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ABSTRACT 

 
In this paper, we will describe the Hydros algorithms to 
derive soil moisture from L-band polarimetric radar 
measurements.  The baseline Hydros radar algorithm to 
estimate soil moisture is composed of three steps: land 
classification, preliminary soil moisture estimation, and 
final time-series improvement.  Before soil moisture is 
estimated using Hydros radar data, each pixel will be 
classified in order to apply a suitable soil moisture 
algorithm.  Land cover types for this classification include 
bare surfaces, low vegetation areas, medium vegetation 
areas, forests, urban areas, water bodies, and mountain 
areas.  We will also include a RFI (RF Interference) 
indicator to identify RFI contaminated areas.  Then, a 
polarimetric soil moisture algorithm is applied to estimate 
preliminary soil moisture with the constraint imposed by 
Hydros radiometer data at lower resolution.  Using time-
series data, the preliminary soil moisture information will 
be improved for the final science product. 
 

I. INTRODUCTION 
 
The Hydros State Mission (Hydros) is a NASA (National 
Aeronautics and Space Administration) ESSP (Earth 
System Science Pathfinder) mission to provide 
exploratory global measurements of the earth’s soil 
moisture and land freeze/thaw conditions.  The mission 
data will be used for understanding processes that link the 
water, energy, and carbon cycles.  The Hydros instrument 
is an integrated radiometer/radar instrument at L-band.  
The soil moisture information derived from L-band radar 
measurements will be used to derive the global soil 
moisture product at 10km resolution.  The current Hydros 
launch date is September 2010. 
  

The Hydros radar provides three polarimetric 
backscattering cross sections ( hhσ , vvσ , and hvσ ).   It is 
not a fully polarimetric radar since H- and V- polarization 
transmit signals do not have the same frequency in order 
to minimize the range ambiguity contamination.  The 

bandwidth of the Hydros transmit signal is 1 MHz and 
two polarization transmit frequencies do not overlap.  The 
exact radar frequencies will be determined later after we 
study RFI (Radio Frequency Interference) frequencies 
and the radar architecture. 

 

The Hydros raw radar data will be processed to produce 
calibrated backscattering cross sections sampled at 1 km.  
This radar processing will be performed at the Hydros 
Radar Processing Facility provided by CSA (Canadian 
Space Agency).   These backscattering data and the 
associate supporting data will be used to generate a global 
soil moisture map sampled at 3 km.  Since we have to use 
a soil moisture estimation algorithm suitable for a specific 
land type, each pixel will be classified before soil 
moisture is retrieved from radar measurements.  A 
snapshot algorithm is applied to estimate soil moisture 
using a single radar measurement.  After Hydros radar 
data are accumulated for three months, we will start a 
time-series analysis.  The amount of data to be 
accumulated for a time-series analysis depends on land 
types even though one-year data should be sufficient.  In 
this paper, we describe three steps to retrieve soil 
moisture from Hydros polarimetric radar data. 
 

II. LAND CLASSIFICATION 
 
The Hydros Radar Processing Facility will produce Level 
1C calibrated radar backscattering data.  A typical single-
look resolution of the Hydros radar data is 250m in the 
ground range direction and 400m – 1200m in the azimuth 
direction.  Due to the relatively large pixel size, a usual 
SAR calibration process cannot be used.  As an example, 
a corner reflector is too small to be used to calibrate the 
Hydros polarimetric data.  Therefore, we will use 
distributed targets such as rain forests to calibrate the 
radar data.  Since we do not have to measure the phase 
relationship between polarimetric channels, the 
calibration process is simpler than a typical polarimetric 
SAR system.  For the calibration purpose, we can collect 
both hvσ and vhσ .  Even though the H- and V- 
polarization transmit frequency is slightly different, we 



can use the reciprocity ( hvσ = vhσ ).  Other airborne and 
space-borne polarimetric data over large homogeneous 
areas will be used to calibrate the Hydros data. 
     
