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Abstract—In this paper we address the dilemma of planning 
in the presence of uncertainty – the problem of scheduling 
events where some events might have non-deterministic 
durations.   
 
Real world planning and scheduling problems are almost 
always difficult.  Planning and scheduling of events with a 
mixture of deterministic and non-deterministic durations is 
particularly challenging.  The idea of scheduling events into 
a conflict-free plan becomes obscure and intangible when 
event durations are not known in advance – there is no 
guarantee that when the plan is executed, the scheduled 
events would not violate any pre-defined rules and 
constraints, and the resource usages would not exceed their 
maximum allowable limits.  This dilemma of not being able 
to a priori quantify the likelihood of achieving a conflict-
free plan in the presence of uncertainty usually results in an 
overly conservative plan where resources are under utilized.   
 
Making use of some standard communication link analysis 
techniques to characterize communication system 
performance, to support tradeoffs, and to manage the 
operational risks associate with the link usage, we instigate 
a probabilistic description of event durations and introduce 
the notion of risk in terms of probability that the plan fails 
to execute successfully, which we denote as PF.  We attempt 
to define a rational and systematic approach to weight risk 
against efficiency by iteratively applying constrained 
optimization algorithms and Monte Carlo simulations to the 
plan.  We also derive a simple upper bound of PF for a 
given plan, which is independent of the optimization 
algorithm.  This risk management approach allows planners 
to quantify the risk and efficiency tradeoff in the presence 
of uncertainty, and help to make forward-looking choices in 
the development and execution of the plan.   
 

Another emphasis of this paper is to demonstrate that the 
general criteria of optimality and rules and constraints for 
event planning can be described mathematically in terms of 
linear and non-linear functions and inequalities.  This 
allows the use of customized and commercial off-the-shelf 
(COTS) constraint optimization algorithms to generate 
conflict-free plans.   
 
The results described in this paper are applicable to many 
general planning and scheduling problems.  However the 
emphasis of this work is on mission planning and 
sequencing of spacecraft events with a mixture of 
deterministic and non-deterministic durations.   
 
Mission planning and sequencing is a critical component for 
mission operations.  It provides a mechanism for scientists 
and engineers to operate the spacecraft remotely from the 
ground.  It translates the science intents and spacecraft 
health and safety requests from the users into mission plans 
and sequences.  After a rigorous process validating the plan, 
the plan will be transmitted to the spacecraft for its 
execution.  Usually mission planning and sequencing and its 
validation are time consuming and costly operations.   
 
We apply the aforementioned methodology for formulating 
and optimizing both deterministic and non-deterministic 
sequence events planning.  We demonstrate this approach 
with examples of scheduling science and engineering 
activities for mission operations.   
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1. INTRODUCTION 

In this paper we outline the mathematical formation and the 
analysis approach for planning and scheduling of events of 
non-deterministic durations.  We define a plan to consist of 
a number of events, each of which has a certain start time 
and duration.  By planning, we mean the process of a priori 
scheduling the events within the planning horizon.  When 
the events are executed according to plan, the occurrence of 
events might consume one or more resources that are 
bounded and are either replenishable or non-replenishable.  
Also we assume that there is a set of rules and constraints 
that governs the relationships and dependencies among the 
events.  A plan is defined to be successful if 1) all events 
can be accommodated within the planning horizon, 2) there 
is no resource usage that exceeds the maximum allowable 
limit, and 3) there is no violation to the set of pre-defined 
rules and constraints.   
 
Real world planning and scheduling problems are almost 
always difficult.  Planning and scheduling of events with a 
mixture of deterministic and non-deterministic durations is 
particularly challenging.  The idea of scheduling events into 
a conflict-free plan becomes obscure and intangible when 
event durations are not known in advance – there is no 
guarantee that when the plan is executed, the scheduled 
events would not violate any pre-defined rules and 
constraints, and the resource usages would not exceed their 
maximum allowable limits.  This dilemma of not being able 
to a priori quantify the likelihood of achieving a conflict-
free plan in the presence of uncertainty usually results in an 
overly conservative plan where resources are under utilized.   
 
Inspired by the communication link analysis techniques to 
characterize communication system performance, to support 
tradeoffs, and to manage the operational risks associate with 
the link usage, we instigate a probabilistic description of 
event durations and introduce the notion of risk in terms of 
probability that the plan fails to execute successfully, which 
we denote as PF.  We attempt to define a rational and 
systematic approach to weight risk against efficiency of the 

plan in the presence of uncertainty.   We also derive a 
simple upper bound of PF for a given plan that is 
independent of the optimization algorithm.   
 
Much work has been done in the area of constrained 
optimization algorithms to support planning and scheduling 
applications.  The anatomy of these algorithms is not the 
emphasis of this paper.  Many of these algorithms have 
been implemented in the commercial-off-the-shelf (COTS) 
planning and scheduling tools.   For example, Matlab’s 
FMINCON [1] and ILOG’s ILOG Scheduler [2] are two 
popular schemes that are used in a wide range of 
commercial applications.   Some algorithms are a good 
match to certain types of problems while others are not.  
Conceptually, if computational resources are available, one 
can apply multiple constrained optimization algorithms to a 
given problem to ensure that at least one algorithm would 
converge and deliver a good plan.  In this paper we apply 
the Matlab’s FMINCON optimization function to generate 
interim plans in our mathematical formulation that lends 
itself to systematic risk analysis.   
 
