
Lightweight simulation of air traffic control using
simple temporal networks

Russell Knight

keywords: simple temporal networks, 3d path planning, lightweight simulation

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive

MS 126-347
Pasadena, CA 91109

russell.knight@jpl.nasa.gov

Abstract
Flight simulators are becoming more sophisticated and
realistic, and the requirements of those using them are
becoming more demanding. Air traffic control simulation
for such simulators is now approaching the real problem of
air traffic control, where several aircraft need to be
scheduled for safe approach and landing or for safe passage
through the air space that an air traffic controller is
responsible for. Also, the computational resources available
to dedicate to air traffic control simulation are sparse, given
that most simulations focus on a realistic graphical user
interface and aircraft physics modeling. We provide a
formulation of the air traffic control problem and a solver
for this problem that makes use of temporal constraint
networks and simple geometric reasoning. We provide
results showing that this approach is practical for realistic
simulated problems.

Introduction
Current flight simulators that run on home computers are
sophisticated and realistic. Part of this realism is the
interaction with airport traffic control towers. This
interaction includes ground traffic control and air traffic
control. Automated air traffic control is addressed in detail
in [3], but the amount of computation required can be
prohibitive for a lightweight application such as a game.
We focus on the problem of simulating a realistic air traffic
controller without “breaking the bank” with respect to
computational resources.

Air traffic control
The job of the air traffic controller (ATC) is to ensure that
all aircraft in a controlled air space are safe from collision
and afforded fair access to the air space. This requires
knowledge about each aircraft in the air space being
controlled. This controlled air space is called the bubble.

Upon entering the bubble, aircraft pilots announce their
intensions to the ATC. Given this information, the ATC
provides instructions to all aircraft in the bubble to ensure
that 1) no two aircraft ever come within a prescribed
distance to each other, 2) all aircraft reach their
destination, 3) no aircraft is overly delayed. Also, the ATC
tries to keep communications to a minimum.

This requires the ATC to reason about the paths through
the air that the aircraft will travel, the capability of each
aircraft with respect to minimum and maximum speeds and
minimum turning radius, and the timing of aircraft passing
through shared air space.

The air traffic control problem
Here we formalize the air traffic control problem (ATCP).
The ATCP is, given a safe distance s that all aircraft must
maintain from other aircraft, a collection of airports,
aircraft and aircraft destination, and a bubble, generate a
set of commands to the aircraft that allow each aircraft to
land or pass through the bubble without violating any
operating constraints.

An example
We now describe a scenario to illustrate the capabilities of
our technique.

1. Consider an airport with no aircraft in its bubble.
Obviously, no commands need to be sent to any
aircraft.

2. Then, an aircraft A enters the bubble and
requests/expects landing instructions. Given that
this is the first aircraft to land, the ATC opts for a
full procedure approach and routes the aircraft to
an initial approach fix (IAF, i.e., let the pilot
navigate the approach).

3. Then, an aircraft B enters the bubble. B is much
faster than A, and the ATC discovers that B can

start its approach before A if a direct path is
taken. The ATC chooses this route, and the plan
is updated.

4. Then, an aircraft C enters the bubble. If B’s
approach were modified, then C could land
directly, then B, then A, but the ATC does not
modify existing routes (while possible, changing
existing routes is avoided in practice as it is a
technically and theoretically harder problem).
Instead, an alternate vectoring is chosen that
accommodates the landing of B, then C, then A.

5. B lands.
6. A fast aircraft D enters the bubble, and no set of

vectors can accommodate it without violating
constraints. D is then put into a holding pattern
and is scheduled to land after A.

7. A slows unexpectedly, resulting in instructions to
D not to exceed a certain speed.

An airport consists of:
• a 3d coordinate position that represents the start of the

runway
• a vector landingDirection representing the direction in

which aircraft land
• a distance length representing the length of the runway

Notationally, for an airport p, we would refer to the
associated vector as p. landingDirection.

