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@ A Work Bench for Multibody Body
Dynamics Algorithms

« With our efforts, this module will serve as a
development tool for future modeling and simulation
algorithms in the Field of Multibody Dynamics
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Example Multibody Systems
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@ Dynamics

e Newton's 3 Laws
— F=Ma
— Conservation of Momentum
— Equal and opposite Forces

 Modeling, Simulation, and Control of the motion of
Physical Systems

e Multibody Dynamics
— Extremely Hard Research Field
— Challenging Mathematics,

— Thousands of Equations & Symbols, Constraints,
Coupling, Flexible Bodies, Information Overload

— Almost impossible to program

Jet Propulsion Laboratory / Caltech




Dynamics and Real Time
Simulation Laboratory:
Software Development
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Dynamics Software

Higher-level analysts,

The DARTS Computational Algorithm Mathematical tools

Uses O(N) Spatial Operator Algebra

computational algorithms Fast Computational Algorithms

(Order N, Parallel)

o) g 3
Lt N '.Id" - : . ) )
ot i Systematic Mechanization (Kane) | —
h 0¥ Rigewitem l.l
| Sra Equations of
' Motion
s v oy e Dynamics Problem Formulation

*Utilize Dynamics software to model, simulate, and control multibody systems

«Utilize Simplifying Mathematical tools, utilize algorithms, recursions
New Problem, (This is where my role begins)

*Different software for different applications, hard to develop new
mathematics, algorithms, optimize, etc...
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Utilize Mathematical Tools to
Reduce Complexity

Spatial
i PRIOR APPROACH —
Operator F=Ma

Algebra F1+F2 + ... Fn = ml*al
F1+F2 + ...Fn = m2*a2
F1+F2 + ... Fn = m3*a3
J=B*P*H* F1+F2 + ... Fn = m4*a4
F1+F2 + ... Fn = m5*ab
F1+F2 + ... Fn = m6*a6

F1+F2+ ....Fn =m7*a7

F1+F2+....Fn = m8*a8

F1+F2+....Fn =m9*a9
F1+F2+ ....Fn = m10*al0
F1+F2+ ...Fn =mll*all
F1+F2+...Fn =ml2*al2
) ) F1+F2+ ... Fn =m13*al3
Equat|ons Of M0t|0n F1+F2+...Fn = ml4*al4
* OR F1+F2+...Fn = m15*al5
0 2\ F1+ F2+....Fn = m16*al6
M(B)B +C(9,9) i T F1+F2+...Fn=ml7*al7

Jet Propulsion Laboratory / Caltech




@ Operators Reduce Complexity to
Single Equations

Equations of Motion _ _
M(0)0+C(0.0) =T Each Operator is now a Matrix!

f = generalized hinge coordinates _
T = generalized forces _

M(0) = mass matrix Sopt
| | o | | fork = n...1
C(6.0) = velocity-dependent Coriolis/centrifugal forces V=60I{V(k)}=¢*h’*0 = |
V(k)=¢*(k+ Lk)V(k + 1)+ H*(k)0(k)
end loop
V = ¢'H*0 spatial velocities
o = ¢'[H*0 +a] spatial accelerations Operator Expression Computational Algorithm
f = ¢[Ma+b inter-body spatial forces
T = Hf generalized forces [ 0 w0 H1) 0 .. 0 \
| 8 s ¥ B di2) . B
| 5| 40D o @
T=HoM¢ H* 8§ + fIqb[qua-l-b]J L By SR
G e o(n,1) o(n,2) ... I 0 0 .. H@
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The PyCraft Road Map
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”aﬁal Operator Algebra

C++

Python

Darts++

L asic DY | [SOAL PyCratft

ytatio™s | Dshell++

user ! The Total Software
Package
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@ SOA Operators with Object
Orientated Programming