 
The first step in the soil moisture estimation process is the 
land classification.  Land cover types considered for the 
Hydros classification process are bare surfaces, low 
vegetation areas, medium vegetation areas, forests, urban 
areas, water bodies, and mountain areas.  The objective of 
this classification process is to identify an algorithm 
suitable for a specific land type.  Low vegetation areas 
have biomass less than 0.2 kg/m2.  Medium vegetation 
areas have biomass higher than 0.2 kg/m2 and the 
vegetation water content is less than 5 kg/m2.  For forest 
areas, the biomass is often too high to retrieve soil 
moisture reliably.  However, time-series data can be used 
to estimate soil moisture especially when the double 
bounce scattering component dominates [1].  Using 
Hydros data, the biomass level will be estimated using 
RVI (Radar Vegetation Index) defined as 
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Prior to the Hydros launch, all land areas will be 
classified at 1 km resolution using the MODIS/Terra land 
cover data, the SRTM data, and other data sets such as 
PALSAR and RADARSAT II data.  Urban areas, 
permanent water bodies, and mountain areas are 
predetermined without using Hydros data.  During the 
Hydros mission, water bodies are verified since the 
retrieved soil moisture for water bodies must be high.  
Transitory water bodies can be identified by large 
changes in soil moisture, the total backscattering cross 
section, and the co-polarization ratio ( vvhh σσ ).  If the 
retrieved soil moisture value sharply increases or the total 
backscattering cross section decreases significantly in 
time, we can classify the area as potential transitory water 
bodies.  If the area is covered by vegetation, the co-
polarization ratio ( vvhh σσ ) becomes high due to the 
increased double bounce component when the area is 
inundated.  It is difficult to estimate soil moisture of 
mountainous areas since local incidence angles within a 
pixel change significantly.  The mountainous area will be 
identified using the SRTM data. 
 
The Hydros radar instrument will measure the noise 
power by averaging the received power over the small 
frequency band outside of the transmit bandwidth.  This 
noise bandwidth is close to the radar transmit frequency.  
If the measured noise power is much higher than the 
predetermined value, we will identify the pixel as a RFI 

contaminated pixel.  Soil moisture will not be estimated if 
a pixel is identified as a RFI contaminated pixel. 
 
III.  SNAPSHOT SOIL MOISTURE ALGORITHMS 
 
If a pixel is identified as bare surfaces or low/medium 
vegetation areas, we will estimate soil moisture using a 
single Hydros measurement to produce a snapshot soil 
moisture map.  For bare surfaces and low vegetation areas 
(less than 0.2 kg/m2), we will use a bare surface soil 
moisture algorithm.  The current Hydros baseline is the 
algorithm developed by Dubois, van Zyl, and Engman 
[2].  Various algorithms [3,4] will be tested using 
experimental and simulated data sets to select the best 
bare surface algorithm before the Hydros soil moisture 
processor is finalized.   
 
For medium vegetation areas, the soil moisture 
information from the Hydros radiometer will be used as a 
constraint at 40km resolution.  Within a 40 km radiometer 
pixel, 1600 radar pixels exist.  An algorithm will be 
developed using simulated vegetation scattering data [5,6] 
to derive soil moisture under vegetation.  To retrieve soil 
moisture accurately, we need to separate two scattering 
components: vegetation scattering and surface (or 
vegetation-surface interaction) scattering.  The vegetation 
dielectric constant change after a precipitation event is 
also an important factor.  Therefore, the vegetation water 
content information can be used to understand the 
vegetation dielectric constant variation.  Relative soil 
moisture will be estimated using co-polarization 
backscattering cross sections for a given biomass level.  
The biomass level will be estimated using the cross-
polarization backscattering cross section.  The proposed 
constraint is that the average value of estimated soil 
moisture using radar data over a radiometer pixel (40km x 
40km) must be the same as the corresponding radiometer-
based soil moisture.  Mathematically, 
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where 1N  is the number of pixels that belong to bare 

surfaces and low vegetation areas and 2N  is the number 
of pixels for medium vegetation areas.   After we estimate 
relative soil moisture for medium vegetation areas, the 
scale factor a  is determined to satisfy equation (2).  The 
radiometer soil moisture value is denoted by )(Rmv . 
 
IV. TIME SERIES SOIL MOISTURE ESTIMATION 
 
After the Hydros radar data are accumulated for three 
months, we will start a time-series analysis [7].  That is, 
using the knowledge on the time variation of 



backscattering cross sections, we can characterize the soil 
moisture effect on backscattering cross sections of each 
pixel in order to improve the retrieval accuracy.  As an 
outcome of the time-series analysis, we will derive an 
expression for each pixel to related the backscattering 
cross section to soil moisture as 
 

),( vvhhv fm σσ=    (3) 
 
Since this expression depends on the biomass level, the 
cross-polarization will be used to compensate the biomass 
variation over time.  One obvious choice for f is given 
by 
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Here, the co-polarization backscattering cross sections are 
expressed in dB.  Two coefficients ( 1C  and 2C ) for each 
pixel will be determined using the expected minimum and 
maximum values for soil moisture and the time series 
backscattering cross section data. In order to include the 
nonlinear effect observed from simulated backscattering 
data, the second order term can be added to (4).  Using 
ground radar data and numerical simulations, we will 
derive the final expression for the function ),( vvhhf σσ .  
The slowly varying backscattering cross section 
component due to the biomass variation must be 
estimated and compensated using the cross-polarization 
backscattering cross section.  An example of a time-series 
processing will be presented. 
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