Another major result of this paper is to propose a planning 
methodology that iteratively applies constrained 
optimization and Monte Carlo simulation to reach an 
optimal plan – a plan that is optimized with respect to 
certain criteria (usually related to resource usage, including 
time), free of constraint violations, and with an acceptable 
PF.  Though this approach is applicable to many general 
planning and scheduling problems, the emphasis of this 
work is on mission planning and sequencing of spacecraft 
events.   
 
This paper is organized as follows: Section 2 describes 
spacecraft planning and sequencing as an important 
application of event planning and scheduling.  Section 3 
outlines an iterative approach on event planning and risk 
analysis.  Section 4 describes the mathematical formation 
and detailed resource and constraint models that constitute 
the constraint optimization process.  Section 5 provides the 
Monte Carlo results.  Section 6 gives an upper bound of 

FP .  Section 7 discusses the concluding remarks and future 
work.   
 

2. MISSION PLANNING AND SEQUENCING 

Mission planning and sequencing is a critical component for 
mission operations, it provides a mechanism for scientists 
and engineers to operate the S/C remotely from the ground.  
It translates the science intents and spacecraft health and 
safety requests from the users into mission plans and 
sequences.  After a rigorous process validating the plan, it 
will be to the spacecraft for its execution.  Usually it is a 
time consuming and costly operation.  This paper will 
provide a methodology for formulating and optimizing both 
deterministic and non-deterministic sequence of events 
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planning.  A deterministic sequence is a set of spacecraft 
events in time ordered sequence, all events are associated 
with a pre-scheduled time for on-board execution.  
Whereas, a non-deterministic sequence should support 
activities that are event driven in several ways: an activity 
could be contingent upon the completion of other activities, 
it could be contingent upon the state of the spacecraft and/or 
estimated resources, or be triggered by real-time events such 
as the observation of a supernova explosion or precision 
landing.    
 
During a mission operation phase, traditional mission 
planning and sequencing tools with a set of spacecraft, 
resource, and constraint models at various levels of fidelity 
are being used.  Each mission plan or sequence consists of 
activities that are modeled as to their effects on key 
resources, often power, energy, telecommunication data 
rates from the spacecraft to earth, and data volume of 
onboard storage and downlink.  Modeling a plan against the 
models of resources can confirm or deny the viability of the 
plan. Unviable ones can be changed to become viable, 
yielding limits on durations or other aspects of activities. 
Usually, a typical mission plan or sequence design and 
validation is done manually throughout a number of 
iterations until it becomes conflict free.  There is a natural 
progression to migrate the current practice to the 
aforementioned risk-based event planning and scheduling 
approach.   This approach allows mission planning and 
sequence generation first to define the planning and 
scheduling optimization criteria in objective function.  For 
example, scientists would like to over-subscribe a plan with 
a prioritized activity list; the objective is to schedule as 
many activities as possible based on a well-defined priority 
scheme, within a planning horizon.  Second, this approach 
allows user to select different types of rules and constraints 
to be checked for a given mission plan.  Examples of some 
of the rules and constraints are forbidden synchronic, 
exclusion, inclusion, precedent relation, and resources rate, 
etc.  For example, a typical mission plan or sequence‘s 
power consumption will be validated against how much 
power is available to the spacecraft, which can constrain the 
way the spacecraft is operated.  Another example is a 
temporal constraint, such as the CPU must be turned on 
prior to image capture activity.   
 
Thus far, we have illustrated the new methodology is 
capable of formulating a complex mission planning and 
sequencing problem, hence resolve any scheduling and 
resource conflicts, and construct an optimized conflict free 
plan.  This approach is applicable for both deterministic and 
non-deterministic event planning.  However, a non-
deterministic event plan cannot be validated as a single 
conflict free plan.  A stochastic approach to provide a risk 
analysis of a non-deterministic plan would be a more viable 
approach.  This approach will allow user to schedule any 
mission plan with a presence of uncertainties.  The system is 
capable of iteratively applying optimization followed by 
simulation, it tests a plan for its effectiveness of scheduling, 

and based upon the simulation results, the uncertainties will 
be quantified in term of its likelihood of success. 
 

3. INTERACTIVE APPROACH ON EVENT 

PLANNING AND RISK ANALYSIS 

This Section presents an analysis approach that iteratively 
applies constrained optimization and Monte Carlo 
simulation to reach an optimal plan that is free of constraint 
violations with an acceptable PF.  This approach was first 
suggested by William Gearhart in an internal JPL study 
titled “Nondeter-Deterministic Sequence Validation and 
Verification.”   
 
