
Enhancements to PVM’s BEOLIN Architecture

Paul L. Springer1

Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena CA 91109, USA

Abstract. Version 3.4.3 of PVM had previously been enhanced by the
addition of a new architecture, BEOLIN, which allowed a PVM user to
abstract a Beowulf class computer with a private network to appear as
a single system, visible to the outside world, which could spawn tasks on
different internal nodes. This new enhancement to PVM handles the case
where each node on the Beowulf system may be composed of multiple
processors. In this case, the software will, at the user’s request, spawn
multiple jobs to each node, to be run on the individual processors.

1 Introduction

The BEOLIN architecture support was added to PVM in version 3.4.3. The
motivation for this addition was the limitation PVM had before that time in
dealing with Beowulf clusters. Prior to that version, a PVM user of a heteroge-
neous system that included a Beowulf cluster was unable to treat that cluster
as a single system image. If the Beowulf nodes were on an internal network,
they were invisible to the rest of the PVM system. The only way the nodes
could be used was to treat them as individual computers, provided they were
visible to the entire PVM system. The disadvantage to this approach was that
the user’s application was forced to issue PVM addhost and spawn commands.
Furthermore, each node incurs the overhead of running the PVM daemon.

The special architecture support that had been added on earlier versions
of PVM for individual parallel machines, such as IBM’s SP2, Intel’s Paragon,
and others, provided the inspiration to add the BEOLIN architecture support,
to handle Beowulf clusters running Linux. By means of the BEOLIN support,
PVM can spawn tasks to a single machine target for the Beowulf cluster. That
target knows about, but hides the details of the machine, such as the numbers of
nodes available, and the individual IP address of each node. The target handles
the details of spawning the tasks onto individual Beowulf nodes for execution.

Since that time hardware enhancements have been made to Beowulf systems,
and one such enhancement is the availability of multiple processors per node,
where those processors share the node’s IP address. The initial BEOLIN re-
lease could only handle a single processor per node. This paper describes a new
enhancement that supports multiple processors per node.

No paper was presented describing the original BEOLIN release, and so in-
formation on that release will be included in this paper to provide the necessary
background.



2

2 Design

Of the Massively Parallel Processor (MPP) architectures previously supported,
BEOLIN is most similar to the SP2MPI port, which supported the SP2, using
MPI as the underlying message passing protocol. BEOLIN, however, uses sockets
instead of MPI.

The following description of the initiation of tasks onto a BEOLIN machine
assumes the cluster has a front-end that is a node that is visible to the rest of the
PVM system, and can itself communicate to the individual nodes that comprise
the rest of the BEOLIN computer. PVM can begin running on the cluster in
different ways, for example by a user logging on the the front end and running
the pvm command on that front-end, or by running a pvm application on an
external computer that issues a pvm addhosts command, targeting the cluster.
(See figure 1.)

Fig. 1. Beowulf Block Diagram

When PVM is initiated on the cluster, the first thing that happens is that
the PVM daemon (pvmd) begins running on the front-end. The daemon reads
an environment variable to discover the names of the nodes in the cluster, and
forms a node pool for later use. The variable in questions specifies the initial
order of node allocations, as well as the number of tasks that can be executed on
a given node. Subsequent spawning requests cause the daemon to allocate nodes
from the pool and initiate the requested tasks onto them. As tasks complete,
their corresponding nodes are freed back into the pool for future use.



3

At the time the pvmd daemon on the front-end initiates a task on a cluster
node, it forks a copy of itself, with both child and parent running on the front-
end. The child’s standard output and error are connected to the just-started
task. Each child process so generated is visible to pvmd, and the pvm monitor
will show the child as a task with the suffix ”.host” appended to its name. No
copy of the daemon runs on the targeted node.

When the remote task begins execution, it examines a shared file space
(/tmps) for a file name beginning with ”pvmd” and ending with the user id.
That file contains the necessary addressing information for the task to make a
connection with the pvmd daemon. PVM messages and commands are relayed
through the resulting connection.

3 Installing and Using the BEOLIN Port of PVM

As of version 3.4.3, BEOLIN is a defined architecture for PVM. However, to force
the build process to use the BEOLIN files, the environment variable PVM ARCH
must be set to the value BEOLIN –don’t rely on the pvmgetarch command for
this. If this is not done properly, the build will probably produce a plain LINUX
version instead. Once the architecture variable is properly set, build PVM as
described in Chapter 9 of [?].

