

Type-Definition Objects

William H. Duquette
Jet Propulsion Laboratory

William.H.Duquette@jpl.nasa.gov

ABSTRACT
The dominant Tcl object paradigm is "objects are ensemble
commands". However, the call-by-name semantics associated
with this paradigm are not always appropriate. Type-definition
objects provide a simple way to combine complex object behavior
with call-by-value semantics. A type-definition object is an
ensemble command which defines the operations available for a
type whose values are represented as standard Tcl values.
Operations include creating new values, modifying values,
querying values, conversion of values from other types, validation
of values, and so forth. A type-definition object can be a
singleton, as in a "matrix" command which defines a variety of
operations on general matrices represented as lists-of-lists; the Tcl
8.5 "dict" command and the family of "list" commands can be
regarded as examples of type definition singletons. Type-
definition objects can be also be parameterized instances of a class
of type definitions; objects of this kind can define ranged numeric
types, enumerations, and other constrained types. This paper
presents a number of type definition objects implemented as part
of the Joint Asymmetric Warfare Simulation (JAWS).

1. VALUE AND OBJECT SEMANTICS
It is commonly said that in Tcl, “everything is a string.” And it is
true that in a Tcl program, every entity has a string representation
of some kind—but not all string representations convey the same
amount of information. Some strings have value semantics, while
others have object semantics.

A Tcl list is a classic example of an entity with value semantics.
A Tcl list is a data value. Represented efficiently as an array
internally, a Tcl list can be converted to and from its string
representation without loss of information. It can be stored in a
variable, passed from one procedure to another, written to a
channel and read back again, and when it is no longer needed Tcl
releases the memory automatically. Moreover, it is a chameleon:
one and the same value can be a list, a string, a dictionary, a
command to be evaluated, a stack to be pushed or popped, a
record of data, a vector, or any number of other abstractions.

Most Tcl values share this ability to shift whimsically from one
data type to another. Consider the value “99”. It might be a two-
character string, it might be a decimal integer, it might be a
hexadecimal integer, it might be an index into a hash-table, or it
might be a handle to some opaque data structure implemented in
C code. It can be any or all of these things, and it can switch
effortlessly from one use to another in successive lines of code, or
even in the same line of code.

The one thing Tcl values lack is any kind of intrinsic behavior.
Tcl values are not objects; they do not have methods. You can
treat any Tcl value as a string; to go beyond that, you need to
know something about the nature and provenance of the value.

Finally, Tcl values are transparent. Because every Tcl value has a
canonical string representation, you can always see precisely what
the value is.

Objects, by contrast, combine data and behavior into a single
entity. The dominant object paradigm in Tcl is that pioneered by
the Tk widgets: an object is represented as a Tcl ensemble
command, that is, a command whose first argument is a
subcommand and whose remaining arguments vary by
subcommand.

An object’s string representation is simply its name, which
functions much like a pointer in conventional languages. The
object name is a Tcl value which can be stored in a variable,
passed to procedures, printed out and read in again, and so forth,
just like any other Tcl value; yet, like a pointer it gives access to
the object’s behavior and associated data. Such pointer-like
semantics are extremely useful, but in terms of data representation
they come at a price: objects are opaque. Their data is stored
inside, in either C data structures (for objects like Tk widgets and
images) or hidden Tcl variables (for objects implemented using
Snit1 or some other pure-Tcl object framework). A program must
use the object’s methods to access the internal data—or, rather,
that subset of it which is externally accessible. Thus, printing out
an object or saving it to disk—that is, serializing it—is a tricky
proposition for which there is no one-size-fits-all solution.
Indeed, not all objects can be serialized in any meaningful way.

Another disadvantage of objects is the need for explicit memory
management. Unlike a Tcl value, whose memory is released
automatically when the value is no longer needed, a Tcl object
must be explicitly destroyed. Further, with explicit memory
management comes ownership management: the programmer
must always keep in mind which module owns the object at each
moment in its lifetime. Code that manipulates values can copy
them and modify them as it pleases; code that manipulates objects
must always be written with an awareness of which module owns
the object and has the right to destroy it. As a result, Tcl objects
(however implemented) are a poor choice for representing
lightweight, short-lived data entities with value semantics.