Let us begin with some definitions.  Consider n events of 
interest and the planning horizon [Ts, Te], and Te-Ts ≡ T.  
Let event Ei be characterized by the ordered pair ( i

ot , di) for 

1 ≤ i ≤ N, where i
ot  and di are the start-time and duration of 

event Ei respectively.  Let i
ot  be bounded by [ iTmin , iTmax ], 

and let di have a probability distribution pi(di).  For the sake 
of simplicity, let the event durations di’s be independent of 
each other, and let pi(di) have a unimodal probability 
distribution function characterized by mi and σi, where mi 
and σi are respectively the mean and standard deviation of 
di.  To support constrained optimization, we choose fixed 
event durations ∆i = mi + λiσi such that di ≤ ∆i with a 
reasonably high degree of confidence.   
 
If the events are all independent, the problem can be as 
simple as populating the timeline(s) with as many events as 
possible.  But in most real world scenarios, many events of 
interest are dependent on each other in one or more ways.  
These dependencies can be expressed in the form of rules 
and constraints.  Also, the planning horizon T is usually not 
long enough to accommodate all events.  Thus a criterion of 
optimality is to fit as many high-priority events as possible 
into the planning horizon without violating any constraints.  
The dependencies between events, or constraints, can be 
rather complicated.  The following are some examples of 
dependencies among events:   
 

1. Time order:  Ei must occur before Ej for some i and j. 
2. Inclusion: If Ei occurs, Ej must occur for some i and 

j. 
3. Exclusion: If Ei occurs, Ej must not occur for some i 

and j.   
4. Forbidden Synchronic: If Ei and Ej occur, they must 

not overlap.   
5. Priority: Ei is given a priority score Θi for all i. 
6. Finite Resources: The onset of any event triggers the 

consumption of resources.  The amount of resources 
used at any time by all events must not exceed the 
maximum allowable amount.   
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We will show in Section 4 that the aforementioned 
dependencies among events and criterion of optimality can 
be expressed mathematically in the form of constraint 
models and objective functions.    
 
Given the above mathematical formulation, we define the 
following procedure that iteratively applies constrained 
optimization and Monte Carlo simulation to reach an 
optimal plan:   
 
Step I: Constrained Optimization of Events Planning 
 
For a given set of event durations ∆I’s and the 
aforementioned linear and nonlinear criteria and constraint 
models, we use commercial optimization engines to 
generate the set of start time i

ot ’s that defines an optimal 
plan that is free of constraint violation.   
 
Step II: Monte Carlo Simulation of PF 
 
Now given the optimal plan, we run Monte Carlo 
simulations of di’s using the given probability distribution 
functions pi(di)’s to determine the overall probability of 
successful completion of the plan within the given time 
horizon.  If the probability is acceptable, then stop.  If not, 
modify the optimization problem, typically by increasing 
the task durations ∆i’s, then go to Step 1.   
 
Note that this plan is intentionally “sub-optimal”.  Once a 
plan is generated, the start times i

ot ’s are fixed, regardless 

of how the events are executed.  That is, the start time i
ot  of 

event Ei is not dependent upon the completion time of any 
prior events.  This guarantees successful execution of the 
plan as long as di ≤ ∆i for all i.  We also observe the 
following in our simulations:   
 
• Empirically we can show that given fixed start times 

i
ot ’s the Monte Carlo simulations converge quickly to 

the same result.  That is, the simulation always yields 
the same probability that the plan does not execute 
successfully, and is independent of the seed that 
initiated the simulation.   

• PF is always “well-behaved”.  That is, increasing the 
task durations ∆i’s will always yield lesser events to be 
accommodated but higher probability of completion or 
vice versa.   

 

4. CONSTRAINED OPTIMIZATION 

This section formulates the event planning and scheduling 
process into a constrained optimization problem.  In this 
paper, the authors choose to use the Matlab Optimization 
Toolbox routine FMINCON as the main computational 

engine for solving the constrained optimization problem.  
FMINCON implements the Sequential Quadratic 
Programming (SQP) method [4], and it finds a minimum of 
an objective function, subject to linear and non-linear 
constraints.  Therefore, the objective function in this 
problem must be set up so that “bad” schedules produce 
large objective function values.  The algorithm will then 
minimize the badness in the schedule, producing good 
schedules that meet the desired constraints.  Note that the 
SQP method for solving constrained optimization problem 
can usually only find locally-optimal solutions, and the 
starting point for the method (also called the initial guess) is 
often critically important for determining the quality of the 
final solution.  In fact, for a problem of this type, poor 
initial points often can result in failure of the solver to find 
any feasible optimum point at all.   
 
In the following subsections, the authors will provide the 
mathematical expressions of a number of objective 
functions and constraints for event planning and scheduling.  
The authors would like to point out that there are usually 
multiple ways to express the objective functions and 
constraints.  In this paper we choose to express the 
inequalities to meet as many sufficient conditions as we can 
to assure the convergence of the SQP method.   
 