Algorithms

B=MT=(I-HYKy D-(I-HTK) T

Implemented
ARTICULED e
H YK OUTWARD SLEE fOr BUlldlng
s - .
“y ; ] SOA Objects
KALMAN K AL MAH SPATIAL
H G, K GAH b FILTER H P ARTICULATED
5 _ | OPERATION TRAHSITION - — HERTIA
: : / OPERATOR i :

twa|mam  eEgch Operator has its own
Class, initializes from model file

IHTRABODY
Wk k1) ppopaGaATION

*Operation functions *,+, -,

CROSS

ont - do not do explicit math

I- Gk H(Kk)

CoornmaTe - efficient algorithms used

At TRAHSF OR MATIOHN
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PyCraft Make MBS Easy

MBS User Interface

_Just like Matlab! >>> V/ = PhiStar*HStar*Thetadot

>>> from Math import SOA_Py >>> BStar = PyCraft.BStar_(mbodyObj, 0)
>>> execfile(model.py’) >>> Jacobian = BStar*(PhiStar*HStar)

>>> scObj = >SS o . -
DshellObj.spacecraftObj('DefaultSC') alphatip = Jacobian*Thetadoubledot

>>> mbodyObj = scObj.mbodyObj(darts’) >>> print pformat(alphatip())

>>> mbodyObj.evalSensorKinematics() (-0.007081204690359221, -0.013761772880363957,

: - - 0.00022901925837621328, -43.446976936483701, -
>>> ) )
e 8.7413024772829448, 8.9785110488587563)

>>> from PyCraft import PyCraft

>>> Phi = PyCraft.Phi(mbodyObj)

PhiStar = PyCraft.PhiSt . .
iZZ Théta%rot _ e 'Star() >>> T = H*Phi*M*PhiStar*HStar*Betadot

PyCraft. Thetadot(mbodyObj)

>>> H = PyCraft.H() _ :
>>> HStar = PyCraft.HStar() >>> Betadot = ((Spatial_I-

>>> M = PyCraft.M() ;Tﬁsgfggi%qlg‘rposeo)*D_lnverse*(spat
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@ PyCraft Applications

_ T=HoM¢*'H O+ Ho[Mo'a+1]
* Inverse Dynamics Al )

M(9) c(6.6)
— Input accel, output Forces

e Forward Dynamics
— Input Forces, output accel

e Diverse Systems

— Tree, Closed Chain, +
Flexible Systems

* Higher Level

Research Areas
— Sensitivity Analysis
— Operational Space Inertia

.
|

= M Y(0)[T-c(6,0)]
= [I — HYK)* D [I — HYK] [T - C(6,0)]

— Linearized & Diagonalized
Dynamics for Control

— Parameter Optimization

Accel.
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@ Conclusions

 The Mathematical tool called Spatial Operator
Algebra is used to model of the complexity In
MBS dynamics

« SOA is hard implement, reusing dynamics
software at JPL DARTS Lab, and coding the
PyCraft Module makes these easier.

o PyCraft, with its symbolic and innate algorithmic
nature, naturally leads the derivation of new
algorithms and ways of solving dynamics
problems

Questions?
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Unified Framework for Deriving
Families of Algorithms

M =HpM¢p*'H* —  O(N) Newton-Euler Inverse Dynamics
O(N?) Composite Body Algorithm for M

O(N3) Forward Dynamics

M= |[I+ HOK]|D[I + HpK]* —  O(N?) Forward Dynamics

[I + HPK] ! = [I — HYK]

Mt =[I-HyK]*D1[I - HYK] — O(N) Articulated Body Forward Dynamics
O(N?) Computation of M1

The spatial operator approach provides a unified dynamics formulation for serial/tree,
rigid /flexible multibody systems.
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@ Inverse Dynamics Solutions

V = ¢*"H*6 spatial velocities

a = ¢*[H*0 4+ a] spatial accelerations

d[Ma+b] inter-body spatial forces

1 = @F generalized forces

OMP*H* 0 —l—ﬁqb[M? a—+ b]
M(8) c(0,0)

This factorization of M is called the Newton—Euler
Factorization of the Mass Matrix.
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Forward Dynamics Solution

 These operator
expressions directly map

for k = 1...N Into a sequence of

PH{B=1)¢" (0 ~1)+ ML) recursive computational

algorithms which reduce

) = _3.'(;;);;@) computational cost of
PHK) = F(R)PK) solving the equations of
enﬁ(f;o;"” = B motion of O(n"3) to O(n)
* A Riccati equation for
0 = ML) [T - C(0,0)] articulated body inertia

needs to be solved to
obtain innovations
representation

= [ - HYK]*D ' [I - HYK] [T —C(9,0)

i

LN e

N
5 i
G i
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@ Tree Topology Systems

e Construct Index Maps

e Branch index
 Body on branch index
e Global body index

 Predecessor checks
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Operational Space Inertia

The Operational Space Mass Matrix A is the joint space mass
matrix M reflected to the end—effector.