How, then, should we associate behavior with our data values?
The classic OO approach is to encapsulate the value within an
instance of a class; but this is often unpleasantly heavy-weight in
Tcl. We are left with a dilemma: values have transparency and
value semantics, but have no behavior; objects have behavior, but
lack transparency and value semantics and add increased
management overhead.

The solution is to take a step backward from OO, and separate the
code from the data.

2. TYPE DEFINITION SINGLETONS
The classic Tcl approach to combining behavior with value
semantics is the procedurally-based abstract data type. The
canonical example is the family of Tcl list commands: list, lindex,
lappend, and so forth. This approach is now frowned on, at least
in the Tcl core, because it pollutes the global namespace with an
ever expanding number of new commands.

The modern approach is the type-definition ensemble, of which
perhaps the best example is Tcl 8.5’s new dict command.2 This
approach is functionally equivalent to the procedural approach,
but the myriad of individual operations are implemented as
subcommands of a single ensemble command, rather than as
individual procedures: thus, dict append adds keys and values to
a dictionary, dict get retrieves a value given its key, dict set
replaces a key’s value with a new value, and so on.

The advantages of this approach are three-fold. First, additional
subcommands can be added as needed without any chance of
name collisions with application-defined procedures. Second,
there is only one command name to remember, which simplifies
looking things up in the documentation. This advantage is often
overlooked, but it should not be scorned: because of Tk's reliance
on ensembles (and, in some cases, sub-ensembles), the Tk
documentation is simultaneously concise, dense, and easy to use.
Third, the commands needed to manipulate values of the type are
packed into a single entity which has object semantics: it is
referred to by a single name, which can be passed from procedure
to procedure, stored in variables, and so forth. Because of this last
property, a type-definition ensemble can be thought of as an
object: a type-definition singleton.

2.1 Implementing Type-Definition Ensembles
Implementing a type-definition ensemble is a bit of a chore,
simply because implementing well-behaved ensemble commands
in pure Tcl is a bit of a chore.3 Until recently, the easiest
approach has been to note that any ensemble command can be
regarded as a singleton object. Hence, one can define a class with
the required subcommands as its methods, and define a single
instance of the class; the instance is your ensemble. Alternatively,
a Snit type with no instances makes a decent ensemble; here, for
example, is a complete implementation of Tcl 8.5’s dict command
using Snit (the pragmas ensure that the resulting ensemble has no
extraneous subcommands):

snit::type mydict {
 pragma –hasinstances 0
 pragma –hastypeinfo 0
 pragma –hastypedestroy 0
 delegate typemethod * using "::dict %m"
}

mydict is now a drop-in replacement for dict. Of course, it will
only work properly in Tcl 8.5 and later....

Tcl 8.5’s new namespace ensemble4 command will be extremely
helpful in this regard; with one line of code, a procedural interface
defined in a namespace can be magically turned into an efficient
ensemble command with decent error messages.

3. TYPE-DEFINITION CLASSES
Implementing a type-definition ensemble as a singleton object has
some interesting implications. Suppose you want to define a
bounded numeric type—probabilities, say, which are bounded
between 0.0 and 1.0. You could define a Snit type:

snit::type probability {
 variable p 0.0

 method set {value } {
 if {$value < 0.0 || $value > 1.0 } {
 error "out of range"
 }

 set p $value
 }
 method get {} { return $p }
}

You could do that, but you'd be sorry, for all the reasons described
in Section 1; for example, you can't use a probability represented
in this way in an expr expression as easily as you can a
probability represented as a floating point value. Not only does
using a floating point value simplify your code, you'll generally
know when you're dealing with a value that's a probability; there
will be times when you'll need to verify that a putative probability
value is a numeric value within the proper range, but you
shouldn't need to do it every time you save a newly computed
probability value.