A. Objective Function 
 
In seeking an optimal schedule, it is first necessary to define 
the criterion of optimality and set up an objective function 
to measure the merit of any given choice of schedule.  Often 
in practice, a “good” schedule is one that accomplishes as 
much as possible, as soon as possible.  The objective 
function chosen for this optimization problem is given by 

 

.),...,(
1

0
1
0 ∑

=

=
n

i

i
o

n tttf                                                   (1) 

 
Other optimization criteria can be a weighted sum of i

ot or 

)max( i
o

i
t , depending on the desired outcome of the 

problem.   

B. Constraints 
 
In nearly all scheduling problems (and other optimization 
problems) it is not an unconstrained optimum that is sought; 
rather, there are specific needs that must be met 
unconditionally, and these determine which points are 
feasible in the problem. Then, within the context of meeting 
those needs, the optimization selects the set of state variable 
values that achieves the lowest (or possibly highest) 
objective function value.  The state variables in this problem 
are the start-times of the events, ntt 0

1
0 ,..., .  In the case of 
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the SQP algorithm, a constraint will be a function (say, 
),...,( 0

1
0

nttc ) that, when satisfied, is of the 

form 0),...,( 0
1
0 ≤nttc .    

 
For the rest of this section, we provide the mathematical 
description of a number of common constraint types that are 
found in the SEQGEN6 Adaptation Guide [5].     

 
1) Linear Constraints 
 
The time window constraint requires that event i  to fall 
within a specified time frame, [ ],, maxmin

ii TT  regardless of 
whether it occurs within the planning horizon or not.  This 
means that ii

o
i TtT maxmin ≤≤ i∀ .   

 
So if we define Tn

oo ttX ],,[ 1 L= (vector of state variable), 
TnTTTL ],,[ min

2
min

1
min L= ,and 

TnTTTU ],,[ max
2

max
1
max L= , we have the following linear 

constraints:   
 

LX ≥ ,                    (2) 
 

UX ≤                           (3) 
 
 
2) Nonlinear Constraints 
 
Forbidden Synchronic:  
 
This constraint dictates the simple criterion that when two 
given events are both scheduled, they must not occur 
simultaneously at any point in time; that is, they must not 
overlap.  Note that when the two events in question are not 
both scheduled, there cannot be a violation of this type. 
To develop the equivalent mathematical characterization of 
this constraint, assume first that both events i  and j are 
scheduled, and that they are not to overlap.  If one formed 

),min(),max( 00
ji

oj
j

i
i
o tttt −∆+∆+ , for events with 

any overlap, this value would be smaller than the sum of the 
durations of the events, ji ∆+∆ .  Therefore, to ensure that 

no overlap of events i  and j occurs when they are both 
scheduled, one needs to enforce the opposite; that is, 

 
.),min(),max( 00 ji

ji
oj

j
i

i
o tttt ∆+∆≥−∆+∆+      (4) 

 

 
6 SEQGEN generates and validates command sequence.  The commands 

sequence comprises of a time ordered commands that will be executed to 
achieve science objectives, maintain spacecraft health and safety, and 
establish communications between spacecraft and DSN stations.   

Setting this expression in the form “ 0≤• ” for use in 
numerical algorithms requiring constraints of that form, one 
gets 
 

0),min(),max( 00 ≤+∆+∆+−∆+∆ ji
oj

j
i

i
oji tttt  

(5 ) 
 
Since this constraint should only apply when both event i  
and event j  are scheduled (a scheduled event could 
overlap with a non-scheduled one without a violation 
occurring), it is required that the constraint function be 
multiplied by the two binary functions representing that 
both i and j are scheduled.  If both events are not present 

together, then the constraint function will reduce to 00 ≤ , 
which is vacuously true.  Thus, the final form of the 
constraint is given by 
 

].0),min(),max(        

[))((

00 ≤+∆+∆+−

∆+∆×≤∆+≤∆+
ji

oj
j

i
i
o

jij
j

oi
i
o

tttt

htht
  (6) 

 
While this equation is the technically correct form of the 
constraint for forbidden synchronic, implementing this in a 
SQP solver proved problematic.  In some cases, due to the 
“flat terrace” nature of the function, the optimization 
algorithm could not adequately manipulate events into a 
satisfactory schedule and would halt, reporting a failure. 
 
To modify this constraint into an expression that allows 
better performance of a SQP solver, instead of using the 
length of the overlap as a measure of the violation when a 
violation occurs, one could set up a monotonically 
increasing linear function of the distance between the 
midpoints of the two events in question. As the events' 
midpoints draw closer together, the measure of violation 
increases, to a maximum when that distance is zero.  This 
alternate version of the constraint is given by 

 

.0])(2                  

[))((

0 ≤∆−∆+−−

∆+∆×≤∆+≤∆+

ji
ji

o

jij
j

oi
i
o

tt

htht
                (7) 

 
which is a sufficient condition for meeting the requirement 
of no overlap between events i and j .  When implemented 
in an SQP solver, this variant of the forbidden-synchronic 
constraint proved to be easier for the algorithm to satisfy.   
 
