Mars Network -
A Telecommunications and Navigation Infrastructure for Mars Exploration

Chad Edwards
Chief Telecommunications Engineer, Mars Exploration Program
Jet Propulsion Laboratory, California Institute of Technology
June 15, 2005
Mars Telecommunications Overview

- Communications is a key challenge for in situ exploration
 - Earth-Mars link is 10^8 times more challenging than a GEO comsat link

- Telecommunications relay orbiters offer high-rate, energy-efficient links for Mars exploration
A Decade of Mars Exploration

2001: Mars Odyssey
2003: Mars Express (ESA)
2005: Mars Reconnaissance Orbiter
2007: Mars Science Laboratory
2009: Mars Telesat Orbiter
Program Drivers on Telecommunications Infrastructure

- Increased Science Data Return for MSL-Class Landers
- Enabling Energy-efficient Relay for Scout-class Missions
- Robust Capture of Critical Event Tracking and Telemetry
- Public Engagement - Creating a Virtual Presence at Mars
- Precision in situ Navigation and Positioning
- Increased Comm Contact for Complex Surface Operations
Mars Network Evolution

STRATEGY ELEMENTS:
- Standardized relay telecommunications protocols
- Relay payload on every science orbiter for low-cost early network
- Dedicated Telesat offering breakthrough capabilities for MSL and next-decade
- Redundant relay orbiters for support of each surface campaign

Timeline:
- **Launch MOI**
- **Science & Relay**
- **Extended Mission**

Orbiters:
- **MGS**
- **Odyssey**
- **Mars Express**
- **MRO**
- **Mars Telecomm Orbiter**

Dates:
- '03 MER-A/B
- Beagle-2
- '07 Phoenix Scout
- '09 MSL
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
As of March 9, 2005, over 100 Gbits of MER data have been returned via UHF relays through Odyssey and MGS – 97% of total MER data return

New CCSDS Proximity-1 space communications protocol
– Provides for reliable, gap-free relay link
– Establishes international standard for relay services

Successful MER - Mars Express relay demonstration
– Validates NASA-ESA interoperability
– Establishes an international relay infrastructure

In situ positioning based on UHF doppler tracking
– < 30 m (3-sigma) MER position determination using 2-way coherent UHF tracking measurements on Odyssey
Direct-to-Earth X-band Semaphores
(~1 bps effective data rate)

Critical Deployments

UHF Relay to MGS
(8 kbps)

UHF Relay to ODY
Network Evolution: Mars Reconnaissance Orbiter

• Launch in 2005
• Low altitude science orbiter
• Electra UHF Transceiver
 – Standardized CCSDS Prox-1 Protocol
 – Flight-reprogrammable
 – Frequency-agile
 – Improved coding and modulation
• High-performance DTE link
 – X-band primary (3m, 100W)
 – Ka-band demo (3m, 35W)
• Initial use of CCSDS File Delivery Protocol (CFDP)
 – End-to-end data accountability
Network Evolution:
Mars Telecommunications Orbiter

• High-altitude telesat orbit
 – Increased contact time, critical event coverage

• High-performance relay links
 – Electra Proximity Link Payload
 – Addition of X-band (8.4 GHz) receive capability for high-rate directional relay links
 – 15 dBi steered UHF antenna; 50 cm steered X-band MGA

• Multiple DTE links
 – X/Ka-band prime
 – Optical comm demo
Electra Proximity Link Payload

- Standardized communications protocols
- Multiple proximity link services
 - Command (forward)
 - Telemetry (return)
 - Radio metrics
 - Timing
- Flight-reprogrammable “software radio” architecture
- Frequency-agile for multi-link environment
Communications Protocols

- **CCSDS Proximity-1 Space Link Protocol**
 - Provides international standards for the physical and data link layers for Mars proximity communications
 - First implemented on Mars Odyssey followed by Beagle2, Mars Express, MER A/B; will be used by MRO, Phoenix, MTO, and MSL
 - Key for achieving interoperability among multiple Mars landers and orbiters

- **CCSDS File Delivery Protocol (CFDP)**
 - Provides reliable and complete end-to-end file delivery
 - Addresses unique aspects of deep space communications
 - Long RTLT
 - Intermittent connectivity
 - High BER links
 - Multi-hop store-and-forward relays
 - Custody transfer to minimize onboard storage rqmts

- **Full documentation at** http://www.ccsds.org
Next Decade and Beyond…
Summary

• The sustained exploration of Mars drives the need for an orbital telecommunications infrastructure
 – Increased data return and contact time
 – Robust critical event coverage
 – Energy-efficient relay
 – In situ navigation

• Key strategies
 – Improved DTE performance
 – Relay capability on every Mars science orbiter
 – Reprogrammable Electra proximity link radio
 – Standardized comm protocols
 – Dedicated Telesat to provide breakthrough capability
Backup
MTO Telecommunications Capability

- **Scout-Class Lander UHF**: 128 kbps (80 Mb/sol)
- **Critical Event Monitor UHF**: 1 - 16 kbps
- **MSL-Class X-band**: 4 Mbps (up to 56 Gb/sol)
- **MSL-Class UHF**: 256 kbps (up to 1 Gb/sol)
- **MRO X-band**: 5.3 Mbps (115 Gb/6 hrs)
- **100 W X-band**: 0.4 - 4 Mbps
- **35 W Ka-band**: 0.5 - 10 Mbps
- **5 W Laser**: 1 - 30 Mbps
- **100 W X-band**: 0.4 - 4 Mbps
- **Critical Event Monitor UHF**: 1 - 16 kbps
- **MSL-Class UHF**: 256 kbps (up to 1 Gb/sol)
- **Scout-Class Lander UHF**: 128 kbps (80 Mb/sol)

- **Laser**: 1 - 30 Mbps
MTO Coverage

- High telesat altitude provides greatly improved coverage for critical events and for extended surface contacts.