JPL’s Science Missions: New Places, New Worlds

Paulett Liewer, Associate Chief Scientist
Jet Propulsion Laboratory, California Institute of Technology

Science Forum
August 23, 2005
Sixteen JPL spacecraft - and three major instruments - now operating across the solar system

- Spitzer studying stars and galaxies in the infrared
- Two Voyagers on an interstellar mission
- Cassini studying Saturn and its moons
- Ulysses and ACRIMSAT studying the Sun
- GALEX studying UV universe
- Stardust returning comet dust
- Mars Global Surveyor and Mars Odyssey orbiters; “Spirit” and “Opportunity” on Mars; Mars reconnaissance Orbiter now en route
- Topex/Poseidon, QuikSCAT, Jason 1, and GRACE (plus ASTER, MISR, and AIRS instruments) monitoring Earth
JPL’s Science Missions: New Places, New Worlds

• **Highlight Four New Places or Worlds Visited This Year**
 – Voyager 1 Reaches the Edge of the Solar System (December 2004)
 – Deep Impact (July 4, 2005) -- Hitting a comet and seeing the result
 – Cassini-Huygens mission to Saturn
 – First Landing on Titan, Saturn’s Largest Moon (January 14, 2005)
 – Closeup of another amazing Saturnian Moon: Enceledus (July 14, 2005)

• **Missions now under development**

• **Close with a 5 minute HDTV Video (Mars Exploration Rover & Cassini)**

The Rover that didn’t get to go to Mars
Voyager 1, now 27 years after launch: Reaches the Edge of the Solar System

Voyager 1 has now crossed the Solar Wind Termination Shock and is heading to the region beyond the influence of the Sun.
Voyager Spacecraft Enters Solar System's Final Frontier

• From the Press Release in April: NASA's Voyager 1 spacecraft has entered the solar system's final frontier. It is entering a vast, turbulent expanse where the Sun's influence ends and the solar wind crashes into the thin gas between stars.

• The Voyagers may reach the interstellar medium before losing power in about 2020. Interstellar medium is gas from other stars.

The Voyagers hold the record for the most new worlds visited: All the gas giants (left to right) Neptune, Uranus, Saturn, Jupiter (1977-1989)
Deep Impact Mission
Spacecraft carries the Impactor to the comet, then flys on by to observes the results

Launched in January 2005

Impactor separates from spacecraft 24 hours prior to encounter -- Impact was July 4, 2005
Deep Impact Encounter Timeline

“It’s like hitting a bullet with a bullet while you have a third bullet flying by trying to take pictures -- all at 30 times the speed of real bullets,” said Rick Grammier, Deep Impact Project Manager.
Movie of the comet taken from the Impactor

QuickTime™ and a Sorenson Video 3 decompressor are needed to see this picture.
Note: The comet is actually VERY black -- just not as black as space!
NASA’s Deep Impact tells a tale of a comet

• Probe slammed into the nucleus of the comet at 6.3 miles per second and created an immense cloud of fine powdery material.

• "That suggests the dust excavated from the comet's surface was extremely fine, more like talcum powder than beach sand. And the surface is definitely not what most people think of when they think of comets -- an ice cube," said Deep Impact Principal Investigator Dr. Michael A'Hearn of the University of Maryland, College Park.

• How can a comet hurtling through our solar system be made of a substance with less strength than snow or even talcum powder? "You have to think of it in the context of its environment," said Pete Schultz, Deep Impact scientist from Brown University, Providence, R.I. "This city-sized object is floating around in a vacuum. The only time it gets bothered is when the sun cooks it a little or someone slams an 820-pound wakeup call at it at 23,000 miles per hour."
Cassini Spacecraft Delivers ESA’s Huygens Probe to Titan’s Surface

Images from Huygens Probe during descent

2h 27 m descent
1h 12 m on surface

~25 km

360° Panorama of landing spot
Images from Titan Probe showing flow into a major river channel from different sources---is methane rain required?

Are dark channel floors full of organic sludge washed off the brighter highland? Could liquid pools exist locally?

Early pre-biotic (before life) Earth may have had an atmosphere like Titan’s!
The surface is darker than originally expected, consisting of a mixture of water and hydrocarbon ice.

There is also evidence of erosion at the base of these objects, indicating possible fluvial activity.
Cassini visits Saturn’s Moon Enceladus, July 14 and finds an active, watery world.
Cassini found a huge cloud of water vapor over Enceledus' south pole - probably supplied by ice evaporating from the warm fractures.
South Pole of Enceladus is much warmer than expected

Cassini also confirmed Enceladus is the major source of Saturn's largest ring, the E-ring
Upcoming JPL events

• September 2005: Cloudsat launch

• January 15, 2006: Stardust Earth landing—returning a sample of a comet’s tail

• March 2006 - Mars Reconnaissance Orbiter arrives and begins aerobraking (launched August 12)
Cloudsat ready to launch on September 27

- Measure vertical structure of clouds, and cloud properties using 94GHz profiling radar.
- Quantify global and seasonal variations of clouds.
- Relate clouds to Earth’s energy budget.
- Fly in formation with Aura, Parasol, Calypso, and Aqua.

9/15/2005
Stardust will return first sample of a comet to Earth

Mars Reconnaissance Orbiter

Arrives at Mars in March 2006
Aerobrakes until November

- Study history of water on Mars.
- Seek evidence of sub-surface water.
- Seek water-formed minerals.
- Study atmospheric dust and water distribution.
- Monitor daily global weather.
- 5.6 Mb/s maximum data rate enables 1 meter resolution over large areas.
JPL science missions under development for launch 2006–2011

- **Dawn**: May 06
- **Kepler**: Jun 08
- **Phoenix**: Aug 07

- **Orbiting Carbon Observatory**: 08
- **Ocean Surface Topography Mission**: 08
- **Wide-Field Infrared Survey Explorer (WISE)**: 09

- **Aquarius**: 09
- **Mars Science Laboratory**: 09
- **NUSTAR (Nuclear Spectroscopic Telescope Array)**: 10

- **Hydros**: 10
- **Space Interferometer Mission (SIM)**: 10-11
- **Juno**: 10-11

9/15/2005
Above all else, the people of JPL are explorers. We hope you can join us