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ABSTRACT 
 

Integrated Modeling is currently being used to assess the feasibility of a baseline design concept (pre-phase A), 
developed for the Coronagraph version of the Terrestrial Planet Finder (TPF) mission.  This design concept incorporates 
many challenging design elements for a space-born observatory: including a monolithic 8 by 3.5 meter elliptical 
primary mirror; a 12 meter long deployable secondary mirror support structure; as well as a 14 meter long deployable, 
tensioned-membrane, V-groove sunshield. Unprecedented thermal and dynamic stability is required by this flight 
system to allow observation of enough contrast between planets and their parent stars.  This stringent performance 
requirement necessitates a balanced system, designed to optimize the various interacting disciplines: optical, thermal, 
structural & control. To support design feasibility studies, a MATLAB-environment-based integrated modeling tool 
(IMOS: Integrated Modeling of Optical Systems) was employed for analyzing the end-to-end system performance for 
typical in-orbit maneuvers. Our integrated modeling goal is to use a single model definition file to specify the thermal, 
structural, and optical modeling and analysis parameters, improving results accuracy, configuration control and data 
management. In working towards that goal, we have had parallel efforts in IMOS capability development, as well as 
design concept modeling and analysis. Typical system performance metrics studied include the relative motions of the 
optical elements, as well as the deformation of individual optics, decomposed into best-fitting Zernike polynomials. 
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1. INTRODUCTION 
The primary goal of the Terrestrial Planet Finder (TPF) Project is to detect and characterize earth-sized planets orbiting 
nearby stars.  TPF is planning on flying two complementary observatories: a Coronagraph-based telescope to be 
launched around 2016, and a formation-flying Interferometer to be launched around 2020.  This paper addresses design 
feasibility studies conducted for the TPF-Coronagraph Mission, and the on-going integrated modeling tool development 
intended to support these and similar studies. 

1.1. System Description  
Previously, we had developed a Minimum Mission Design configuration, which addressed the minimum science 
requirements. For this cycle, we are developing a configuration concept, called Flight Baseline cycle 1 (FB1), which 
addresses the full mission science goals. The FB1 system is composed of the combination of the Spacecraft Assembly 
and the Science Payload Assembly, as shown in Fig. 1.1.1.  The Spacecraft Assembly is composed of the Spacecraft 
Bus (including reaction wheel assembly, propulsion tanks & ancillary equipment), as well as the Sunshield, Solar Array 
& Solar Sail.  The Science Payload Assembly consists of the Optical Telescope Assembly (OTA), as well as the 
Payload Support Assembly, which includes the instruments (Starlight Suppression, Planet Detection & 
Characterization, General Astrophysics, etc) and thermal enclosure, designed to thermally isolate the instruments & 
primary mirror (PM). 
 
The telescope, comprised of the primary and secondary mirrors and intermediate support structure, is an off-axis 
Cassegrain-type design, with a 12 m separation between the primary and secondary mirrors.  The primary mirror is a 
monolithic light-weighted (front & back face-sheets with honeycomb core) 8 m by 3.5 m elliptical glass mirror (0.25 m 
overall thickness), made from Ultra-Low Expansion (ULE®) glass, and the secondary mirror is another light-weighted 
ULE® mirror, 0.9 m by 0.4 m in size.  The combination produces a F/17.5 beam, with F-number considered along the 



major axis.  The secondary mirror is thermally isolated (as is the primary), and is mounted on an actuated hexapod, 
giving six degree of freedom motion control. The secondary mirror assembly sits on the end of a deployable tower, 
which is constructed of M55J/954-3 carbon fiber reinforced polymer (CFRP) composite material, having three folding 
(hinged & latched) joints.  The secondary support tower connects to the Aft Metering Structure (same CFRP material), 
which supports the primary mirror.  The tertiary mirror (M3), also part of the OTA, is a flat fold mirror which sits near 
the base of the tower, is heated, and also has 3 dof of motion control (piston, tip & tilt). 
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Fig. 1.1.1.  Fully Deployed Observatory 
 
The primary mirror is kinematically mounted (3 point attachment at the back of the mirror) to its support structure, the 
Aft Metering Structure (AMS), by three bipods. The AMS also supports the secondary mirror tower, and the 
combination of the AMS and the tower provide metering between the primary and secondary mirrors. The AMS is 
mounted to the Payload Support Structure (PSS). The primary mirror, the AMS and the instrument box are all housed 
within a common thermal isolation enclosure, which is intended to maintain a relatively constant temperature of near 
room temperature.  The secondary mirror is also housed in its own thermal enclosure, while the support tower 
temperature is currently allowed to passively reach equilibrium, without active control.  However, control may be added 
if need arises. 
 