Before the resulting BEOLIN build can be run, a shared file space with the
name /tmps must be set up in such a way that any file in this subdirectory is
accessible by the front-end as well as the cluster nodes on which tasks may be
run by PVM.

In the previous version of BEOLIN, there was a requirement that the nodes
had to be able to connect to the front-end using the address returned by the
gethostname() Linux call on the front-end. In the current version that require-
ment has been relaxed by the use of an existing command line parameter for
PVM. When starting either pvm or pvmd, using the command line parameter -n
< hostname > tells the BEOLIN code that pvmd should write < hostname >
in the /tmps file it creates, informing the cluster nodes what name they should
use in making their connection to the daemon.

The BEOLIN daemon code looks for the environment variable PROC LIST
when it starts up on the front-end. This should be defined in the environment
used by pvmd when it is running, and is typically set in the .cshrc (or equivalent)
file. The value of the variable should be set to a colon separated list of the names
of the cluster nodes available for pvmd to use. If multiple processors exist on
the node, and it is desirable to use them when spawning tasks, the node name
can appear multiple times in the PROC LIST. For example, a line in the .cshrc
file that read setenv PROC LIST n0:n1:n1:n2:n3 would allow pvmd to spawn 1
task onto node n0, 2 onto n1, 1 onto n2 and 1 onto n3.

Note that the user can not designate which processor in a node a task is to
be run on. The assignment of the specific processor is left up to the O/S. If more
nodes are required by the spawn request than there are slots available in the
node pool, PVM will return an ”Out of Resources” error.



4

If all messages between cluster nodes are forced to pass through the pvmd
on the front-end, the job will not scale well, and the front-end will become a
communication bottleneck. To avoid this situation, it is strongly recommended
that PVM’s direct message routing be used. This can be accomplished by the
application calling the pvm setopt() routine, with the PVMRouteDirect param-
eter. This forces messages from one node to another to go directly, instead of
being routed through the daemon.

3.1 Restrictions and Limitations

The BEOLIN version of the PVM monitor or pvmd can be run on the front-end
node, but starting either one on one of the other nodes of the cluster has not
been well tested, and is advised against.

When the application calls pvm addhosts(), it should only be for the purpose
of adding the front-end node of the cluster. It should not be used to add the other
cluster nodes to the virtual machine. Similarly, the add command of the PVM
monitor should not be used to add individual nodes. Avoid including individual
node names in the PVM hostfile. The purpose of this BEOLIN port is to treat
the entire cluster as a single machine, to be addressed only by the name of the
front-end.

PVM uses its TID (task ID) word to uniquely identify each task running on
the virtual machine. To distinguish different tasks running on the same node,
the BEOLIN code uses the three bit partition field in the TID. This limits the
maximum number of child tasks able to run on a single cluster node to eight.

Even if all the cluster nodes have a direct connection to the external network,
this BEOLIN port can still be used to treat the cluster as a single PVM machine.
In this particular case, any node can be arbitrarily designated as the front-end.

The pvm kill() command does not work correctly to terminate tasks on the
remote nodes of the cluster. This apparently has to do with a Linux limitation
that prevents a terminate signal from propagating to a remote process initiated
by the rsh command. This may be fixed in future versions of Linux.

4 Internals

The bulk of the BEOLIN code is in the pvmdmimd.c file in the BEOLIN source
code subdirectory in the PVM package. This section will give an overview of the
BEOLIN program code.

4.1 Initialization

When the pvmd daemon starts up on the cluster front-end, the main() routine
in pvmd.c calls mpp init(), passing it the argc and argv parameters, in order
to initialize the BEOLIN part of PVM. The mpp init() routine first parses the
environment variable PROC LIST, and calls gethostbyname() for each entry in
the list, storing this information internally. The number of times each node



5

is referenced in the list is tracked, and the reference number is stored in the
partNum[] array.

Several arrays are created in the BEOLIN initialization process, with entries
in the arrays corresponding to entries in PROC LIST. The nodepart array holds
the partition number for the entry, the nodeaddr array contains the IP address,
the nodeconn array is initialized to 0, and the nodelist array carries the name as
it appears in PROC LIST.

4.2 Spawning

When the cluster’s pvmd receives a command to start the child tasks on its
nodes (by means of a call to pvm addhosts(), for example), control is passed to
the BEOLIN routine mpp load(). The first thing mpp load() does is to check to
see if there are enough node slots in it’s free node pool, by calling mpp new().
If there are enough slots, mpp new() allocates and returns the set of slots that
will be used to spawn the tasks; otherwise it will report an error. As part of the
allocation process, mpp new() generates an identifier called ptype that is unique
to the set of nodes allocated for this set of tasks, and puts this set of nodes into
its busynodes list, marking each node with the ptype value.