Inclusion: 
 
The inclusion constraint used in this problem dictates that if 
event i is scheduled, then event j must be initiated in some 
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chosen time interval, here denoted ].,[ j
f

j
o ww  To develop 

the mathematical expression corresponding to this criterion, 
consider that when event j is scheduled, the relationship 
that expresses that the start time of the event occurs in the 
time interval ],[ j

f
j

o ww  is  

 

.
22

j
o

j
f

j
f

j
oi

o

wwww
t

−
≤

+
−                                        (8) 

 
Multiplying through by 2 and rearranging terms yields 
 

.02 ≤−+−− j
f

j
o

j
f

j
o

j
o wwwwt                                (9) 

 
Since this must hold if event i  is scheduled, but does not 
have to hold if event j is not scheduled, multiplying the 
constraint function by the binary value associated with 
whether or not event i is scheduled will produce the full 
inclusion constraint.  Therefore, the final form of the 
inclusion constraint is given by 
 

( ) .02)( ≤−+−−≤∆+ j
f

j
o

j
f

j
o

j
oi

i
o wwwwtht      (10) 

 
Note that it is fairly simple to modify this development so 
that the inclusion constraint includes the entire duration of 
event j in some chosen time interval (provided it is at least 
as long as the event's duration.)  That modification is not 
shown in this work, but simply involves adding an 
appropriate duration to the time interval of intended 
inclusion. 

 
Exclusion: 
 
The exclusion constraint used in this problem is similar to 
the inclusion constraint, but expresses the opposite criterion; 
it dictates that if event i is scheduled, then event j  must 
not be initiated in some chosen time interval.  Note that this 
implies that there exist two different modes by which such a 
constraint can be satisfied when event i  is scheduled.  
Either both events i and j are scheduled and the 
appropriate exclusion-inequality holds true, or event i is 
scheduled and event j is not.  As is the case with the 
forbidden synchronic constraint, this constraint will require 
two binary functions for relaxing the inequality expression 
when events i  and j  are not both scheduled.   
 
To develop the mathematical formulation of this constraint, 
consider the simple inequality ax ≥ for a positive.  This 

expression is equivalent to ax ≥  or ax −≤ , which is to 

say that x is at least a units from 0.  Using the same logic, 

to exclude the start-time of event ,j  j
ot , from the time 

interval ],,[ j
f

j
o ww one must keep j

ot  at least half of the 

length of ],[ j
f

j
o ww away from that interval's midpoint.  

Therefore, when events i  and j are both scheduled, 
 

.
22

j
o

j
f

j
f

j
oi

o

wwww
t

−
≥

+
−                                      (11) 

 
must also hold.  Multiplying through by 2 and rearranging 
terms, one gets 
 

.02 ≤−−−− j
f

j
o

j
o

j
o

j
f wwtww                               (12) 

 
This condition needs only hold when both event i and event 
j  are scheduled, so the inequality should be multiplied by 

the two binary functions associated with the existence of 
event i  and event j  within the planning horizon.  In final 
form, this exclusion constraint is given by 
 

( ) .02                

))((

≤−−−−×

≤∆+≤∆+
j
f

j
o

j
o

j
o

j
f

j
j

oi
i
o

wwtww

htht
      (13) 

 
Precedence Relations: 
 
Precedence relations enforce ordering of events in the 
schedule and also have an underlying logical implication 
between events' existence in the schedule.  To make this 
statement about logical implication clearer, consider that 
when one speaks of an event preceding another, it is 
assumed that the latter event actually does occur.  In this 
scheduling problem, though, there is a difference between 
“locating an event in time” and “scheduling” it.  As such, in 
setting up a precedence relation, one must carefully examine 
not just the start- and/or end-times of events, but also 
whether or not dependent events are actually completed 
within the planning horizon, and the exact logical nature of 
the desired dependence affects how that examination must 
be done. 
 
The authors chose to enforce two different types of 
precedence relations in this problem, where each constraint 
expression acts on a single pair of events.  Both of those 
relations will be derived in the next two subsections.   
 
“Event i  starts before event j finishes.” 

 
In the absence of a planning horizon, when all events 
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are scheduled, this precedence relation would simply be 
expressed as .j

j
o

i
o tt ∆+≤  To include the planning 

horizon as a driving factor in this problem, the 

expression must be modified.   
 

 It was chosen for this precedence relation that events 
i and j should only be allied, in the sense that only if 
both events are scheduled should the precedence hold.  
If they are not both scheduled, then there is nothing to 
enforce, and the relation should be vacuously true.  In 
this case, neither event's occurrence in the schedule is 
dependent on the other event's occurrence.   
 
Deriving this constraint is very simple; one only needs 
to multiplicatively combine the three elements just 
mentioned.  The precedence relation to be enforced, 
rewritten in the “ 0≤• ” form, is 
 

.0≤∆−− j
j

o
i
o tt                                                 (14) 

 
Since it is required that the expression relax to a 
vacuously true statement when either event i  or event 
j  (or both) are not scheduled, multiplying the 

inequality by the two binary values associated with 
those events being scheduled or not will produce the 
needed expression.  Therefore, the final form of this 
precedence relation is given by 
 

( ) .0))(( ≤∆−−≤∆+≤∆+ j
j

o
i
oj

j
oi

i
o tththt (15) 

 
“Event i finishes before event j  starts.” 