An aircraft consists of:
• a coordinate in 3d space position that represents the

location of the aircraft
• a vector direction defining direction of travel
• a minimum rate of travel minSpeed
• a maximum rate of travel maxSpeed
• a nominal rate of travel nomSpeed
• a current rate of travel speed
• a maximum climb rate maxClimb
• a nominal climb rate nomClimb
• a maximum dive rate maxDive (represented as a

negative climb rate)
• a nominal dive rate nomDive
• a current climb/dive rate zRate
• a minimum height minAltitude
• a maximum height ceiling
• a turn-rate function (that returns values the form of

radians/second) maxTurnRate(speed) that indicates the
maximum rate of a turn for a given speed

• a turn-rate nomTurnRate(speed) that indicates the
nominal rate of a turn for a given speed

• a set of airports landingSites containing the airports that
this aircraft could land at

• a coordinate in 3d space destination that indicates either
the point at which the aircraft wishes to leave the bubble
or p.position for some p ∈ landingSites.

The bubble consists of:

• a distance radius that represents the radius of the
hemisphere of space in which the air traffic controller
will be responsible for posting commands to the aircraft

• a 3d coordinate position that represents the location of
the bubble

A solution consists of a set C of commands to the aircraft
that allow each aircraft to land or pass through without
violating any constraints. A command consists of:
• a time executeTime that the command is to be given

and executed by the aircraft
• an aircraft aircaft that is the recipient of the command
• a turn-rate turnRate that represents the rate to turn
• a turn destination vector goalDirection
• a climb/dive zRate
• a goal altitude zDestination that indicates the altitude to

climb or descend to
• a goal rate of speed goalSpeed

Note that in practice a command is usually agnostic with
respect to most parameters, e.g., in the voice interface we
would normally only expect to hear commands such as
“turn to 215 degrees” or “descend to 1000 meters”.

So, an ATCP consists of finding C given <P, A, b, s> such
that, for all possible times, no aircraft is within the limit s
of any other aircraft, no command is issued that violates
the operational bounds of any aircraft, and all aircraft
reach their destinations (where C is a set of commands, P
is a set of airports, A is a set of aircraft, b is the bubble, and
s is the minimum safe distance).

But, in reality, we actually find ourselves executing a
solution to the ATCP, only to learn that a new, heretofore
unknown aircraft has entered the bubble and requires air
traffic control. So, the actual solution to the ATCP needs
to be incremental in nature—that is, it needs to start with a
previous solution and then update that solution to
accommodate unforeseen events. We call this is the online
ATCP.

We also desire a measurement of fairness. A fair ATCP
solution is one that minimizes the delay for the aircraft.
The simple metric we use for delay is the mean squared
delay, where delay is measured as the difference between
the time it takes to arrive at the destination and the time it
would take for direct travel to the destination at nominal
speed, turn rate, and dive rate.

Finally, we desire ATCP solutions that require minimal
“chat” with aircraft. The metric we use is the average
number of commands sent to an aircraft.

Preliminaries
Here we provide some background on the basic algorithms
and techniques to be used in our solution to the ATCP.

Simple temporal networks
We represent the plan of each aircraft as a series of
timepoints in a temporal constraint network [2]. A
temporal constraint network is an edge-labeled, directed
graph where each node represents a moment in time and
each edge represents a temporal relationship between the
source node and the sink node of the edge. In a simple
temporal network, each edge is labeled with the minimum
and maximum difference allowed between the time
assigned to the source node and the time assigned to the
sink node. It is possible to know that a temporal constraint
network is infeasible or that some of the minimum and
maximum labels of the edges are more constrained due to
other edges [xxx]. From this propagated network we can
compute a schedule (i.e., an assignment of a specific time
to each moment represented in the temporal constraint
network).