The FB1 system design allows for limited active motion compensation, using the secondary mirror, tertiary mirror, fine 
steering mirror (FSM), and a deformable mirror (DM). The secondary mirror is mounted on a hexapod-type actuator, 
which can control all six rigid-body degrees of freedom. The secondary mirror rigid-body motion can be controlled with 
feedback provided by a metrology system for response frequencies less than approximately 1 Hz.  This will allow 
compensation for tower distortions due to slow changes in thermal environment after slew maneuvers.  Higher 
frequency responses, such as responses to reaction wheel disturbance, cannot be compensated by the secondary mirror 
hexapod system, without a great deal of design effort and expense.  The FSM is used in the pointing control system, and 
the DM is used to compensate for pseudo-static primary mirror distortions.  The possibility of a coarse DM is also being 
investigated. 



2. STRUCTURAL MODEL DESCRIPTION  

2.1. Overall Model Description 
The combined FB1 system Finite Element Model (FEM) is composed of two main assemblies: the Spacecraft 
Assembly, and the Science Payload Assembly.  Fig. 2.1.1 shows a view of the Combined System model for the 
deployed observatory, and Fig. 2.1.2 shows a view of the Science Payload FEM by itself. The OTA, which is a 
subassembly of the Science Payload Assembly, was modeled by GSFC, and the rest of the system was modeled by JPL. 
You can see in the upper half of Fig. 2.1.1 that the Science Payload FEM is located within the v-groove sunshield. 
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Fig. 2.1.1.  FB1 Combined System Finite Element Model                                              Fig. 2.1.2.  FB1 Science Payload FEM 
 
Fig.s 2.1.1 and 2.1.2 also list the vital model statistics, to give a sense of the model size and complexity. Enough model 
detail was added to adequately capture the major contributors to system performance. At the same time, great effort was 
spent toward minimizing the model size, in order to make analysis manageable, especially in regard to the integrated 
structural-thermal analysis. 
 
The major assumptions or idealizations made in the FB1 modeling are the following: no hinges, latches or fittings were 
explicitly modeled; no temperature dependent properties were modeled (except for the primary mirror, as will be 
discussed later); uniform properties were assumed for like materials (once again, except for the primary mirror); lumped 
and smeared masses were used to represent non-structural hardware.  Also, the tensioned membranes of the v-groove 
sunshield and solar sail were modeled using a linearized representation of the geometric stiffening due to the pre-load, 
as described in section 2.3 of Ref 1.  Currently, we are assuming a perfectly uniform distribution of the tensioning 
stress, and future studies will address the effects of deviations from this ideal state: such as the effects of membrane-
wrinkling and other non-uniformities in preload.  The current approach used for this pre-phase A model was to capture a 
representative dynamic characterization with an ample distribution of modes. 
 



Fig. 2.1.3 shows a top view of the Payload Support Assembly (PSA) FEM.  The OTA attaches to the PSA to form the 
Science Payload.  Fig. 2.1.4 shows the PSA without the thermal isolation enclosure.  The thermal enclosure has a mass 
of 479 kg, and, by the way, is about the size of a standard school bus.  The Payload Support Structure (PSS), identified 
in Fig. 2.1.4, is the workhorse of this assembly, supporting all of the instruments, as well as the OTA, and thermal 
enclosure.  The PSS has a mass of 368 kg.  The instrument models are generally just place-holders, since their structural 
details have not been worked out yet, but they do have representative mass and stiffness, allowing overall system 
performance feasibility to be evaluated.  In the upper right corner of Fig. 2.1.4, are two passive radiators, with the 
rightmost being the colder one, which is used by the detectors. 
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  Fig. 2.1.3.  FB1 Payload Support Assembly FEM                                Fig. 2.1.4.  FB1 Payload Support Assembly without Enclosure 

2.2. Primary Mirror Model 
The current FB1 primary mirror design concept is constructed using a light-weighted, monolithic ULE® glass blank that 
is elliptical in shape, with an 8m major diameter, a 3.5m minor diameter, and a depth of 0.25m.  The construction is a 
honeycomb sandwich, with a segmented core: the front and back face-sheets are fused to the core structure. The 
nominal core design has hexagonal cells (0.129 meters flat-flat) with a cell wall thickness of 1.5mm. 
 
