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ABSTRACT

Low cost transfers of a spacecraft in a multi-gravitational orbital environment, which are based 
on connections between unstable periodic orbits, present several trade-offs, such time-of-flight 
v.s. transfer fuel cost. It is shown that the dynamical characteristics of the target periodic orbits 
is related to the maximal (recovery) time allowed for a spacecraft without control. Mildly 
unstable periodic orbits, which  result in good recovery margins, are then shown to structure the 
boundary of stability regions, resulting in the concept of boundary unstable periodic orbits 
(b.u.p.o.). The use of a Fast Lyapunov Indicator (FLI) allows us to place the b.u.p.o. in their 
dynamical context and to exhibit their associated connections, thus offering a quick overview of 
potential dynamical transfers for spacecraft applications. The concepts are illustrated in the 
planar, circular, restricted three-body problem, and two different transfer based on the use of 
stability maps are presented.
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PLANAR, CIRCULAR, RESTRICTED THREE-BODY PROBLEM

• Simple model for the the dynamics of a spacecraft in a planetary satellite system.

• Assumes the (point mass) planet and satellite to be in Keplerian circular orbits about each other. 
The spacecraft of negligible mass is only influenced by these two primaries.

• The equations of motion are autonomous, Hamiltonian, when expressed in a moon-centered 
rotating frame. They depend only on a single parameter,           , after convenient choice of length, 
time and mass units.

• Effective potential:

• Equations of Motion:

• Jacobian integral of motion:

• A fixed value of C restricts the motion to an 
energy manifold of dimension three.

• Time-reversal symmetries:
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Jupiter-Europa system:  = 2.528 x 10-5

Length scale:    L 670900 km
Time scale:       T 3.5 days
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UNSTABLE PERIODIC ORBITS 

and TRANSFERS

• Connections between  unstable periodic orbits 
(u.p.o.) offer  thrust-free transfers between
(possibly) distant regions of phase space.

• These connections are formed by the intersection 
of the stable and unstable manifolds of a source 
and target u.p.o., respectively.

• The stable and unstable manifolds  of an u.p.o. 
are sets of trajectories converging towards the 
u.p.o. in forward and backward times,
respectively.

Arrival



• The time taken for the uncertainty in the state of a spacecraft to grow to a maximal tolerance is the 
recovery time allowed by the dynamics.   

• Near an u.p.o., too large uncertainty can result in drastic change in the dynamical behavior of the 
trajectory.

• The distance, d,  from which an u.p.o. can be targeted within an  is:

– maximized along the stable manifold

– depends only on the current and maximal state uncertainties

– independent of the u.p.o. characteristics.

• The time taken to travel the above distance, d, is dependent on:

– the instability scale of the u.p.o.

– the period of the u.p.o.

   Mildly unstable u.p.o.s with long periods present better recovery properties

but

   longer time-of-flight than highly unstable periodic orbits with short periods

• Mildly u.p.o. can be found near bifurcations of families of periodic orbits, at the boundary of 
stability regions. 

RECOVERY PROPERTIES 
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• Stability maps  are a numerical tool  to 
investigate phase space structures.

• The maps associate a scalar index (indicator) 
with each initial conditions in a subset of phase 
space.

• The indicator considered is based on the 
expansion properties of the state transition 
matrix, and is known as the Fast Lyapunov 
Indicator (FLI):

where {u
i
} represents the evolution of a basis of 

variational displacement after time t, and ||.||
n
 is a scale 

invariant norm.

• This indicator discriminates (up to a certain time 
scale) between regular and chaotic motion:

– low values of the FLI correspond to regular 
motion and result in the notion of stability 
regions or islands.

– Large values of the FLI correspond to chaotic 
motion

STABILITY MAPS
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Europa-Jupiter system modeled

 by the PCR3BP (=2.528x10-5)

Initial conditions parameterization: 

y = 0,  C = 3.0; (x, V
x
) are varied



BOUNDARY UNSTABLE PERIODIC ORBITS (1)

• The boundary of the stability regions is structured by u.p.o., 
referred to as boundary unstable periodic orbits (b.u.p.o.).

• B.u.p.o. are members of families of periodic orbits that 
bifurcate from stable families lying inside the stability 
regions.
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CASE OF THE 10:9 RESONANT ISLAND

The b.u.p.o. are generally 
not simple (longer periods) 
and present low values of the 

characteristic multipliers 
(mild instability).
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STABILITY MAPS and MANIFOLDS

Generating FLI maps in 
forward times  exhibits 
the traces of the stable 
manifolds  associated 
with a b.u.p.o.

Generating FLI maps in 
backward times  reveals 
the traces of the 
unstable manifolds  as-
sociated with a b.u.p.o.



MEAN FLI MAPS and CONNECTIONS 
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TRANSFER BETWEEN the 10:9 and 7:6 RESONANT ISLANDS 



ESCAPE FROM a DRO REGION

• DRO transfers:

– The introduction of a fly-by result in scattering 
of the manifold structures. 

– Manifold computations with FLI maps enabled 
the design of a transfer, by placing the transfers 
into their dynamical context.

• Potential extensions:

– Extend these ideas to 3D/ other systems.

– Analyze the chaining of several coast arcs/ the 
effect of thrust.  

– Consider frequency based chaoticity indicators.
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