More formally, a STN is a 3 tuple <G, l, u>, where G = (N,
E) is a directed graph with edge-label functions l(e ∈
E)→ℜ (i.e., minimum duration) and u(e ∈ E)→ℜ (i.e.,
maximum duration) A schedule is a vertex-label function
T(n ∈N)→ℜ (i.e., the time of each timepoint) where,

 ()
()

(,) ,
() () (,)

() () (,)

x y E
T y T x l x y

T y T x u x y

∀ ∈

− ≥

− ≤

∧

Note that a relabeling of l and u that takes into
consideration all intervals can be computed in either |N|3 or
|N|2|E|, which ever is less. It should be noted that one
candidate T after this relabeling is the solution indicated by
assuming all intervals to be l(e ∈ E), that is, one possible
execution is an execution where we use the shortest
durations.

Cylinder intersection
We represent the path of an aircraft through the bubble as a
cylinder in 3D space where the radius of the cylinder is the
prescribed safety distance. If two of these cylinders
intersect for different aircraft, then a proximity violation is
possible. We use a simple form of cylinder intersection to
compute this intersection. Specifically, we are interested in
subdividing each cylinder into smaller sub-cylinders;
where either no intersection occurs over the sub-cylinder,
or an intersection occurs over the entirety of the sub-
cylinder, e.g., see Figure 1.

Figure 1 Computing contending cylinders (shaded area)

This is a simple process of finding where the distance
between the infinite lines representing the center of each
cylinder is exactly the sum of the diameters of the
cylinders. If there is only one point where this occurs, then
the cylinders touch, but do not intersect. If there are 2
points (for each line), then the cylinders could intersect,
and we need to check the actual starting and ending points
of the cylinders. Of course, the lines could be parallel, and
all points are contained, in which case the linear
intersection of the cylinders is computed.

Solving the ATCP
The ATCP demands reasoning in both temporal and spatial
realms. First, we make some simplifications that actually
add to the fidelity of the simulation. Then, we decompose
the problem into aircraft landing problems and 3d path
finding problems. We abstract away the spatial geometry
by encoding the problem as a simple temporal network
(STN). We use the STN to provide us with temporal and
spatial violation information. Finally, during execution and
monitoring, we use the STN to dictate the command
sequence, as well as change the command sequence in the
event of off-nominal behavior on the part of aircraft.

Simplifications
To simplify the problem, we will divide the 3d airspace
into stacks of 2d layers. This reflects how the space is
usually divided up in real air traffic control [4], so this
actually adds to the simulation.

A further simplification is the pre-processing of the set of
airports that are in the bubble, resulting in prescribed
holding spirals and vectors of approach. Again, this
reflects real ATC operations. This helps guide our search
for a solution, and also affects some of our criteria,
because we can give a vector-of-approach command that
would be a series of turns and descents that result in a
landing.

Algorithms
There are four components to the ATC algorithm. These
are the controller, the plan, the vector generator, and the
constraint verifier. See Figure 2.

Controller

position
changes

Plan

Constraint
Verifier

Vector Generator

new
aircraft

commands

add
aircraft

change
position

flight
plans

get
flight

plan n

flight
plan

generate
mutexes

verify
plan

Figure 2 ATC block diagram

The controller
The controller is event driven and quite simple. Three
events kick off the controller:

1. An aircraft enters the bubble. Try all vector
options in a shortest path first order, checking
each using the constraint verifier. When a solution
is found, announce instructions to the appropriate
pilot.

2. An aircraft exits the bubble. Remove the aircraft
from the plan.

3. An aircraft changes location as prescribed by the
plan. Update the plan with the new location/time
of the aircraft. If needed, give instructions to the
appropriate pilot.

Thus, the controller is the input/output interface for the
ATC algorithm.

