

AIAA Infotech Intelligent Systems in Aerospace Workshop

Rover Technology Development and Mission Infusion

Richard Volpe

Manager, Mobility & Robotic Systems Section (347) Jet Propulsion Laboratory, California Institute of Technology

September 2005

Outline:

- 1. Mission Applications
- 2. New Mission Regimes and Impacts
- 3. Technology Infusion Process
- 4. Recent Progress

Mars Surface Mission Applications:

MER: Mars Exploration Rovers (ongoing from 2003)
MSL: Mars Science Laboratory (2009)
Scout: Competed mission concepts (2011?)
AFL: Astrobiology Field Laboratory (2016?)

<u>Titan Atmospheric</u> <u>Mission Application</u>

- long communication delay
- occultation by Saturn
- continuous motion of airship
- challenging surface avoidance or interaction

JPL Aerobot Testbed

Europa or Mars Polar Ice Penetration Application

- Possible long communication delay
- Possible occultation by Saturn
- No ability to backtrack
- Need to avoid inpenetrable inclusions

Ice Penetrator Concept

JPL Cryobot

New Mission Regimes and Impacts on Key Factors

	New Mission Regimes	
Factors	Harsh Environments	Longer Life
1. Dollars	-,0	-,0
2. Time (Pace)	-,0	-
3. Science Quality	+	+
4. Power	-	0
5. Communications	0	0
6. Capabilities	-	-
7. Reliability & Lifetime	-	-
8. Onboard Autonomy	-,+	-,+
9. Operations Autonomy	-	+
10. Public Interest	+	-

Application Scenarios for Validation

AUTONOMOUS TRAVERSE:

Enable autonomous traverse, obstacle avoidance, and position estimation relative to the starting position.

APPROACH & INSTRUMENT PLACEMENT:

Enable autonomous placement of a science instrument on a designated target, specified in imagery taken from a stand-off distance.

ONBOARD SCIENCE:

Enable autonomous processing of science data onboard the rover system, for intelligent data compression, prioritization, anomaly recognition.

SAMPLING:

Enable sampling, sample processing, and sample caching through development of controls for new system components.

Technology Infusion Process – Mars Tech Program

Feedback based on performance measures

Technology Integration Environment Relative To Flight

New Technology Infusion into MER Rovers

- Now approaching on full Martian Year on Surface (668 sols or 687 days).
- Previously used new technology has been extremely valuable: DIMES, GESTALT, VO
- New capabilities are incremental improvements from targeted investment by the Mars Technology Program
- Integration on MER should set the bar for future missions such as MSL

Visual Target Tracking (Nesnas, Bandari, Bajracharya, Kim)

CMU D* with JPL GESTALT (Stentz, Maimone, Rankin)

Automatic Cloud Detection (Castano, Chien)

Terrain Collision Prevention (Leger)

Questions?