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Outline

1. Brief description of the Planck Mission and its objectives
2. What are Planck Sorption Cryocoolers (PSC) & how do they work? 
3. Description of Gas Gap Heat Switch (GGHS) technology used in PSC
4. Compressor Element (CE) Configuration & Operation:

• CE Sorbent Beds for H2 refrigerant gas (Pressure range: 0.3 bar – 50 bar)
• Planck GGHS (Pressure range: 1.3 Pa – 1300 Pa)
• Development stages of GGHS for Planck flight hardware

5. Evaluations of GGHS during PSC development
• Engineering Bread Board (EBB) Cooler 
• Modifications & validation of flight model GGHS components
• Performance evaluation of CE/GGHS systems

6. Summary & Conclusions
7. Acknowledgments & References
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Planck Mission [1, 2] to Measure Temperature Anisotropy in the 
Cosmic Microwave Background (CMB)

CMB is the Black Body spectrum (Tpeak = 2.725 K) left from the “Big Bang” creation.

“CMB is the fossil “first light” that allows reconstruction of the Universe as it was ~14 
Billion years ago”  

Objectives of the Planck Mission (ESA Project with NASA contributions):
•Mapping of CMB anisotropies with improved sensitivity and angular resolution
•Determination of Hubble constant and other fundamental cosmological parameters
•Testing inflationary models of the early universe
•Measuring amplitude of structures in CMB at resolution of a few µK

Planck uses two State-of-Art Instruments to gather data
1.  LFI - Array of tuned radio receivers ( 25 - 100 GHz) operating at 20 K.
2.  HFI - Array of Far-IR bolometers (90 - 1000 GHz) operating at 0.1 K

All-sky CMB map from WMAP  
space flight mission (2004)
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Planck Spacecraft to Launch in 2008
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Schematic of Planck Spacecraft
•Dimensions: ~ 4 m by 4.5 m
•Mass: ~1500 kg
•Mission Operating Life: >21 months
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Schematic of Planck Cryogenic Systems [3]

T < 60 K
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Basic Principles of Planck Sorption Cryocoolers [2,4]Basic Principles of Planck Sorption Cryocoolers [2,4]
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Key Performance Requirements for PSCKey Performance Requirements for PSC
JPL delivers ThermoJPL delivers Thermo--Mechanical Unit Mechanical Unit -- TMU TMU (excl. electronics)(excl. electronics)

• Provide ~ 1W Total Heat lift at instrument interfaces
– LFI @ < 22.5 K [80% of Total Cooling]
– HFI @ < 19 K [20% of Total Cooling]

• With ≤ 60 K pre-cooling temperature of coldest V-Groove
• Temperature stability (over TMU operating period, ~4000 s):

– ≤ 450 mK, max. to min. at HFI Interface
– ≤ 100 mK, max. to min. at HFI Interface

• TMU Input Power Consumption < 470 W (End-of-Life)
• Operational Lifetime:  2 years

– 18 months flight;  6 months total ground tests (JPL+Europe)
• Storage Life:  6 years
• Two completely independent coolers (TMU+Electronics)

– provides 100% redundancy
• Mass and Volume (Each Cooler):

– Total mass ≤ 53.3 kg
– Total PSC Compressor Volume < 0.18 m3 (fit with allocated profile)
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Requirement Detail Origin 

Power < 8.5 W @ 12 V Power budget 

Mass < 300g Mass budget 

Functional: Thermal 
Conductance 

GON   > 5 W/K ± 2% 
 

GOFF   < 0.05 W/K 

Cool the compressor during “on” 
state and reduce parasitic heat 

losses during “off” state 
 

Functional: transient tOFF-ON  < 200 s 
tON-OFF  < 400 s Cold-end temperature requirements

Operational lifetime 20,000 cycles Mission life 

Shelf lifetime 6 y Cooler shelf life 
 

Planck CE-GGA Heat Switch Functional Requirements
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Complete EBB Unit with GGA Gold Plated Inner Bed Assemblies for EBB-CE

Cross sectional view of EBB-CE showing 
the gas gap spacing of 0.75 mm 

Compressor Elements Desorb H2 at Outlet Pressure of 50 atm and Flow of 6.5 mg/s 
(4.3 slpm) and Absorb at P < 0.6 atm @ 2.2 mg/s (1.4 slpm)

