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Outline
• Scope

– JPL overview
– What we System Engineer

• Challenges with deep-space exploration
– Getting There
– The Measurement Itself

• Systems Engineering 
– Issues
– Upgrade initiative

The material presented here does not necessarily represent the views of JPL, Caltech, or NASA
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JPL today
JPL – a brief history

1936

1942
“Jets”

In 1958, JPL –
operated by Caltech -
becomes part of a new 
agency called NASA
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Includes People, Processes,
& Procedures – not just H/W & S/W

Typical Mission Elements

Launch Vehicle
Flight Segment

Ground Segment

Project System

Flight Segment Ground SegmentLaunch Segment

Project System 
Engineering

Trajectory & 
Navigation DesignMission Assurance

Environments Reliability

Science



Getting it right
The “Glue Function”
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Challenges:
1. Not entirely orthogonal
2. Requires multiple “looks”

LOCAL ENVIRONMENT(S)
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Deep-Space Missions: Challenges
• All are DISTANCE-challenged

– Round-trip light-time Significant Onboard Autonomy
– Energy constraints Clever Sequencing & Exotic Power Sources
– Propulsion constraints Ballistic Trajectories

Precision Navigation
Limited opportunities for Launch, Orbit Insertion, etc

• Most are uniquely challenging due to UNKNOWNS – either:
– GETTING THERE is exceedingly difficult 

EXTREME &/OR POORLY-CHARACTERIZED ENVIRONMENTS
Drives Functional Robustness and Operability

– MEASUREMENT itself is exceedingly difficult
SMALL FORCES – NEW PHYSICAL REGIMES
Drives Tight Coupling and Physically Large/Distributed Systems
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For the past 4.5 billion years,
Comets & Asteroids have been clobbering the Earth…

But now….it’s PAYBACK TIME!

Deep Impact
Studying Comets with Extreme Prejudice

Photos courtesy NASA & the Discovery Channel

See Deep Impact Mission home page at 
www:jpl.nasa.gov for animations 



Landing on (or impacting) comets is tricky!
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• Controlled landings are problematic since we don’t understand comets
• Are they Dirty Snowballs? or Frozen Mudballs? or none of the above?
• It makes a big difference on how you design the lander
• On Champollion, we tried to cover both cases…

See Deep Impact Mission home page at 
www:jpl.nasa.gov for animations 

•Striking them in a ballistic fashion is “easier” – relatively speaking!

•Like hitting a specific spot on a bullet with another bullet – while 
watching from a 3rd bullet

•Except the bullets are moving 10x faster than normal
•And are 84 million miles from earth when they collide
•And the target bullet is tumbling….and spewing debris
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The Mars Atmosphere is a Harsh Mistress

• Too much atmosphere to land like we do on the Moon
– Supersonic propulsive deceleration is not impossible, just real hard.

• How do you keep a rocket stable while flying backwards?
– Still need to worry about severe heating at super and hypersonic speeds.

• Too little atmosphere to land like we do at Earth
– With 1% of Earth, imagine landing the Shuttle at 100,000 ft!
– Even w/ huge parachutes, our landers still fall at hundreds of miles per hour!

• Scaling results in unrealizable Rose-bowl size (100 m) parachutes.
– For big landers we still need rockets near the ground.



Mars Exploration Rover (MER)
Current generation of Martian landers

See Mars Exploration Rovers home page at www.jpl.nasa.gov for animations
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http://www.jpl.nasa.gov/


MER Descent Image Motion Estimation System (DIMES)
Mars really is full of surprises 

Search the web for “MER Descent Image Motion Estimation System”

for literature on this system – and the problem it was designed to solve
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We still have a long way to go
There have only been five successful landings on Mars

– 2 Viking landing in ‘76, 1 Mars Pathfinder in ‘97, 2 MER in ‘04
– There have been at least as many failures

These systems had touchdown masses < 0.6 MT



Mars Science Laboratory: 
The Next Big Thing
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Descent 
Stage 

See Mars Science Laboratory mission home page at 

www.jpl.nasa.gov for latest information 

http://www.jpl.nasa.gov/
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Understanding Performance Sensitivities: 
the Kepler “Merit Function”
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Science Objective (Need):
Statistical frequency of  terrestrial planets 
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where  Science goodness S = f(CDPP, SNR, Nstars, Nyears)
            CDPP = combined differential photometric precision

 SNR = detection signal-to-noise ratio
 Nstars = number of stars observed
 Nyears = number of years observed
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Kepler Merit Function
science vs mission-duration curves
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Tells us we’re not 
on a cliff - AND 
with other curves, 
how to optimize 
performance 

Courtesy NASA ARC & SETI Institute  (William Borucki & Jeff Garside)



Space Interferometry Mission (SIM)
Measuring the motion of stars to find planets

HST
Positional 
Error Circle 
(~1.5 mas)

Astrometric Stellar Interferometer

SIM Positional 
Error Circle
(1 - 4 µas)

.