 
This precedence relation, in the absence of a planning 
horizon, asserts that .i

j
o

i
o tt ∆+≤  It was chosen 

(arbitrarily) to set up this relation to enforce that the 
events are coupled, so that if either event occurs in the 
schedule, the other must also.  Note that this exact 
precedence relation would be the one required if event 
i  were some mandatory precursor event for event ,j  
and if event i  had no purpose operating without event 
j in the schedule.   

 
To derive the mathematical expression for this relation 
as a constraint, first imagine that both events are 
scheduled and the desired precedence holds.  Then one 
has 

 

  
j

oi
i
o

j
j

oi
i
o

tt

htht

≤∆+

≤∆+≤∆+

 and

  ,  , 
                             (16) 

 
all true.  Rewriting the third inequality in the form 

“ h≤• ” will be helpful, as then one has 
 

 
hhtt

htht

i
j

o
i
o

j
j

oi
i
o

≤+∆+−

≤∆+≤∆+

  and

,   ,
                               (17) 

 
Consider that, in a general setting, with numbers 

, and , , cba  if one has     
            

    hchbha ≤≤≤  and , ,                                      (18) 
 

then it is the exactly equivalent statement to write 
 

hcba ≤),,max(                                                 (19) 
 
Using this fact, and comparing it with the logical 
expression in (17), one can see that if either event i or 
event j  is scheduled, then 
 

hhtttt i
j

o
i
oj

j
oi

i
o ≤+∆+−∆+∆+ ) , ,max(

(20) 
 
must hold, which is equivalent to 
 

0)                

, ,max(

≤−+∆+−

∆+∆+

hhtt

tt

i
j

o
i
o

j
j

oi
i
o

                (21) 

 
The last step in the derivation of this constraint is to 
multiply by an appropriate binary-valued function so 
that the previous equation becomes vacuously true (i.e., 

00 ≤ ) if and only if neither event i  nor event j  is 
scheduled; otherwise the binary function should return 
1, so that the previous inequality must be held true non-
trivially.   
 
With a moment of reflection one can see that, although 
the following is not the only choice, the binary-valued 
expression given by  

 
  ( ))(),(max htht j

j
oi

i
o ≤∆+≤∆+                     (22) 

 
meets the above requirement.  Multiplying the previous 
inequality by this expression, the final form of this 
constraint becomes  
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( )

0])                

, ,[max(

)(),(max

≤−+∆+−

∆+∆+×

≤∆+≤∆+

hhtt

tt

htht

i
j

o
i
o

j
j

oi
i
o

j
j

oi
i
o

              (23) 

 
Resource Rate Constraint 
 
In nearly any scheduling problem involving events that 
consume resource, either the maximum instantaneous rate 
of resource consumption or the total amount of resource 
consumed, or both, will necessary to consider.  In this 
problem, it was chosen to constrain the maximum allowable 
rate of resource consumption for any feasible schedule.   
 
To set this criterion as a constraint, let maxr  be the 
maximum rate of consumption allowed, and assume that 
event i  consumes the resource at a constant rate, ir , when 
operating.  The total rate at which the schedule is 
consuming the resource at any time t  is given by 
 

,)( )(
1
∑

=

=
n

i
i trtR                                                           (24) 

where 
 

h
otherwise

htt

httt
rtr

i
i
o

i
o

i
i ≤

⎪⎩

⎪
⎨

⎧

+∆−−

+−
= )

0
           

,,max( if
)( ;               (25) 

 
Note that the expression 

hhtthttt i
i
o

i
o <+∆−−+− ) ,,max(  is equivalent to  

 
httttt i

i
o

i
o ≤∆+≤≤  and ,,                                     (26) 

 
which must hold if at time t  the rate ir  is nonzero.   
 
If violations of the resource rate constraint are to correspond 
to positive numbers, then a very sensible (and easy-to-code) 
way to define the constraint when only numerical 
computations will be performed is  
 

∫ =∆−>−
h

o

trtRrtR 0])()[0)(( maxmax                    (27) 

 
The expression )0)(( max >− rtR  refers to the logical 

(binary) value of whether or not .0)( max >− rtR    
 
It should be clear, upon careful examination, that equation  
(27) sets violations of the resource rate constraint to be the 
total amount of resource consumed at the rate beyond the 

allowed maximum, over the duration for which that rate is 
positive.   
 
For the problem at hand, the authors used a different 
method to handle the computation of the resource rate 
constraint.  Explicit integration of a rate function was not 
used.  Instead, a sorted vector of time-endpoints of all 
events was processed to identify the total rate of 
consumption at each subinterval, and comparisons of those 
totals to the allowed maximum enabled rate-violating 
subintervals to be identified.  Multiplying the length of each 
rate-violating subinterval by the difference between the 
operating rate and the allowed maximum rate and adding 
those values produced the violation amount.  This method is 
faster than most numerical quadrature schemes, and it gives 
the exact value of the integral in equation (27) when the 
consumption rate for each event is a constant. 
 