The plan
The plan is a data structure that is used to verify current
and hypothetical routings for each aircraft. It consists of
the following:
• a set of aircraft A
• a simple temporal network STN = <G=(N, E), l, u>
• an indexed set M that maps nodes to sets of nodes
• a labeling function mutex(n ∈ N)→N’⊆ N, i.e., returns

the set of timepoints that must be totally ordered (none
can occur simultaneously) as explained in more detail
below

• a function addMutex(n1 ∈ N, n2 ∈ N) that adds the
information that n1 and n2 cannot occur simultaneously

• a mapping function aircraftt(n ∈ N) that returns the
aircraft associated with timepoint n

• addFlightPlan(G’, a) adds the flight plan represented
by the directed graph G’ for the airplane a to the plan P.
It is assumed that the flight plan is a valid path with
respect to edge labels and topology. It then introduces
ordering constraints at mutex points to avoid collisions.
If no ordering is found, it returns false

• removeAircraft(a) removes the associated aircraft and
any flight plan associated with it

• validate returns true if the plan is possible and modifies
the edge labels if necessary

An approach that an aircraft follows consists of a directed
path in the STN. Since each aircraft gets its own unique
path, we need to enforce that two aircraft are not in the
same place at the same time. We use mutex to determine
this. If two timepoints overlap in space, then we must
ensure that they do not overlap in time. We do this by
introducing temporal constraints. Figure 3 illustrates an
example where the nodes n1, n2, n3, and n3 are mutex. Note
that n1 and n2 are ordered already, as are n3 and n4; the
decision to be made is this: does n1 follow n4 or does n3
follow n2? The nodes were determined to be mutex-related
by computing the contending cylinders of the flight paths.

n4 n2

n1 n3
a b

Figure 3 Mutex nodes of aircraft a and b

Operations on the plan include insertion of an aircraft,
deletion of an aircraft, and updating an aircraft’s position
and time. An aircraft is inserted into the plan by inserting
its associated approach using the addFlightPlan method.

To add a flight plan, we need to decide on an ordering for
timepoints that are mutex (mutually exclusive with respect
to time).

For aircraft that wish to land, we employ a heuristic
approach that if an aircraft a follows an aircraft b for any
timepoint, then aircraft a follows aircraft b for all
timepoints. This allows us to attempt a “quick and dirty”
scheduling where a follows b. We use the constraint
verifier to validate that a proposed plan is feasible. We
iterate through all the possible aircraft orderings, which is
linear in the number of aircraft currently landing at the
airport. If this fails, then addFlightPlan fails, and we need
to generate a new plan using the vector generator.

For aircraft that wish to pass through the bubble, we use a
similar technique, but choose an ordering from all aircraft
in the bubble.

The vector generator
The vector generator generates a series of timepoints and
temporal constraints that represents a hypothetical flight
plan for an aircraft to an airport or to its exit destination. It
also generates the information for the mutex sets for each
timepoint of the plan. This vector generator is rather
simple, but can be made arbitrarily rich, as the problem in
general is NP complete. The vector generator iterates over
options from most to least preferred.

For landing aircraft, the first vector generated is a full-
procedure approach, followed by a most direct approach,
followed by incrementally more distant vectors along the
direct approach, followed by a single 360° delay in the
holding spiral and a most direct approach, and so on, with
as many 360° delays as needed. Once a vector is
generated, it needs to be verified. If verified, it is
incorporated in the plan.

For aircraft that are passing through, we use a similar
technique to [1], where we start with a straight-line path,
and randomly add waypoints, and then tighten the
waypoints in 2d space to reduce flight-time. The 2d space
is determined by the direction of travel, where certain
altitude slices are used for northbound, southbound,
eastbound, and westbound travel. If we have more than
one altitude slice, we choose the slice that is closest to the
current altitude of the aircraft. We break ties by choosing
the least-recently used slice, and if we still have a tie, we
break it randomly.

The constraint verifier
The constraint verifier checks a plan and introduces
temporal constraints where necessary to maintain the
veracity of a plan. It works by identifying timepoints that
lack temporal ordering constraints between themselves and
members of their mutex set. It then incrementally inserts
ordering constraints and verifies that the constraint is
possible using temporal propagation. It can prefer to either
schedule new points before or after existing points,
according to the preferences of the designers, e.g., we call
this preferring that once an aircraft is scheduled before
another at any point, it is always scheduled before that
other aircraft. Once a verified plan is found, the verifier
returns true. If none can be found, it returns false and
removes any extraneous temporal constraints it inserted.