We have three different models of the same primary mirror design, with each tailored for a specific analysis purpose.  A 
low-fidelity model, comprised of a single-layer of plate elements formed on a curved surface, is used for trade studies.  
A mid-fidelity model (shown in Fig. 2.2.1) is constructed of a combination of plate and solid elements: plate elements 
are used to represent the front and back face-sheets, as well as outer side-walls and solid elements are used to represent 
the mirror core.  The mid-fidelity model is used primarily for integrated analysis, and is good for overall dynamic and 
thermal distortion analysis.  However, the mid-fidelity model cannot capture local distortion effects at the core-cell 
level, such as surface print-through.  GSFC is using a very detailed high-fidelity model of the mirror, which is 
composed entirely of plate elements, to evaluate detailed stresses, as well as the effects of print-through.  This High-
fidelity model is unwieldy for trade and Monte Carlo studies, having almost 200K nodes and 300K elements.  Fig. 2.2.2 
shows a plot of the high-fidelity model mirror core elements. 
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    Fig. 2.2.1.  Mid-Fidelity Primary Mirror Model                                        Fig. 2.2.2.  High-Fidelity Primary Mirror Model Core  



3. ANALYSIS DESCRIPTION 

3.1. Integrated Analysis Approach 
We are using an integrated modeling approach of using models as consistent as possible between the different analysis 
disciplines.  A common CAD definition is used throughout the design cycle development.  Also, the structural model 
finite element mesh is used for developing the integrated thermal model.  Of course, no restriction is made on the 
meshing for separate thermal trade study models, and for studies of solution convergence with mesh size, etc.  However, 
the integrated models for the flight system structural and thermal disciplines were restricted to have consistent meshes, 
minimizing errors introduced in mapping results from one analysis phase to the next: e.g. temperature results from 
thermal analysis to temperature boundary condition for displacement computations.  This issue is especially critical 
when dealing with the ultra-stable system performance requirements, as levied in the FB1 error budget. 
 
One insidious example illustrating this point was encountered recently when transmitting temperature results from the 
TMG thermal analysis to the structural analysis phase.  We encountered this problem even though we had consistent 
thermal and structural model meshes.  Since TMG computed temperature results for elements, rather than for nodes, we 
used TMG to do the mapping of temperatures from elements to nodes, within the same model. Although the computed 
nodal temperatures ranged from approximately -150 to +20 deg C for the conditions investigated, we were more 
concerned with the temperature stability when slewing the observatory from one position to the next, for which the 
critical temperature changes were in the neighborhood of 1e-5 deg C. Unfortunately, small interpolation/extrapolation 
errors were introduced by TMG during the element temperature to nodal temperature mapping process. These small 
errors are magnified greatly when computing the delta-temperatures. We noticed unacceptable jaggedness in the 
transient nodal delta-temperature time histories: whereas, the element delta-temperature time-histories were very 
smooth.  The approach we selected for solving this error propagation problem was to do the element temperature to 
nodal temperature mapping outside of TMG, in MATLAB, using a more stable averaging method.  An alternative 
would have been to work with element temperatures in the structural analysis. 
 
In making the consistent mesh restriction, we are consciously taking a hit on optimal meshing for a particular discipline, 
with respect to computational time and results accuracy needed.  In other words, we accept that some analyses may take 
longer than they would take when modeled conventionally.  However, computer speeds have advanced to the point 
where the delay is acceptably small: especially, in light of the increased accuracy benefit of having consistent meshes. 
 
We are working toward making the transition between disciplines as seamless as possible, and our IMOS (Integrated 
Modeling of Optical Systems, see Ref. 2) development goals are consistent with this vision.  Currently, IMOS 
development is transitioning to a new database approach (see Ref. 4), which frees up large chunks of memory that 
would otherwise be tied up with model information, allowing larger problems to be solved more rapidly.  Also, 
wherever possible, compiling of code is being used to speed the processing.  The thermal and structural models can 
share a common base model, with extra nodes or elements being added for a particular discipline.  This approach 
minimizes results mapping and model translation errors. 