Once the node slots are allocated, mpp load() iterates a set of actions for
each of the child tasks, whereby it sets up a task structure for that task, and
calls forkexec() in the main body of PVM to actually start the task running by
means of an rsh command, on the appropriate node. Before forkexec() runs the
rsh command, it first forks to produce the previously described ”host” task. The
”host” task then executes the rsh command.

When first started on the target node, each child must connect with its corre-
sponding ”host” task on the front-end. This action is triggered by the first PVM
call the child makes, and the action takes place inside the routine pvmbeatask(),
contained in the lpvm.c module which is part of the PVM code linked to the
application. To open a socket connection with pvmd, pvmbeatask() calls the ver-
sion of the mksocs() routine in the lpvm.c module. The connection is made by
searching for a file name with the pattern pvmd.userid, in the /tmps file space
shared by the front-end and the nodes. The file is read and the information
within it is used to make the connection.

Once the socket connection is made, the child sends a TM CONNECT mes-
sage to the pvmd. The pvmd’s routine tm connect() sends an acknowledgment
back to the child, which then causes the child to respond with a TM CONN2
message back to the pvmd. The pvmd code enters the tm conn2() routine, which
in turn calls the BEOLIN mpp conn() code to determine which of the task spawn
requests this current connection process matches. When the match is made, the
corresponding entry in the BEOLIN nodeconn array is set true.

4.3 Communication

When the application wants to send a message from one node to another, the
routine pvm send() is called. Once the message is constructed, mroute() is called



6

to determine the routing and send the message. It first determines whether the
direct routing option has been set, allowing the message to bypass the pvmd. If
so, and if this is the first time the destination has been requested by this task, it
opens a socket to the destination task, and makes an entry (ttpcb) in the task
process control block list. The entry includes the socket information, to be used
the next time a message is sent to the same destination.

4.4 Task termination

Task termination is triggered by the application’s call to pvm exit(), done for
each child task that is part of the application. When the pvmd receives the exit
request, it calls task free(), which in turn calls BEOLIN’s mpp free() routine,
passing each task as the argument. The mpp free() routine first finds a match
for this task, based on node number and partition number, and then shuts down
the ”host” task corresponding to the child task that was passed, sets a flag to
indicate that this task is done executing, and returns. The pvmd code later calls
BEOLIN’s mpp output() routine, as it does on a regular basis. As mpp output()
cycles through each child task that has been spawned and is still alive, it checks
to see if the ”host” task corresponding to the child is still alive. If not, it then
takes responsibility for shutting down the child task, and returning its nodes to
the free pool.

5 Future Work

The largest number of nodes used so far with this port of PVM has been 31. The
software needs to be run on much larger machines in order to characterize its
performance at the high end. It is unclear what bottlenecks and limitations exist,
and how they will manifest themselves, when one pvmd daemon is controlling
a large number of tasks. Changes in the pvmd code to accommodate very large
systems may be necessary. One particular area to examine is the way that a host
task is forked off on the front-end for each child task. This will not scale as the
number of child tasks becomes very large. To support larger number of child
tasks, it will be necessary to change the way this is done, or perhaps to spawn
limited numbers of additional pvmds on the other nodes.

As mentioned previously, the pvm kill() function does not work with the
version of Linux used (2.2.2) in the development of the BEOLIN port. This
problem needs further investigation.

6 Conclusion

The BEOLIN architecture described here offers new capabilities to the PVM
applications programmer. A Linux PC cluster can now be added to the virtual
machine, and parallel tasks spawned onto the cluster, even when the individual
nodes are on a private network. Clusters with multiple processors on a single
node can have tasks spawned to each processor on the node.



7

Beowulf systems have become increasingly popular, in large part because of
their commodity costs. This has given supercomputing capabilities to individual
departments and tasks, and even to individual users, opening the door to an era
of interactive supercomputing. Turnaround time for many complex applications
have been diminished to the point that the user can continuously focus on the
task at hand, rather than waiting for a job to run overnight. This software is
one link in the chain that helps make that happen.

7 Acknowledgments

This research was carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and Space
Administration. The funding for this research was provided for by the Defense
Advanced Research Projects Agency under task order number NM0715612, un-
der the NASA prime contract number NAS7-03001.

References

1. Geist, Al, et al: PVM: Parallel Virtual Machine. The MIT Press, Cambridge, Mas-
sachusetts (1996)