See Appendix A for pseudo-code implementations of the
associated functions.

Results
Our implementation is in Visual C++ on a 2.53 GHz
Pentium 4 processor. For problems with 32 or fewer
aircraft, the complete solution requires less than a
millisecond. Figure 4 shows the time to schedule a single
aircraft given a number of aircraft already in the schedule.
As we can see, even for large problems, we require less
than a second of CPU time to add a new aircraft to the
plan. This curve appears to scale in O(n3), where n is the
number of aircraft already scheduled. This makes sense, in
that temporal propagation is bounded by n3, and we are
using heuristic techniques to perform the scheduling. Of
course, we are most likely failing when we could succeed.
In fact, for problems with 300 aircraft, half of the time a
schedule was not found.

Future work
Future work in this area would be to improve the success
of scheduling for larger problems and to include in our
scheduling algorithms the built-in algorithms that exist for
various on-board waypoint generators. This would render a
more realistic experience for the simulation, but might
require considerable work as the reasoning algorithms of
each of these devices are proprietary.

Acknowledgements
The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by Microsoft Corporation.

Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government, the (name
of sponsor if it is not a federal government organization),
or the Jet Propulsion Laboratory, California Institute of
Technology.

Time to schedule an aircraft

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

Number of aircraft in the schedule

T
im

e
in

 se
co

nd
s

Figure 4 ATC scheduling performance

Appendix A Pseudo implementation

Assumed functions
Our algorithm descriptions assume many common
functions that are not part of the original contribution of
this work. These are summarized here.

We assume min(x1, x2, … xn) and max(x1, x2, … xn)
which are functions that return the minimum and
maximum values of the items given it as arguments.

For a set S, insert(S, x) places x into S. If x ∈ S, S doesn’t
change. remove(S, x) removes x from S. For an indexed
set S, insert(S, x, y) places y into S indexed by x. Only
unique key values are kept. Subsequent insertion results
in clobbering the data. remove(S, x) removes the key x
from S, as well as the datum associated with it.
contains(S, x) returns true if x is a key in S. S[x] returns
the datum associated with x. keys(S) returns the set of key
values.

For a list L, push(L, x) places x onto the head of L.
pop(L) returns the item at the head of the list, deleting it.
peek(L) returns the item at the head of the list without
removing it from the list. pushTail(L, x), popTail(L, x),
and peekTail(L, x) is as previous except the tail of the list
is affected/accessed. We assume an implementation for
lists.

A position p is a representation of a point in 3-
dimensional space. distance(p1, p2)→ℜ. crossPoints(p1,
p2, p3, p4, r), where p1 and p2 represent a line segment, p3

and p4 represent a line segment, and r represent a radius,
returns either:
• (∅, ∅) if no point on p1→p2 comes within r of p3→p4
• (x, ∅) if there is only one point on p1→p2 that comes

within r of p3→p4, where x is that point
• (x, y) where x and y are both points on p1→p2 that

comes within r of p3→p4 and x is the closest of x and y
to p1.

minDuration(a, p1, p2) returns the minimum amount of
time required for aircraft a to traverse from position p1 to
position p2. maxDuration(a, p1, p2) returns the maximum
amount of time. currentDuration(a, p1, p2) returns the
amount of time at the current speed. nominalDuration(a,
p1, p2) returns the amount of time at the nominal speed.

propagate(STN <G, l, u>) which re-evaluates l and u
such that all implied minimum and maximum intervals
are reflected (i.e., temporal propagation.)