3.2. Thermal Analysis  
Early-on it was believed that one of the tall tent-poles limiting system performance might be telescope thermal stability 
during a dither-type of observation maneuver, performed for planet detection.  We are currently base-lining the usage of 
dithering for speckle removal, to help increase our contrast sensitivity.  This was one of the reasons for choosing a 
cocoon-type of configuration for the v-groove sunshield.  The DM can be used to compensate for WFE after a slew to 
acquire a new target star, or after a roll about the bore-sight direction to take advantage of the primary mirror long axis 
with respect to planet orbit position. However, the DM cannot be used after a dither-roll maneuver, since doing so 
would change the speckle pattern, hindering speckle removal. The stability after a dither-roll is therefore a critical factor 
for system performance. Currently, we are planning on having three roll angles, 60 degrees apart, with a 30 degree 
dither about each, as illustrated in Fig. 3.2.1. The Sun is excluded from the right side (as viewed), because of the 
presence of radiators used for passive cooling. 
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                               Fig. 3.2.1.  Roll & Dither Sun Positions, Viewed Along Bore-Axis from Target   
                
So far, we have analyzed two dither cases: one from the 195 to 225 deg position, and the other from the 255 to 285 
degree position, as shown in Fig. 3.2.1.  The worst case (larger temperature changes) was found to be the 195 to 225 deg 
dither, because of the proximity of the cold radiator (which cools the detectors) to the Sun at the 195 deg position.  We 
have not yet analyzed cases with the Sun behind the telescope, which will introduce shadowing of the solar array. We 
will be addressing these issues in the near future. 

3.3. Overall Structural Distortion Analysis  
The changes in temperature caused by dithering the telescope (roll about the bore-axis) 30 degrees from one roll angle 
to another (e.g. 195 to 225 deg) induce distortions of the optical elements, as well as in the hardware that support the 
optics. We used IMOS to do the structural distortion analysis caused by these thermal perturbations, for both steady-
state and transient conditions.  The thermal transients were handled as pseudo-static load cases for the structural 
analysis.  Temperature dependent material properties were not generally incorporated in the analyses thus far, but will 
be addressed in future studies.  We did, however, address temperature dependence of the primary mirror CTE, as will be 
discussed below. IMOS provides some very useful leverage for the thermal distortion analysis in the fact that multiple 
load cases (as used in Monte Carlo studies) can be easily generated and analyzed, and the MATLAB environment 
provides a method of generating complex variations of material properties, such as simulating CTE variability. Also, 
using IMOS naturally gives access to sensitivity matrices (see below) that would not otherwise be readily available. 
 
The way we normally do the thermal distortion analysis in IMOS is to generate a temperature-to-load matrix [R], which 
produces a load vector (generating equivalent thermal expansion) when multiplied by a temperature vector.  The usual 
static equation of motion is the following: 

K {u} = {p}                                                                           (3.3-1) 
where [K] is the stiffness matrix, {u} is the nodal displacement vector, and {p} is the load vector, and 

{p} = [R] {t}                                                                           (3.3-2) 
 
Then {p} in Eq. (3.3-1) can be replaced by the product [R] {t}, in Eq. (3.3-2), where {t} is the delta-temperature vector, 
producing the following: 

 {u} = [K]-1 [R] {t}                                                                      (3.3-3) 
 

If we consider [B] to be a mapping matrix from the general displacement vector to particular displacements or pointing 
orientations of interest {v}, then 

{v} = [B] {u}                                                                           (3.3-4) 
and substituting Eq. (3.3-4) into Eq. (3.3-3) yields  

{v} = [B] [K]-1 [R] {t}                                                                   (3.3-5) 
 



If we also have an optical sensitivity matrix [C] that maps particular displacements to system OPD wave-front error 
{w}, then we can pre-multiply Eq. (3.3-5) as follows: 

{w} = [C] {v} = [C] [B] [K]-1 [R] {t}                                                        (3.3-6) 
 
We can compute the [C] [B] [K]-1 [R] product separately to examine the sensitivity of system performance to changes 
in temperature.  This is sometimes useful for determining temperature sensor or heater placement. 
 