C. Problem Summary 
 
In summary, the constrained optimization problem that this 
paper is trying to solve is to find the state vector 

Tn
oo tttX ],,,[ 2

0
1 L=  that minimizes ∑

=

n

i

i
ot

1

and satisfies 

the following conditions:   
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D. Example of Problem and Results 
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We construct an example of 30 events scheduled with two 
precedence relations, an exclusion relation, an inclusion 
relation, and a maximum rate resource constraint of 3 units.  
Each event consumes the resource at one unit per unit time.  
Figures 1 and 2 show the optimized schedule and the 
resource usage profile respectively.   
 
 

 
 

Figure 1 
 

 
 

Figure 2 
 

5. SIMULATION 

When a schedule is optimized with the duration of each 
event fixed to a specified level of confidence, one can 
simulate the durations to obtain the probability that the 

given schedule failing due to constraint violations and 
events extending beyond the planning horizon.  The 
distributions of the durations of events that were used to 
demonstrate the simulation techniques were the uniform, 
normal, log normal, beta, and triangular distributions.  It is 
assumed that the random durations are independent of each 
other.  We describe the simulations in details using an 
example of 5 events and an example of 10 events.    

A. Example of a Simulation Problem of 5 Events 
 
This example consists of a plan with five events that are 
scheduled optimally with the following constraints:   
 

• Events 1 and 3 must not overlap  
• Event 1 must finish before Event 4 begins, 
• There is only one type of resource consumed, and 

all events consume that resource at a rate of one 
resource unit per time unit, with the maximum 
allowable consumption at any time to be 2 units at 
any time. 

• The planning horizon must end at time unit equal 
to 26 

 
Table 1 summarizes the probability distribution and its 
parameters of each of the 5 event durations.   
 
Event 
ID 

Type of 
Dist. 

Parameters Min. 
Value 

Max 
Value 

1 Uni. NA 5 7 
2 Beta α=4, β=4 1 3 
3 Norm µ=10, σ=.5 NA NA 
4 Tri. Peak=4 3 5 
5 LogN µ=2, σ=.5 NA NA 
 

Table 1 
 
In this example each event has its duration fixed at the value 
such that each event has a 99% chance of taking that long or 
less to complete.  Let iSP , , which in this case is 0.99 for all 

,i  denote that probability that event i would successfully 
end with the duration being a certain value or less.  We 
apply FMINCON to the above problem to compute the 
optimal start times 5

0
1
0 ,..., tt , and the results are given in 

Table 2.  Figure 3 provides the timeline depiction of the 
optimized plan, and we can visually verify that there is no 
constraint violation.   
 
 

Event ID Initial Time 
1 0 
2 0 
3 6.98 
4 19.14 
5 1.86 
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Table 2 

 

 
 

Figure 3 
 

Based on the optimized plan of 5 events as described above, 
we perform 10 Monte Carlo simulations of 5000 runs each 
to estimate FP .  The results are tabulated in Table 4.  In 
this simple case of 5 events, we can enumerate all possible 
scenarios of event violation and analytically compute 

FP based on the individual iSP , , 51 ≤≤ i .  As shown in 

Table 4, the simulation result matches closely with the 
enumerated result.  In a typical scheduling problem for 
mission operation, there are typically many more events.  
To enumerate all possible scenarios of event violation to 
analytically compute FP  would be impractical, and it will 

need to resort to simulation to compute FP .   
 
Simulation ID 

FP  of the 5 Event Plan  
1 0.0292 
2     0.0304 
3     0.0266 
4     0.0272 
5     0.0278 
6     0.0296 
7     0.0256 
8     0.0282 
9     0.0296 
10     0.0292 
Average FP      0.0283 

Analytical FP      0.0288 

Upper bound of FP       0.05 

 

Table 4 

Example of a Simulation Problem of 10 Events 
 
Next we describe a larger example of a 10-event case with 
the following constraints: 
 

• Events 1 and 3 may not overlap  
• Event 1 must finish before Event 4 begins, 
• There is only one type of resource consumed, and 

all events consume that resource at a rate of one 
resource unit per time unit, with the maximum 
allowable consumption at any time to be 3 units at 
any time. 

• The planning horizon ends at time unit equal to 26 
 
Table 5 summarizes the probability distribution and its 
parameters of each of the 10 event durations.   
 
Event ID Type of 

Dist. 
Parameters Min. 

Value 
Max 
Value 

1 Uni. NA 5 7 
2 Beta α=4, β=4 1 3 
3 Norm µ=10, σ=.5 NA NA 
4 Tri. Peak=4 3 5 
5 LogN µ=2, σ=.5 NA NA 
6 Uni. NA 2 5 
7 Beta α=5, β=5 3 8 
8 Uni. NA 1 3 
9 Tri. Peak=3 2 5 
10 Tri. Peak=4 2 6 

 
Table 5 

 
As in the 5-event case, events in this example are scheduled 
optimally, with duration of each event fixed at the value 
where each event has a 99% chance of taking that long or 
less to complete.  Again we apply FMINCON to optimize 
the above plan of 10 events and Figure 4 illustrates the 
resulting timeline.   
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Figure 4 

Again we perform 10 Monte Carlo simulations of 5000 runs 
each to estimate FP .  The results are tabulated in Table 5 
below.   
 