Hydride Compressor Element (CE) for Engineering Bread 
Board (EBB) Cooler [8]
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ZrNiHx in Actuators for Gas Gap Heat Switches

•Heat Conducting ON State: PGG > 10 Torr (1300 Pa)
•Insulating OFF State: PGG < 10 mTorr (1.3 Pa)
•GGA Input Power ~3W

Initial tests of +1000 cycles before integration in the EBB-CE

Sorbent Material
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Compressor Element 
Outer Wall

Gas-Gap

Compressor Element 
Inner Vessel Wall

Heater brazed to ring on actuator cap

10-3

10-2

10-1

100

101

102

103

104

P
re

ss
ur

e 
[P

a]

1200800400
Cycles

500

450

400

350

300

250

Tem
perature [K]

 Temperature-End OFF Period 

 Pressure-End OFF Period

 Temperature-End ON Period 

 Pressure-End ON Period

450
400
350
300

P
re

s.
 [P

a]

160012008004000
Time [s]

3000
2000
1000

0

Te
m

p.
 [K

]

 cycle 10
 cycle 1258

Hydride Gas Gap Actuator (GGA) developed for EBB Compressor Elements

ZrNiH1.5

EBB-GGA Properties:
Alloy mass = 0.28 grams
Total H2 = 31.3 scc
∆x = 3.2 %
∆H2 cycle ~ 1.0 scc
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EBB Compressor Assembly

Individual EBB-GGA Cycling Performed Prior to 
Installation into EBB Compressor Verified GGHS [8]

EBB-CE-GGA installed in 
vacuum test chamber
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EBB Compressor operated for 4000 cycles during laboratory testing in 2002/2003
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Observed Pressure Increase from H2 in GGHS

PGGHS > 10 mTorr in gas gap volumes lead to increase parasitic heat 
loss in OFF state (i.e., More power needed by cooler)

Sources [9] of hydrogen in the gas gap volume are:
•Electroplated gold/nickel layers on GGHS surfaces of EBB compressor elements
•Outgassing from 316L SS and Al walls
•Permeation through inner bed wall (d = 0.12 cm thick) from sorbent bed gas during 
desorption phase (P = 50 atm and 450 K < T < 500 K)

EBB CE-07 Outgas/Permeation Rates (scc/s)
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LeClaire’s (1983) empirical equation for 
H2 Permeation parameter Pm(T) for 
austenitic stainless steels (i.e., 316L)

Pm(T) = {2.33 x 10-2}exp[-15.7(kcal/mol)/RT]

Data points measured at JPL using a 
EBB-CE unit [8,9]
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Configuration of the Flight Model CE/GGHS Units

Heater Body Bonded to 
Actuator

Single Piece Isolation Tube with 
mounting holes

Heater Brazed to End Cap 

GSE Holes

Isolation Valve

Adapter Plate
Tuning Resistor bonded 
into plate

VCR Fitting

Modifications made to flight GGA addressed H2 permeation/outgassing and other 
issues relating to thermal performance and mechanical robustness
•10-times larger ZrNi hydride sorbent bed in GGA to give a predicted 24-month GHHS operating life

•Removed all gold plating from GGHS surfaces

•Closed manual isolation valve with external, evacuated volume sealed with a copper pinch-off tube.

•Fixed thermal isolation mounting

•8.5 Watt heater with tuning resistor 

Replaced with copper pinch-off tube



11 March 2005 16

FM1 CE (S/N-03) in Vacuum Test Chamber Six Flight CE units for delivery to FM1 cooler

Fabrication & Delivery of Flight CE/GGHS in 2003 & 2004

•OFF-state pressure < 0.020 torr [2.7 Pa]
•ON-state pressure > 4.36 torr [581 Pa]
•Switching time ON < 200 sec to reach 4.36 torr [581 Pa]
•Switching time OFF < 400 sec to reach 0.020 torr [2.7 Pa]
•Leak Rate (external or thru-the-valve using helium) < 10-9 atm-cc/s
•Pass/Fail criteria are for a simulated radiator temperature of 262 – 282 K and a GGA heater input 
power of < 8.5 W.

GGHS Functional Criteria for PSC Flight Hardware
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SUMMARY OF Planck GGHS

PSC Flight compressor as being 
installed into vacuum test chamber.

