  
 
For aircraft that wish to land, we employ a heuristic 
approach that if an aircraft a follows an aircraft b for any 
timepoint, then aircraft a follows aircraft b for all 
timepoints. This allows us to attempt a “quick and dirty” 
scheduling where a follows b. We use the constraint 
verifier to validate that a proposed plan is feasible. We 
iterate through all the possible aircraft orderings, which is 
linear in the number of aircraft currently landing at the 
airport. If this fails, then addFlightPlan fails, and we need 
to generate a new plan using the vector generator. 
 
For aircraft that wish to pass through the bubble, we use a 
similar technique, but choose an ordering from all aircraft 
in the bubble. 



The vector generator 
The vector generator generates a series of timepoints and 
temporal constraints that represents a hypothetical flight 
plan for an aircraft to an airport or to its exit destination. It 
also generates the information for the mutex sets for each 
timepoint of the plan. This vector generator is rather 
simple, but can be made arbitrarily rich, as the problem in 
general is NP complete. The vector generator iterates over 
options from most to least preferred.  
 
For landing aircraft, the first vector generated is a full-
procedure approach, followed by a most direct approach, 
followed by incrementally more distant vectors along the 
direct approach, followed by a single 360° delay in the 
holding spiral and a most direct approach, and so on, with 
as many 360° delays as needed. Once a vector is 
generated, it needs to be verified. If verified, it is 
incorporated in the plan. 
 
For aircraft that are passing through, we use a similar 
technique to [1], where we start with a straight-line path, 
and randomly add waypoints, and then tighten the 
waypoints in 2d space to reduce flight-time. The 2d space 
is determined by the direction of travel, where certain 
altitude slices are used for northbound, southbound, 
eastbound, and westbound travel. If we have more than 
one altitude slice, we choose the slice that is closest to the 
current altitude of the aircraft. We break ties by choosing 
the least-recently used slice, and if we still have a tie, we 
break it randomly. 

The constraint verifier 
The constraint verifier checks a plan and introduces 
temporal constraints where necessary to maintain the 
veracity of a plan. It works by identifying timepoints that 
lack temporal ordering constraints between themselves and 
members of their mutex set. It then incrementally inserts 
ordering constraints and verifies that the constraint is 
possible using temporal propagation. It can prefer to either 
schedule new points before or after existing points, 
according to the preferences of the designers, e.g., we call 
this preferring that once an aircraft is scheduled before 
another at any point, it is always scheduled before that 
other aircraft. Once a verified plan is found, the verifier 
returns true. If none can be found, it returns false and 
removes any extraneous temporal constraints it inserted. 

 
See Appendix A for pseudo-code implementations of the 
associated functions. 

Results 
Our implementation is in Visual C++ on a 2.53 GHz 
Pentium 4 processor. For problems with 32 or fewer 
aircraft, the complete solution requires less than a 
millisecond. Figure 4 shows the time to schedule a single 
aircraft given a number of aircraft already in the schedule. 
As we can see, even for large problems, we require less 
than a second of CPU time to add a new aircraft to the 
plan. This curve appears to scale in O(n3), where n is the 
number of aircraft already scheduled. This makes sense, in 
that temporal propagation is bounded by n3, and we are 
using heuristic techniques to perform the scheduling. Of 
course, we are most likely failing when we could succeed. 
In fact, for problems with 300 aircraft, half of the time a 
schedule was not found. 

Future work 
Future work in this area would be to improve the success 
of scheduling for larger problems and to include in our 
scheduling algorithms the built-in algorithms that exist for 
various on-board waypoint generators. This would render a 
more realistic experience for the simulation, but might 
require considerable work as the reasoning algorithms of 
each of these devices are proprietary. 
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Figure 4  ATC scheduling performance 

 
 

Appendix A  Pseudo implementation 

Assumed functions 
Our algorithm descriptions assume many common 
functions that are not part of the original contribution of 
this work. These are summarized here. 
 
We assume min(x1, x2, … xn) and max(x1, x2, … xn) 
which are functions that return the minimum and 
maximum values of the items given it as arguments. 
 
For a set S, insert(S, x) places x into S. If x ∈ S, S doesn’t 
change. remove(S, x) removes x from S. For an indexed 
set S, insert(S, x, y) places y into S indexed by x. Only 
unique key values are kept. Subsequent insertion results 
in clobbering the data. remove(S, x) removes the key x 
from S, as well as the datum associated with it. 
contains(S, x) returns true if x is a key in S. S[x] returns 
the datum associated with x. keys(S) returns the set of key 
values.  
 