Simulation ID Probability of Schedule (10 

Events) Failing 
1 0.0424 
2     0.0430 
3     0.0458 
4     0.0448 
5     0.0382 
6     0.0372     
7     0.0358     
8     0.0434     
9     0.0400 
10     0.0430 
Average FP      0.0414 

Upper Bound of FP      0.10 

 
Table 6 

 

6. A SIMPLE UPPER BOUND OF FP  

As shown in Section V, the simulation of PF can be quite 
tedious, and it is a function of the optimized conflict-free 
plan.  In this section, we derive an upper bound of PF that is 
expressed as a function of ,1,, niP iF ≤≤  where PF,i=1-PS,i 

denote the probability that event i would end with a 
duration of di that exceeds the predetermined duration ∆i as 
described in Section III.  Let us also denote PS be the 
probability that the schedule succeeds, meaning it does not 
violate constraints nor exceeds the planning horizon. It is 
obvious that 

nSSSS xPxPPP ,2,1, ...≥ ,            (28) 

because the term nSSS xPxPP ,2,1, ... , does not take into 

account all the possible ways in which events may exceed 
the designated durations determined by PS,i , and still have a 
successful schedule.  Thus we have 

),1(
)1(1...11

,

1,,1,

nF

FnSSSF

P
PxPxPPP

−
⋅⋅⋅−−≤−≤−=
 

which results in an upper bound of PF given by 
 

nFFFF PPPP ,2,1, ⋅⋅⋅++≤            (29) 

 
Thus this simple upper bound of PF does not require tedious 
simulations as shown in (29), and is just the sum of all 

niP iS ≤≤1,, .  Also this upper bound is independent of 

the optimization algorithm used to generate the plan.   

 
The upper bounds of FP  for the 5-event case and 10-event 
case in Section V are 0.05 and 0.1 respectively.   

7. CONCLUDING REMARKS AND FUTURE WORK 

In this paper, we discuss the problem of planning and 
scheduling of events with non-deterministic durations.  We 
introduce the probabilistic description of event durations, 
and derive an analysis approach that quantifies the tradeoff 
between planning risk and planning efficiency.  Also we 
demonstrate that the general criteria of optimality and rules 
and constraints for event planning can be described 
mathematically in terms of linear and non-linear functions 
and inequalities.  This allows the use of customized and 
COTS constraint optimization algorithms to generate 
conflict-free plans.   
 
We would like to point out that the aforementioned risk 
analysis approach in event planning is similar in some 
respects to telecommunication link analysis.  The standard 
link analysis is a proven statistical estimation technique for 
evaluating communication system performance and trade-
off.  Link analysis uses the Design Control Table (DCT) 
that consists of the calculation and tabulation of the useful 
signal power and the interfering noise power available at the 
receiver.  Many of the gain and loss parameters that 
comprise the link are statistical.  Each of the statistical link 
parameter x can be described in terms of a design value xd, a 
minimum value xmin, a maximum value xmax, and a 
probability distribution function f(x) such that that f(x) ≠ 0 
for xmin ≤ x ≤  xmax, and  f(x) = 0 for x < xmin and x > xmax.  
Some common form of f(x) are the uniform, triangular, and 
truncated Gaussian distributions.  From this setup, one can 
deduce the mean of x (denoted by xm) and the variance of x 
(denoted by xvar).  In link analysis when a large number of 
independent link parameters are added together (in 
decibels), one can use a “hand-waving” argument of the 
Law of Large number to deduce that the net contribution, 
which is usually expressed in terms of signal-to-noise ratio, 
has a Gaussian distribution N(m,s2) where m is the mean 
and s is the standard deviation (a.k.a. sigma).  From this one 
can design a link and establish link margin policy based on 
statistical confidence level measured in terms of sigma (e.g. 
2-sigma event, 3-sigma event etc.).  This analysis is not 
mathematically rigorous, but decades of experience show 
that this approach works well to characterize the 
communication system performance, to support trade-off, 
and to manage the operation risks associate with the link 
usage.   
 
In closing, we outline a number of interesting problems that 
follow up on the results presented in this paper:   
 
• The planning and scheduling approach portrayed in this 

paper has the inherit efficiency that once a plan is 
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generated, the start times i
ot ’s are fixed regardless of 

how the events are executed.  It is possible that one or 
more events might finish early, and leave a gap before 
the subsequent events start, thus causing idle time.  So 
are there inline algorithms or heuristics that will check 
the dependencies among events and kick off the 
subsequent constraint-free events at earlier times to 
improve efficiency?   

• Given PF as the requirement, how can one establish 
robust margin strategies for resource allocation and 
planning horizon to ensure that the plan would execute 
successfully?   

• How can one perform sensitivity analysis for non-
deterministic event planning?   

• Can we apply these techniques to perform onboard risk 
assessment to guide decision making in spacecraft 
autonomy?   
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