Summary of GGHS Development for PSC
•GGA Development – ZrNiHx best sorbent

•Met all Pressure range & kinetics goals
•25,000 cycles w/o degradation

• EBB CE demonstrated GGA works @ BOL
•Brazed GGA heater stable to ~24,000 cycles
•No performance degradation during 1000+ cycles
•First detected H2 outgassing during EBB cooler tests
•Characterized H2 release rates 290K – 550K

• Prototype 10X-GGA for Flight CEs
•Developed better attachment of new GGA heater
•Met all cycling parameters with an EBB-CE bed
•Validated EOL hydride performance

•Pathfinder CE with Flight-like GGA
•Built w/o hydride or Au plating
•Estimated H2 outgassing/permeation rates to verify 
10X-GGA should work to EOL

•Fabrication & Testing of Flight CE/GGHS completed
•Delivered 12 flight units for two TMU coolers in 
2003 & 2004
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CONCLUSIONS

GGHS lets the PSC-CE  meet its performance requirements with only ~22% of 
power needed compared to mounting sorbent bed directly to radiators –
without GGHS this cryocooler cannot operate on available power from 
Planck spacecraft!

General Attributes of Hydride GGHS for Future Systems:
•Long life potential (~5+ years) 
•Closed Cycle operation (i.e., does not require separate H2 bottle to supply 
vented gas with an open-cycle switch)
•Low power requirements (< 10 W per switch)
•High TRL level (based on Planck EBB/flight coolers and development tests) 
•Large ON/OFF conductance switching ratios (>200)
•Low mass/volume 
•Simple operation (turn ON or OFF by throwing an electrical switch) 
•No moving parts 
•No hysteresis 
•Simplicity of implementation 



11 March 2005 19

ACKNOWLEGMENTS & REFERENCES

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with 
the National Aeronautics and Space Administration.  We thank A. S. Loc, P. R. Wilson, J. G. Kulleck, J. L. 
Mora, A. M. Fonseca, L. A. Wade, and M. E. Schmelzel (deceased) for their contributions.

1. http://sci.esa.int/science-e/www/area/index.cfm?fareaid=17
2. L. A. Wade, P. Bhandari, R. C. Bowman, Jr., C. Paine, G. Morgante, C. A. Lindensmith, D. Crumb, M. Prina, 

R. Sugimura, and D. Rapp, “Hydrogen Sorption Cryocoolers for the Planck Mission”, Adv. Cryogenic 
Engineering 45A (2000) 499-506.

3. C. Bernard, L. Martin, R. Nicola, “Herschel-Planck, and the next steps in space cryogenics” in Proc. ICEC, 29
(2003) 493-502.

4. P. Bhandari, M. Prina, R.C. Bowman-Jr, C. Paine, D. Pearson, A. Nash, “Sorption Coolers using a Continuous 
Cycle to Produce 20 K for the Planck Flight Mission”, Cryogenics 44 (2004) 395-401.

5. M. Prina, P. Bhandari, R. C. Bowman, Jr., C. G. Paine, and L. A. Wade, “Development of Gas Gap Heat 
Switch Actuator for the Planck Sorption Cryocooler”, Adv. Cryogenic Engineering 45A (2000) 553-560.

6. R. C. Bowman, Jr., M. Prina, M. E. Schmelzel, C. A. Lindensmith, D. S. Barber, P. Bhandari, A. Loc, and G.
Morgante, “Performance, Reliability, and Life Issues for Components of the Planck Sorption Cooler”, Adv. 
Cryogenic Engineering 47A, (2002)1260-1267.

7. M. Prina, R. C. Bowman, Jr., and J. G. Kulleck, “Degradation study of ZrNiH1.5 for use as actuators in gas gap 
heat switches”, J. Alloys Compds. 373 (2004) 104-114.

8. R.C. Bowman, Jr., M. Prina, D.S. Barber, P. Bhandari, D. Crumb, A.S. Loc, G. Morgante, J.W. Reiter, and 
M.E. Schmelzel, “Evaluation of Hydride Compressor Elements for the Planck Sorption Cryocooler”, in 
Cryocoolers 12 ( 2003) 627–635.

9. R. C. Bowman, Jr., J. W. Reiter, M. Prina, J. G. Kulleck, and W. A. Lanford, “Hydride Compressor Sorption 
Cooler and Surface Contamination Issues”, in Proc. Int. Workshop on Hydrogen in Materials & Vacuum 
Systems (2003) 275-291. 