Consequently, you'd much prefer to represent probabilities as
normal Tcl values, which implies you might need a type-
definition ensemble for probability specific behavior. Such an
ensemble would have a method for verifying that a probability is
both numeric and in range:

snit::type probability {
 typemethod inrange {p } {
 if {![string is numeric $p]} {
 return 0
 }

 expr {0.0 <= $p && $p <= 1.0}
 }

 ...
}

if {[probability inrange $p]} {
 ...
}

We now have a singleton object which verifies that numeric
values are between zero and one. But suppose that there are a
number of bounded numeric types of interest; we could define a
type called bounded whose instances are parameterized with the
desired minimum and maximum values. We would then have the
ability to easily create a new type-definition ensemble for any
range that takes our fancy:

bounded probability –min 0.0 –max 1.0
bounded percentage -min 0 -max 100

set prob 0.5
set pct 50

if {[percentage inrange $pct]} {
 ...
}

if {[probability inrange $prob]} {
 ...
}

bounded may be termed a type-definition class. Instances of type
bounded are type-definition objects. In a sense, they give us the
best of both worlds. The types defined by bounded are normal
Tcl values, with all of the advantages of value semantics; but all
of the knowledge of how to use and manipulate values belonging
to the the type is neatly encapsulated in an object which has object
semantics. The type name (i.e., the name of the type-definition
object) can be stored in a variable, passed to procedures, and used
to parameterize other objects; or it can simply be defined as a
global command, thus extending the range of types accessible to
the entire application.

Moreover, because all instances of the type-definition class have
the same operations, values of the defined types can be handled
generically. Consider a table of named values which is to be read
from a file:

 prob1 0.5
 prob2 0.3
 pct1 57
 pct2 23

The code to read and validate this table can be made completely
generic simply by specifying a schema dictionary:

set schema {
 prob1 probability
 prob2 probability
 pct1 percentage
 pct2 percentage
}

This schema identifies the names of all valid table entries, and the
type of each, with maximum clarity.

4. EXAMPLES
This section describes a number of type-definition singletons and
classes used in the Joint Asymmetric Warfare Simulation
(JAWS). The implementation is not shown (and indeed, it's rarely
all that complex); of more interest is the style of programming
which they enable.

4.1 Matrices
At the core of JAWS is a mathematical model of factions within a
civilian population; it involves the relationships between the
factions, as well as each faction's satisfaction level with respect to
a number of concerns. The model involves a variety of matrices.
The computational requirements are modest enough that there's no

need to implement the matrix code in C, or use one of the C-coded
numerical extensions; on the other hand, there's no reason to
waste cycles either. Tcl lists are implemented internally as C
arrays; a matrix implemented as a list of lists and accessed with
lindex and lset is more efficient than a matrix implemented as a
Tcl array with indices like "$i,$j".

JAWS defines a type-definition singleton, mat, for creating and
initializing such matrices; it also provides a number of matrix
computations and output operations. Here's a subset of mat's
subcommands:

mat new m n ?initval?

Creates a new matrix of m rows and n columns whose
elements are initialized to initval, which itself defaults to the
empty string.

mat rows matrix
mat cols matrix

Returns the number of rows and columns in the matrix.

mat add matrix1 matrix2

Returns a matrix that's the sum of matrix1 and matrix2.

mat format matrix fmtstring

Applies format fmtstring to each element of matrix and
returns the resultant matrix.

mat pprint matrix rlabels clabels
mat pprintf matrix rlabels clabels fmt
mat pprintq matrix rlabels clabels quality

Each of these operations returns a text string containing the
pretty-printed contents of the matrix. rlabels is a list of row
labels and clabels is a list of column labels; fmt is a format
string used to format each entry, and quality is the name of a
quality object, of which more below.

mat doesn't define subcommands for setting and retrieving matrix
elements; lindex and lset work perfectly well, and although mat
could define subcommands that call lindex and lset there's no
reason to pay the performance penalty.

4.2 Vectors
JAWS defines a type-definition ensemble, vec, for manipulating
vectors. A vector value is simply a Tcl list; like mat, vec doesn't
define its own version of the basic list operations, but instead
defines operations specific to numeric vectors. The supported
capabilities are analogous to those of mat; in addition, mat has
subcommands which pull vectors out of matrices.