Interferometry & Astrometry require that we:
1. CONTROL optical pathlengths to 10 NANO-meters (1000 Hz)
2. MEASURE changes in component positions to 50 PICO-meters 
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A Family Portrait
of a Planetary System

Terrestrial Planet Finder (TPF)
Searching for Earth-like Planets

Planet 10-6 to 10-10

fainter than star

~ 0.1 arcsec
separation at 10 pc

The Problem: Contrast & Resolution

Planets

Planetary Spectral Signature

15 m

1000 m

Formation-Flying Nulling Infrared Interferometer

A Solution: NULLING (destructive-interference)



TPF complexity
(SIM is starting to look “easy”!)
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Challenges:
• COLD 

– 7-40 Kelvin
– Including lots of precision actuators

• BIG 
– Four 4 meter apertures (HST is 2.5 meters)
– 15 meter deployable thermal shields
– 75 – 1000 meter baselines

• DISTRIBUTED 
– Precision Formation-Flying
– Constellation Fault-Protection
– Time synchronization

• TIGHT TOLERANCES
– Inter-spacecraft pathlength control 
– Inter-spacecraft straylight
– Intensity (amplitude) matching



So how’s it going?

• Some great successes – but still some notable failures

• Common theme from Mishap Reports
– “Systems Engineering should have caught that”

• NASA’s Deep-Space exploration program has undergone a 
profound “paradigm shift” over the past 10 years

– Faster-Better-Cheaper pressures
• Faster = more missions, less time # of experienced SEs
• Better = more complex capabilities of tools & processes
• Cheaper = fewer resources & fixed price need for fine-tuned design

• We want (& need) to do better…
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Systems Engineering @ JPL 
(our self-assessment)
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1. Chronic shortage of “good” system engineers
• Many concurrent missions vs few large missions

2. Systems engineering is implemented ad hoc based 
upon the “personalities of the moment”

• e.g., Verification and Validation & Model-based Engineering

3. Mission complexity is overwhelming traditional methods
• Highly autonomous 

• Large & Physically Distributed

• New performance regimes

• Tight Coupling                      



Systems Engineering Advancement initiative
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Processes 
& 

Tools

Personal 
Attributes

Detailed
Knowledge

•Establish & Communicate Processes
•Modeling Tool Development
•Training Program (3 year curriculum)

• Formal Education (school & continuing)
• Hands-on Experience 

•Research (psycho-social) 
•Recruiting

•Intellectual Curiosity
•Big Picture View
•Seek Out & Understand Connections
•Comfortable with Change
•Comfortable with Uncertainty
•Proper Paranoia
•“Head for” Resources & Margins
•Communication Skills
•Self-Confidence & Energy
•Appreciation for Process

•Systems Engineering Processes
•develop system architecture
•develop requirements
•develop interfaces
•manage technical resources
•analyze and characterize the design
•verify and validate
•manage risk
•conduct reviews 
•manage & control the design

•Modeling/Simulation Tools
•Merit Functions
•End-to-End Simulations
•State Analysis
•Fault Tree Analysis
•Probablistic Risk Assessment

•Deep knowledge of sub-field(s)
•Understanding of total life-cycle
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5 million km

Zany ideas of the Future?
We’ve just scratched the surface….
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Wrap Up
• Future Deep-Space Missions pose significant new challenges to Systems 

Engineering – due to growing complexity associated with:
– Getting There
– Measurement Itself

• Systems Engineering is the project “glue function” – getting it right 
requires deep, multi-dimensional awareness of key relationships

• Initiatives are underway at JPL/NASA to improve our Systems 
Engineering infrastructure (including the Engineers):

– Personal Attributes
– Processes & Tools (particularly V&V and Model-based Engineering)
– Detailed Knowledge & Experience

• For more discussion,
– stick around for the Academic Panel Session
– stop by the JPL booth 
– Contact: Riley Duren (Riley.M.Duren@jpl.nasa.gov), Ross Jones 

(Ross.M.Jones@jpl.nasa.gov)

• Also see Matthew Bennett’s upcoming talk on “State Analysis….”



Links to animations in version presented at INCOSE

• http://deepimpact.jpl.nasa.gov/gallery/animation.html
• http://marsrovers.jpl.nasa.gov/gallery/video/animation.html
• http://mars.tv/video/02.06.04.rover.spin.html

(note: last site which hosts the “Mars rover arm spin” spoof video is not a NASA site and may change 
but is widely available on the internet)
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