ANt = ML
= B'¢'H'[I - HYK]* D '[I — HYK|H¢ B
o P
= B*Y*H*'D 'HyB
= B [T+ 9T +TP]B Accel.
B*(0)7(0)B(0)
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Closed Chain & Constrained
System Dynamics

Closed—loop systems involve closure constraints.

§ =[I - HYK]*D 2 [I — B*Q"'B] D~3[I — HYK]T

N
extra term

1. solve "free” dynamics
2. solve for constraint forces

3. correct free dynamics solution
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@ Sensitivity Analysis

* Derivatives of Spatial Operators with
respect to degrees of freedom

e Leads to Time Derivates of Spatial
Operators

« Applications:
— Selective Optimization of Parameters
— Coriolis term calculation
— Diagonalized + Linearized Dynamics
— Efficient Control algorithms
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Operators as Mathematical Tools

Operator Factorization & Spatial Operator
Mass Matrix Inversion Identities
Newton—-Euler Factorization of M
M= HopMe'H' Non-square factors 7w TP
Innovations Factorization of M P l—gt KH
M= [I+ HpK|D[I + HpK]*  LDU decomposition of M [/ - HyK|H¢ = Hy
Analytic inverse of [/ + [1¢K] ¢K[I - HyYK] = 9K ) -
(I HOK] ' = (I~ K] Analytic inverse oM 45’: ekl e
Operator Factorization of M ' il Pryf+ Py
HyMy*H* = D
M =[] HOK]D = HgK] LDU decomposition of M GHDHG = T+FT 4T

*These expressions reflect the deep structure of the key dynamics
guantity - the mass matrix, which the spatial operator techniques are
able to exploit to obtain closed-form expressions for its inverse.
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Applications / Extensions

Generallzations

Inverse Dynamics
Forward Dynamics
Mass Matrix

Inverse kinematics
Tree-topology systems
Closed-chalin

Flexible
tems

multibody sys-

Geared dynamics

Prescribed motion

e
T
ALE

anslons

Mass Matrix Inverse
Mass Matrix determinant

Operational
Matrix

Space Mass

Dynamics with Joint Flex-
ibility

Under—Actuated Dynam-
ics

Generalized Jacobian
Disturbance Jacobian

Linearized Dynamics Mod-
els

Base-invariant dynamics
Sensitivity Computations

Diagonalized Dynamics

A
s |41
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cations

Space system simulations

Closed-loop simulations
Hardware-in-the-loop
Flexible s/c models

GN& C/Matlab simulations
Engineering simulations
Monte Carlo simulations
System design studies

Space Mission Domains

Cruise/Orbiter spaccraft

Large Sclencecraft platforms
Formation flying s/c

Entry, descent and landing
Rendezvous and sample capture
Surface planetary rovers

Molecular dynamics

Internal coordinate
Nose-Hoover dynamics
Fixman potential




Conclusions

e T he Spatial Operator Algebra builds upon mathematical
parallels between Kalman filtering theory and multibody
dynamics.

e [ he operators are natural mathematical tools for
developing new analytical insights into system dynamics.

e T here is a natural mapping between operator expressions
and efficient computational algorithms.

e Described several applications including O(N') algorithms,
diagonalization, compensating mass matrix potential,
mass matrix sensitivities etc.
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@ Future Work

e Testing of closed chain, constraints, and
sensitivity

e Base invariant dynamics

e Diagonalized and linearized dynamics +
control

* Extension to Flexible dynamics
* Prescribed motion dynamics
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