4.3 Enumerations

An enumeration is a mapping from symbolic constants to integers.
Often a set of distinct constants is all that's required, and the
mapping to integers is unimportant; Tcl programmers usually use
a set of strings in such cases, and never define any explicit
mapping to integers. In other cases, though, the mapping to
integers is vital.

JAWS uses enumerations to define the rows and columns of the
matrices in its mathematical model: each row index and each

column index is associated with a specific symbolic constant. For
efficiency, numerical code needs to identify the rows and columns
using numeric indices; for input and output, the mapping from
symbols to integers and back again needs to be readily available.
Consequently, JAWS defines a type-definition class called
enumeration; instances of the class are type-definition objects
which define specific enumerations. For example, JAWS models
different factions in the civilian population; suppose there are
three factions, A, B, and C:

enumeration faction {
 A "Faction A"
 B "Faction B"
 C "Faction C"
}

The resulting type-definition object is called faction; note that
each value in the enumeration has two names, a short name ("A"),
and a long name ("Faction A"). The range of values of the type
defined by faction consists of the long and short names listed
above and the numeric indices 0, 1, and 2. The following are
some of faction's subcommands:

faction index value
faction shortname value
faction longname value

Returns the numeric index, short name, or long name
associated with the value, which may have any of the forms
listed above: short name, long name, or numeric index. If the
value isn't valid for the type, faction throws an error.

faction size

Returns the number of distinct values in the enumeration,
i.e., 3.

faction shortnames

Returns a list of the type's short names.

faction longnames

Returns a list of the type's long names.

In short, all of the knowledge about this enumerated type is
encapsulated in a single named object which can be passed as an
argument.

The faction names don't figure into JAWS' mathematical model,
but the model code still needs to know them to support input and
output. JAWS's computational engine is implemented as an
object type; because enumerations can be represented by name,
each instance of the engine can easily be given a different set of
factions.

Note that the set of factions is not hardcoded, but is read from an
input file; there's no reason why enumerations like faction need to
have known definitions at implementation time.

4.4 Qualities

One of the inputs to JAWS is an initial value for the satisfaction
of each faction with respect to a number of concerns; a
satisfaction value is a number ranging from 100.0 to -100.0. To
make populating the database easier, we provide a rating scale:

 VS Very Satisfied 80.0
 S Satisfied 40.0
 A Ambivalent 0.0
 D Dissatisfied -40.0
 VD Very Dissatisfied -80.0

On input, the user can enter a symbolic constant, which will be
converted to the relevant number, or a specific number within the
range 100.0 to -100.0, which we can either accept as is or replace
with one of the numbers listed above. Further, given a numeric
satisfaction value, we often wish to relate it to the nearest
symbolic constant for output.

JAWS uses a total of nine different rating scales of this kind; each
scale is defined by an instance of the quality type. For example,

quality qsat {
 VS "Very Satisfied" 80.0
 S "Satisfied" 40.0
 A "Ambivalent" 0.0
 D "Dissatisfied" -40.0
 VD "Very Dissatisfied" -80.0
} –min -100.0 –max 100.0 –format "%6.3f"

Unsurprisingly, this is similar to an enumeration definition; it
adds a column for the numeric equivalents for each symbolic
constant, and also has several options: the valid range for numeric
satisfaction values is given, and a format string defines the
standard output format and precision for values of the quality
type.

A quality object like qsat has all of the subcommands that an
enumeration does, i.e., index, shortname, longname, size,
shortnames, longnames; in addition, it has the following
subcommands:

qsat format value

Formats a numeric satisfaction value using the –format
format string.

qsat value value
Returns a numeric satisfaction value corresponding to value.
If value is a long or short name, the associated numeric value
is returned. If value is already numeric, and is within the
valid range for the type, it is returned unchanged. An error is
thrown for any other input.

qsat strictvalue value
This is equivalent to qsat value, except that numeric inputs
are mapped to one of the specific numeric values specified in
the type definition.

qsat inrange value
Returns true if value is numeric and in the valid range, and
false otherwise.

qsat clamp value
Clamps the value within the valid range, i.e. if value is 101.0
then 100.0 is returned. Numbers within the valid range are
returned unchanged.