We have also performed a variation of the standard thermal distortion analysis by factoring out the element CTEs.  
Working directly with element CTEs avoids problems encountered with using equivalent grid point temperature 
changes, such as when elements of dissimilar materials join at a common node. Eq. (3.3-2) can be transformed into the 
following equation by factoring out the element CTEs: 

{p} = [S] {cte}                                                                           (3.3-7) 
where [S] is a CTE-to-load mapping matrix, which has the temperature vector already embedded in it. 
 
Eq. (3.3-2) can be replaced with Eq. (3.3-7) in a similar fashion to the above derivation of Eq. (3.3-6), giving: 

{w} = [C] {v} = [C] [B] [K]-1 [S] {cte}                                                       (3.3-8) 
 

Eq. (3.3-8) is useful for evaluating the sensitivity of system performance to variations of element CTEs. 

3.4. Primary Mirror CTE Variability 
We also used IMOS to explore the effects of CTE variability within the primary mirror.  CTE variability in the metering 
structure is also of interest, and will be looked at, but is not considered a tall tent-pole, since we have adjustability built 
into the system, which can compensate.  Variability of CTE in the primary mirror, however, can have a direct limiting 
effect on our performance capability.  
 
Analyses were performed for both a uniform CTE assumption, as well as for the variable CTE.  The uniform 
assumption is of course simpler and faster, but we determined that it is not an adequate assumption to make, and can 
lead to non-conservative performance predictions.  We will show, by analysis, that it is necessary to take manufacturer 
predictions of glass-boule CTE variability into account to get a more accurate performance evaluation.  Furthermore, we 
plan on extensive testing to validate these models.  The modeling is further complicated by the fact that the FB1 primary 
mirror is so large that 92 separate pieces of glass are needed for construction of the blank.  There are 23 segments, with 
each segment composed of 4 separate pieces: two face-sheets (top and bottom), and two boules stacked and fused to 
form the core.  On the other hand, having multiple pieces of glass will tend to average-out the influence of CTE 
variation with individual boules on overall performance: the smaller the regions (fraction of total) of random variation, 
the smaller their net effect will be on system performance. 
 
Our approach to analyzing CTE variability was to perform a standard Monte Carlo simulation, in which the element 
CTEs were varied according to pre-selected functions.  There has been extensive CTE measurement done by the glass 
manufacturer in an effort to characterize the variation within a typical boule of glass, as well as the variation from boule 
to boule.  Based on these finding, a set of CTE specifications were assembled for the Technology Development Mirror 
(TDM), which is being used to demonstrate the feasibility and performance for certain technologies anticipated to be 
key to the TPFC system development.  Table 3.4.1 outlines the CTE specifications that were presented at the TDM 
PDR. 
 
                         Table 3.4.1 TDM Blank CTE Specifications from PDR 
 

No. Description Tolerance (ppb/C)
1 Weighted Blank Average +/- 10
2 Core Segment Axial Gradient +/- 10
3 Core Segment Radial Range < 15
4 Max Core Segment-Segment Average Delta < 10
5 Face Plate Axial Gradient +/- 5
6 Face Plates Pt-to-Pt Difference < 5
7 (Face Plate Average) - (Core Segment Average) +5 to +15

INITIAL MIRROR CTE TOLERANCES
 
 
 
 
 
 
 



We used four major functions for describing the variation of CTE within each of the 92 regions: bias, side to side (2 
directions), radial, and axial.  Parameters controlling the magnitude of these variations were given a “flat-top” random 
variation, having limits consistent with the TDM specifications given in Table 3.4.1.  For our Monte Carlo study, we 
generated 1000 load cases (vectors of element CTEs).  Fig. 3.4.1 shows a color contour plot, illustrating the CTE 
distribution for one of the 1000 cases analyzed.  The segmentation, and variation within segment regions, is discernable. 
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4. ANALYSIS & PERFORMANCE RESULTS 