For a list L, push(L, x) places x onto the head of L. 
pop(L) returns the item at the head of the list, deleting it. 
peek(L) returns the item at the head of the list without 
removing it from the list. pushTail(L, x), popTail(L, x), 
and peekTail(L, x) is as previous except the tail of the list 
is affected/accessed. We assume an implementation for 
lists. 
 
A position p is a representation of a point in 3-
dimensional space. distance(p1, p2)→ℜ. crossPoints(p1, 
p2, p3, p4, r), where p1 and p2 represent a line segment, p3 

and p4 represent a line segment, and r represent a radius, 
returns either: 
• (∅, ∅) if no point on p1→p2 comes within r of p3→p4  
• (x, ∅) if there is only one point on p1→p2 that comes 

within r of p3→p4, where x is that point 
• (x, y) where x and y are both points on p1→p2 that 

comes within r of p3→p4 and x is the closest of x and y 
to p1. 

 
minDuration(a, p1, p2) returns the minimum amount of 
time required for aircraft a to traverse from position p1 to 
position p2. maxDuration(a, p1, p2) returns the maximum 
amount of time. currentDuration(a, p1, p2) returns the 
amount of time at the current speed. nominalDuration(a, 
p1, p2) returns the amount of time at the nominal speed. 
 
propagate(STN <G, l, u> ) which re-evaluates l and u 
such that all implied minimum and maximum intervals 
are reflected (i.e., temporal propagation.) 
 

Pseudo-code 
We now describe in pseudocode the implementation for 
mutex, addMutex, removeAircraft, and addFlightPlan,  
 
 
mutex( n) ≡ return M[n] 
 
addMutex(n1, n2) ≡  
  if contains(M, n1) 
    insert(M[ n1], n2) 
  else 
    insert(M, n1, {n2}) 
  endif 
  if contains(M ∈ P, n2) 



    insert(M[ n2], n1) 
  else 
    insert(M, n2, {n1}) 
  endif 
 
removeAircraft( a) ≡ 
  X ← { n|aircraft(n) = a} 
  for ∀x∈X 
    for ∀(n|n∉X, x)∈E 
      remove(E,(n, x)) 
    endfor 
    for ∀(x, n|n∉X)∈E 
      remove(E,(x, n)) 
    endfor 
  endfor 
  remove(A, a) 
 
addFlightPlan(G', a) ≡ 
  for ∀(n1, n2)∈ G'.E 
      for ∀(n3, n4)∈E 
        insert(V, n1) 
        insert(V, n2) 
        setAircraft(n1, a) 
        setAircraft(n2, a) 
        l(n1, n2) ≡ minDuration(a, n1, n2)) 
        u(n1, n2) ≡ maxDuration(a, n1, n2)) 
        p ← crossPoint(n1, n2, n3, n4) 
        if p ≠∅ 
          if distance(n1, n3) ≤ε ∨  
               distance(n1, n4) ≤ε ∨  
               distance(n2, n3) ≤ε ∨  
               distance(n2, n4) ≤ε 
            if distance(n1, n3) ≤ε addMutex(n1, n3) 
            if distance(n1, n4) ≤ε addMutex(n1, n4) 
            if distance(n2, n3) ≤ε addMutex(n2, n3) 
            if distance(n2, n4) ≤ε addMutex(n2, n4) 
          else 
            handleIntersection(p, n1, n2, n3, n4) 
          endif 
        endif 
      endfor 
  endfor  
  return deconflict(G') 
 
The new plan is integrated with the previous plan, but we 
have not made sure that aircraft do not collide at 
intersections. We do this by introducing ordering 
constraints. We know what order the aircraft should cross 
by determining the order that they should land (this is an 
approximation to avoid huge computational complexity). 
We try to place the new aircraft at each possible landing 
ordering until we find one that works. To find out what is 
the current ordering, we tally how many planes are 
landing before each other. Thus, beforeCount is a 
mapping of aircraft to counts of aircraft landing before it. 
Each aircraft has a unique number landing before it, 
starting with 0, thus this gives us a total ordering on the 

aircraft for landing without performing a topological 
analysis on the network. 
 