Pseudo-code
We now describe in pseudocode the implementation for
mutex, addMutex, removeAircraft, and addFlightPlan,

mutex(n) ≡ return M[n]

addMutex(n1, n2) ≡
 if contains(M, n1)
 insert(M[n1], n2)
 else
 insert(M, n1, {n2})
 endif
 if contains(M ∈ P, n2)

 insert(M[n2], n1)
 else
 insert(M, n2, {n1})
 endif

removeAircraft(a) ≡
 X ← { n|aircraft(n) = a}
 for ∀x∈X
 for ∀(n|n∉X, x)∈E
 remove(E,(n, x))
 endfor
 for ∀(x, n|n∉X)∈E
 remove(E,(x, n))
 endfor
 endfor
 remove(A, a)

addFlightPlan(G', a) ≡
 for ∀(n1, n2)∈ G'.E
 for ∀(n3, n4)∈E
 insert(V, n1)
 insert(V, n2)
 setAircraft(n1, a)
 setAircraft(n2, a)
 l(n1, n2) ≡ minDuration(a, n1, n2))
 u(n1, n2) ≡ maxDuration(a, n1, n2))
 p ← crossPoint(n1, n2, n3, n4)
 if p ≠∅
 if distance(n1, n3) ≤ε ∨
 distance(n1, n4) ≤ε ∨
 distance(n2, n3) ≤ε ∨
 distance(n2, n4) ≤ε
 if distance(n1, n3) ≤ε addMutex(n1, n3)
 if distance(n1, n4) ≤ε addMutex(n1, n4)
 if distance(n2, n3) ≤ε addMutex(n2, n3)
 if distance(n2, n4) ≤ε addMutex(n2, n4)
 else
 handleIntersection(p, n1, n2, n3, n4)
 endif
 endif
 endfor
 endfor
 return deconflict(G')

The new plan is integrated with the previous plan, but we
have not made sure that aircraft do not collide at
intersections. We do this by introducing ordering
constraints. We know what order the aircraft should cross
by determining the order that they should land (this is an
approximation to avoid huge computational complexity).
We try to place the new aircraft at each possible landing
ordering until we find one that works. To find out what is
the current ordering, we tally how many planes are
landing before each other. Thus, beforeCount is a
mapping of aircraft to counts of aircraft landing before it.
Each aircraft has a unique number landing before it,
starting with 0, thus this gives us a total ordering on the

aircraft for landing without performing a topological
analysis on the network.

deconflict(G') ≡
 propagate(STN)
 let beforeCount be a set of integers indexed by airplanes,
as above
 allMutexAircraft ← keys(beforeCount)
 let allMutexEdges be an empty edge-set
 n ← entryVertex
 while n ≠ landingNode
 for ∀n1∈mutex(P, n)
 insert(allMutexEdges, (n, n1))
 endfor
 (n2, n) ← e ∈ outdegree(N ∈ P, n) | aircraft(P, n) = a
 endwhile
 for i ← | beforeCount | down to 0
 if schedule(beforeCount, allMutexEdges, a, i)) return
true
 endfor
 return false

schedule(beforeCount, allMutexEdges, a, i) ≡
 for ∀(n1, n2)∈allMutexEdges
 if getValue(beforeCount, airplane(P, n2)) < i
 setMin(N ∈ P, n2, n1, 0)
 setMax(N ∈ P, n2, n1, ∞)
 else
 setMin(N ∈ P, n1, n2, 0)
 setMax(N ∈ P, n1, n2, ∞)
 endif
 endfor
 result ← canPropagate(N ∈ P)
 if ~result
 for ∀(n1, n2)∈allMutexEdges
 remove(edges(N ∈ P), (n1, n2))
 remove(edges(N ∈ P), (n2, n1))
 endfor
 endif
 return result