4.1. Thermal Analysis Results 
Fig. 4.1.1 shows the steady-state temperature (deg C) contours for various parts of the Science Payload, for the case of 
having the Sun in the 195 deg Position, as indicated in Fig. 3.2.1.  The temperature values indicated would not really 
change much for any of the other roll positions, given the number of significant digits seen here.  Given that, these 
temperatures are representative for any roll position (analyzed thus far).  We can see in the upper left and lower right 
quadrants of this figure that most of the structure inside the thermal enclosure is maintained near room temperature, as 
intended.  The radiators, which protrude from the thermal enclosure, reach the coldest temperature present: -203 deg C.  
The secondary mirror is also maintained near room temperature.  The temperature of the secondary mirror support 
tower, however, is allowed to reach passive equilibrium: the mid-span of the tower reaches -100 deg C.  The primary 
mirror, having heaters behind it and around its sides, shows the expected temperature variation, with the center of the 
top surface being the coldest.  It is of interest to note that we see a temperature variation of about 6 deg C for the 
primary mirror: with the gradient primarily going from the hot back-side toward the cooler front-side. 
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 Fig. 4.1.1.  Temperatures (deg C) with Sun at the 195 deg                 Fig. 4.1.2.  Contours of Delta-Temperatures (195-225 Dither)                
   



Fig. 4.1.2 shows a color contour plot of the temperature changes (C) exhibited as a result of dithering (30 deg roll about 
bore-axis) from the 195 deg position to the 225 deg position (see Fig. 3.2.1).  We chose to show the 195-225 deg dither 
case, since this turned out to be the worst case, analyzed so far.  These are steady-state results: i.e. both start and 
finishing temperature results were generated using steady-state analysis.  We can see that the largest temperature 
changes occurring in the telescope assembly take place at the mid-span of the secondary support tower: there is a 
change of approximately 5e-3 deg C.  The largest changes overall occur at the radiator, as would be expected. However, 
we can also see that large temperature changes also occur in the radiator support structure.  This heat sink even 
influences the nearest PM bipod, since we can clearly see in the upper right plot that the mount point is printing through.  
We will show, however, that the primary mirror distortion is dominated by the average changes in front to back 
temperatures, across the mirror. 
 
Fig.s 4.1.3 & 4.1.4 show the transient response (deg C) of the primary mirror over a 24 hour period (x-axis) after a 30 
deg dither maneuver (195-225).  Fig. 4.1.3 traces the average primary mirror temperature, and Fig. 4.1.4 shows its 
average change in front-to-back delta temperature.  On both plots, the steady-state results are shown on the right edge.  
We can see that the transient temperatures are converging nicely toward the steady-state, even though different solution 
methods were used for the two approaches.  We can also observe that the time constant is such that the temperatures 
level out roughly 10 to 15 hours after the dither event. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1.3.  Ave PM Temperature Change (195-225 Dither)                   Fig. 4.1.4.  Ave Change of PM Front-Back Delta-Temperature 
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4.2. Structural Analysis Results 
 
Fig.s 4.2.1-4.2.4 show the transient response of the propagated OPD WFE caused by the distortion of the primary 
mirror, due to the thermal disturbance of a 30 deg dither (195-225).  For computing the WFE, we used a sensitivity 
matrix, as described in Eq. (3.3-6). These results are for the case of uniform CTE assumed for the primary mirror.  The 
aberrations were decomposed using best-fitting elliptical Zernikes (1st 15 terms).  The x-axis is time (hours) after the 
dither, and the y-axis is RMS WFE (m).  The steady-state responses are also shown in these plots, indicated by the 
symbols along the right edge.  The error budget requirement level is indicated by the symbols in the upper right corner 
of each plot.  We can see that the responses are well within the error budget requirements (by > factor of 10). 
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Fig. 4.2.1.  Focus & Astig WFE Response (195-225 Dither)                       Fig. 4.2.2.  Coma & Tref WFE Response (195-225 Dither) 
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Fig. 4.2.3.  Spher, 2nd Astig, Tetr WFE Response (195-225 Dither)                 Fig. 4.2.4.  Residual WFE Response (195-225 Dither) 
 