deconflict(G') ≡ 
  propagate(STN) 
  let beforeCount be a set of integers indexed by airplanes, 
as above 
  allMutexAircraft ← keys(beforeCount) 
  let allMutexEdges be an empty edge-set 
  n ← entryVertex 
  while n ≠ landingNode 
    for ∀n1∈mutex(P, n) 
      insert(allMutexEdges, (n, n1)) 
    endfor 
    (n2, n) ← e ∈ outdegree(N ∈ P, n) | aircraft(P, n) = a 
  endwhile 
  for i ← | beforeCount |  down to 0 
    if schedule(beforeCount, allMutexEdges, a, i)) return 
true 
  endfor 
  return false 
 
schedule(beforeCount, allMutexEdges, a, i) ≡ 
  for ∀(n1, n2)∈allMutexEdges 
    if getValue(beforeCount, airplane(P, n2)) < i 
      setMin(N ∈ P, n2, n1, 0) 
      setMax(N ∈ P, n2, n1, ∞) 
    else 
      setMin(N ∈ P, n1, n2, 0) 
      setMax(N ∈ P, n1, n2, ∞) 
    endif 
  endfor 
  result ← canPropagate(N ∈ P) 
  if ~result 
    for ∀(n1, n2)∈allMutexEdges 
      remove(edges(N ∈ P), (n1, n2)) 
      remove(edges(N ∈ P), (n2, n1)) 
    endfor 
  endif 
  return result 
 
handleIntersection(p1, n1, n2, n3, n4) ≡ 
  p2 ← p1  
  a1 ← aircraft(n1) 
  a2 ← aircraft(n3) 
  n1a ←  wayPoint(p1, n1, ε) 
  n2a ←  wayPoint(p1, n2, ε) 
  n3a ←  wayPoint(p2, n3, ε) 
  n4a ←  wayPoint(p2, n4, ε) 
  insert(V, p1) 
  insert(V, p2) 
  insert(V, n1a) 
  insert(V, n2a) 
  insert(V, n3a) 
  insert(V, n4a) 
  aircraft(p1) ≡ a1
  aircraft(n1a) ≡ a1
  aircraft(n2a) ≡ a1



  aircraft(p2) ≡ a2
  aircraft(n3a) ≡ a2
  aircraft(n4a) ≡ a2
  l(n1, n1a) ≡ minDuration(a1, n1, n1a) 
  l(n1a, p1) ≡ minDuration(a1, n1a, p1) 
  l(p1, n2a) ≡ minDuration(a1, p1, n2a) 
  l(n2a, n2) ≡ minDuration(a1, n2a, n2) 
  l(n3, n3a) ≡ minDuration(a2, n3, n3a) 
  l(n3a, p2) ≡ minDuration(a2, n3a, p2) 
  l(p2, n4a) ≡ minDuration(a2, p2, n4a) 
  l(n4a, n4) ≡ minDuration(a2, n4a, n4) 
  u(n1, n1a) ≡ maxDuration(a1, n1, n1)) 
  u(n1a, p1) ≡ maxDuration(a1, n1a, p1) 
  u(p1, n2a) ≡ maxDuration(a1, p1, n2a) 
  u(n2a, n2) ≡ maxDuration(a1, n2a, n2) 
  u(n3, n3a) ≡ maxDuration(a2, n3, n3a) 
  u(n3a, p2) ≡ maxDuration(a2, n3a, p2) 
  u(p2, n4a) ≡ maxDuration(a2, p2, n4a) 
  u(n4a, n4) ≡ maxDuration(a2, n4a, n4) 
  addMutex(p1, p2) 
  addMutex(p2, n1a) 
  addMutex(p2, n2a) 
  addMutex(p1, n3a) 
  addMutex(p1, n4a) 
 
A flight-path builder computes all feasible paths to land a 
given aircraft at a given airport. intialPath(a, p) returns a 
graph representing a flight path from aircraft a to airport 
p. The flight-path builder is initialized for subsequent 
calls. nextPath() returns a graph as in intialPath for the 
aircraft and airport given to initialPath. If the returned 
graph = ∅, no subsequent paths are possible. 
 
The flight-path builder assumes an aircraft a, an airport p, 
a boolean turnRight indicating whether or not the runway 
is reached using a right hand turn for a single turn 
approach, an integer r indicating the approach row, an 
integer c indicating the approach column, and an integer h 
indicating the number of holding loops. We assume the 
values maxRow, maxColumn, and maxHolds. 
 
intialPath(a, p, ap) ≡ 
  a ← a 
  p ← p 
  ap ← ap 
  c ← 0 
  r ← 0 
  h  ← 0 
  turnRight ← needsToTurnRight(a, p) 
  return nextPath() 
 
nextPath() ≡ 
  if c  = maxColumn ∧ 
      r  = maxRow ∧ h  = maxHolds  
      return ∅ 
  G ← path() 
  if r  = maxRow 
    r  ← 0 

    if c  = maxColumn 
      c  ← 0 
      h  ← h  + 1 
    else 
      c  ← c  + 1 
    endif 
  else 
    r  ← r  + 1 
  endif 
  return G 
 
path returns the path as a series of points in space that 
respect the limitations of the aircraft and use the 
waypoints as described earlier. 
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