handleIntersection(p1, n1, n2, n3, n4) ≡
 p2 ← p1
 a1 ← aircraft(n1)
 a2 ← aircraft(n3)
 n1a ← wayPoint(p1, n1, ε)
 n2a ← wayPoint(p1, n2, ε)
 n3a ← wayPoint(p2, n3, ε)
 n4a ← wayPoint(p2, n4, ε)
 insert(V, p1)
 insert(V, p2)
 insert(V, n1a)
 insert(V, n2a)
 insert(V, n3a)
 insert(V, n4a)
 aircraft(p1) ≡ a1
 aircraft(n1a) ≡ a1
 aircraft(n2a) ≡ a1

 aircraft(p2) ≡ a2
 aircraft(n3a) ≡ a2
 aircraft(n4a) ≡ a2
 l(n1, n1a) ≡ minDuration(a1, n1, n1a)
 l(n1a, p1) ≡ minDuration(a1, n1a, p1)
 l(p1, n2a) ≡ minDuration(a1, p1, n2a)
 l(n2a, n2) ≡ minDuration(a1, n2a, n2)
 l(n3, n3a) ≡ minDuration(a2, n3, n3a)
 l(n3a, p2) ≡ minDuration(a2, n3a, p2)
 l(p2, n4a) ≡ minDuration(a2, p2, n4a)
 l(n4a, n4) ≡ minDuration(a2, n4a, n4)
 u(n1, n1a) ≡ maxDuration(a1, n1, n1))
 u(n1a, p1) ≡ maxDuration(a1, n1a, p1)
 u(p1, n2a) ≡ maxDuration(a1, p1, n2a)
 u(n2a, n2) ≡ maxDuration(a1, n2a, n2)
 u(n3, n3a) ≡ maxDuration(a2, n3, n3a)
 u(n3a, p2) ≡ maxDuration(a2, n3a, p2)
 u(p2, n4a) ≡ maxDuration(a2, p2, n4a)
 u(n4a, n4) ≡ maxDuration(a2, n4a, n4)
 addMutex(p1, p2)
 addMutex(p2, n1a)
 addMutex(p2, n2a)
 addMutex(p1, n3a)
 addMutex(p1, n4a)

A flight-path builder computes all feasible paths to land a
given aircraft at a given airport. intialPath(a, p) returns a
graph representing a flight path from aircraft a to airport
p. The flight-path builder is initialized for subsequent
calls. nextPath() returns a graph as in intialPath for the
aircraft and airport given to initialPath. If the returned
graph = ∅, no subsequent paths are possible.

The flight-path builder assumes an aircraft a, an airport p,
a boolean turnRight indicating whether or not the runway
is reached using a right hand turn for a single turn
approach, an integer r indicating the approach row, an
integer c indicating the approach column, and an integer h
indicating the number of holding loops. We assume the
values maxRow, maxColumn, and maxHolds.

intialPath(a, p, ap) ≡
 a ← a
 p ← p
 ap ← ap
 c ← 0
 r ← 0
 h ← 0
 turnRight ← needsToTurnRight(a, p)
 return nextPath()

nextPath() ≡
 if c = maxColumn ∧
 r = maxRow ∧ h = maxHolds
 return ∅
 G ← path()
 if r = maxRow
 r ← 0

 if c = maxColumn
 c ← 0
 h ← h + 1
 else
 c ← c + 1
 endif
 else
 r ← r + 1
 endif
 return G

path returns the path as a series of points in space that
respect the limitations of the aircraft and use the
waypoints as described earlier.

References
[1] J. Barraquand, et al, “A Random Sampling

Scheme for Path Planning,” International
Journal of Robotics Research, 16(6):759-774,
1997.

[2] R. Decheter, I. Meiri, and J. Pearl, “Temporal
Constraint Networks,” Artificial Intelligence
Journal, 49:61-95, 1991.

[3] H. Erzberger, “Design Principles and Algorithms
for Automated Air Traffic Management,”
AGARD Lecture Series 200 Presentation,
Madrid, Spain, Paris, France, and Moffett Field,
California, USA, November 1995.

[4] M. Nolan, Fundamentals of Air Traffic Control,
3rd Ed., Brooks/Cole Publishing Company,
Pacific Grove, California, 1998.