4.5 Interactions Between Types

These type-definition objects pack a considerable amount of
knowledge into a small package, and as such are useful all on
their own. However, the real payoff comes when they are used in
tandem.

For example, JAWS defines a large number of matrices whose
indices are defined by enumerations and whose values are defined
by qualities. A satisfaction matrix, for instance, has rows indexed
by a concern enumeration, columns indexed by a faction
enumeration, and elements defined by the qsat quality. The mat
type-definition ensemble defines two operations which support
this pattern directly.

The first is mat numerize. Given a matrix of quality values,
which may be symbols or numbers, and the name of the quality,
mat numerize converts all matrix elements into numbers, and
along the way validates them with respect to the quality:

% set a {
 {VS VD }
 {D A }
}
% set b [mat numerize $a qsat]
{80.0 -80.0} {-40.0 0.0}
%

The second is mat pprintq. This operation pretty-prints a matrix
just as mat pprint does, but uses a quality object to include both
symbolic and numeric values for each element.

% mat pprintq $b \
 [concern shortnames] \
 [faction shortnames] \
 qsat
 A B
CON1 VS= 80.000 VD=-80.000
CON2 D=-40.000 A= 0.000
%

5. TRANSPARENT OO FOR TCL
Neil Madden has been pioneering “Transparent OO for Tcl,”5
which indeed succeeds in adding object-like behavior to
transparent data values. A transparent object, or “TOOT” is a list
whose first element is a command that implements the object’s
behavior. Tcl’s unknown command is extended to handle such
lists in a special way: when a TOOT appears as the first token in a
command, unknown calls the command whose name is
embedded in the TOOT, passing it the TOOT itself followed by
any additional arguments. The TOOT’s command then has access
to the TOOT’s data, and can dispatch methods based on the next
argument in the usual way.

This is an ingenious scheme, but it has two drawbacks, one of
them fatal. The first is simply that TOOT values lose that
chameleon-like flexibility, simply because the TOOT type’s
command name is embedded in the TOOT value: “90210” might
be a string, an integer, or a ZIP code, but “::Zip | 90210” can only
be a ZIP code.

The fatal drawback, however, is runtime efficiency; in practice,
unknown-based dispatch is horribly slow, which makes it
unsuitable for precisely those lightweight uses for which
traditional objects are unsuitable. Nevertheless, the technique is
worth remembering; and it’s possible that future versions of Tcl
will provide faster mechanisms for TOOT method dispatch. In
the meantime, the techniques described in this paper for defining
behavior for transparent Tcl values are superior in practice.

6. CONCLUSIONS

Type-definition ensembles are an established Tcl idiom for
encapsulating behavior for Tcl data types with value semantics.
Given an object system, type-definition classes and type-
definition objects are a natural way to create families of type-
definition ensembles. Because type-definition objects encapsulate
knowledge about a type within a single command, they can be
used to write generic algorithms which will apply to values of any
type within a well-defined family. Because they can be defined at
run-time based on application input, they are a convenient
mechanism for describing, validating, manipulating, and
formatting values based on user-defined schemas. And given the
availability of multiple choices of object framework in the major
Tcl distributions, there's no reason not to use them.

7. REFERENCES

1 Duquette, William H., "Snit's Not Incr Tcl",

http://www.wjduquette.com/snit.

2 Tcl 8.5 Manual, http://www.tcl.tk/man/tcl8.5/TclCmd/dict.htm.

3 Duquette, William H., “Guide to Creating Object Commands”,

http://www.wjduquette.com/tcl/objects.html.

4 Tcl 8.5 Manual,

http://www.tcl.tk/man/tcl8.5/TclCmd/namespace.htm.

5 Madden, Neil E., “Transparent OO For Tcl”,

http://wiki.tcl.tk/11543.

8. ACKNOWLEDGEMENTS
This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration, during the
development of the Joint Asymmetric Warfare Simulation
(JAWS) for the U.S. Army's National Simulation Center at Fort
Leavenworth, Kansas.