Fig. 4.2.5 is a OPD WFE map resulting from the distortion of the primary mirror, taken as a snapshot 24 hours after a 
30 deg dither (195-225).  We can see that the WFE is dominated by a circular focus, which was hypothesized to be 
caused by a change in front-to-back delta-temperature across the mirror.  The circular focus decomposes primarily into 
elliptical Zernike focus and astigmatism.  Fig. 4.2.6 is a cross-plot of the elliptical focus and astigmatism as a function 
of the change in front-to-back delta-temperature.  We can see that the elliptical focus and astigmatism have very near 
linear variations with the change in front-to-back delta-temperature.  A separate analysis was run in which a pure 
change in front-to-back delta-temperature was the only disturbance present, and the response matched the slope shown 
in Fig. 4.2.6, corroborating our hypothesis that this effect was causing the observed response for the dither. 
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Fig. 4.2.5.  WFE Map at 24 hrs after Dither (195-225)                        Fig. 4.2.6.  Focus & Astig vs. Delta PM Front-Back Delta-Temp 
 
 
Fig.s 4.2.7 & 4.2.8 show the open-loop relative rigid body motions of optics, with respect to the primary mirror, for 
thermal disturbance due to a 30 deg dither (195-225).  Transient responses are shown over a 24 hour period after the 
dither event. Also, steady-state responses are indicated by the symbols on the right edge of each plot.  Error budget 
requirement levels are indicated by the triangles plotted near the right edge: these were derived from beam-walk effects 
rather than aberrations, which are negligible.  Fig. 4.2.7 is a plot of the secondary mirror motion relative to the primary, 
given in terms of despace & decenter, and Fig. 4.2.8 is a plot of the motions of M3, M4 (1st 2 folds) and the 
coronagraph, with respect to the PM.  We can see in all cases shown that the computed responses are within the error 
budget.  It is also important to note that the secondary mirror motion is within budget, even without compensating its 
motion with its active mount.  Once again, these results are for assuming a uniform CTE in the primary mirror model. 
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Fig. 4.2.7.  Secondary Mirror Motion due to Dither (195-225)         Fig. 4.2.8.  M3, M4 & Coronagraph Motion for Dither (195-225)                      
 
Fig.s 4.2.9 & 4.2.10 show the results obtained for the Monte Carlo PM CTE study, using steady-state 30 deg dither 
(195-225) temperature results.  As described in section 3.4, the mirror CTE was given random variations in accordance 
with pre-defined functions, and the resulting propagated OPD WFE performance was monitored.  The x-axis is the 
elliptical Zernike term (4-15), and the y-axis is the RMS WFE (m).  Fig. 4.2.9 shows the predicted response for the 
expected CTE variations, as indicated by the “+” and “*” markers, representing sampled maximum and 3-sigma 
responses, respectively. The triangles indicate the response when a uniform CTE is used.  The error budget 
requirements are indicated by the “o” markers.  We can see that our predicted responses are well within the error 
budget.  It is also apparent that the uniform CTE assumption under-predicts the WFE for all but the lowest Zernike 
terms.   
 
Fig. 4.2.10 shows what happens when we also introduce an estimate for the CTE temperature dependence in the PM, as 
well as the previously modeled CTE variations.  A conservative estimate was made for a linear variation of CTE with 
temperature: 2ppb/C/C, based on Corning ULE® spec-sheet data. In Fig. 4.2.10, we see an increase by factor of 2 in the 
WFE for the low-order Zernikes: focus and astigmatism.  The predicted response, however, is still well within the error 
budget.  We will follow-up with analysis using material properties based on temperature dependent look-up tables. 
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Fig. 4.2.9.  WFE Response with PM CTE Var (195-225 Dither)         Fig. 4.2.10.  WFE Response with PM CTE Var & Temp Depend 
 



We could also expect to get significant improvement (i.e. reduced WFE) by positioning mirror segments, based upon in-
situ CTE measurements of the as-built individual segment blanks, before assembly of the whole mirror blank.  A similar 
approach has already been demonstrated to work in the SUBARU and GEMINI mirrors, and was analytically shown to 
help significantly in the TPF Minimum Mission study (Ref. 3).  Additional improvement could be obtained with 
selection and placement (before fusion) of front-back face-sheet pairs, based on CTE measurement data. 
 

5. CONCLUSION 
Our current studies demonstrate the design feasibility of the Full Mission, Flight Baseline 1 design concept, based on 
the computed responses to thermal disturbances.  We are still continuing with our investigations, using more realistic 
modeling assumptions, and additional environmental conditions.  The modeling tools have proved to be adequate so far, 
and we are continuing with tool development to increase processing speed, model size capability and overall reliability. 
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