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Knowledge of the global distribution of the vertical velocity of and cloud is important in

latent heat fluxes, and therefore in the study of energy transportation in the atmosphere, the climate and weather. Such
knowledge can only be directly acquired with the use of spaceborne Doppler Atmospheric Radars (DAR). A Doppler
Atmospheric Radar (DAR) is a spaceborne coherent radar designed to detect hydrometeors and their motion. Two main sub-
categories of atmospheric radars can be roughly discriminated by their operating frequency, the Precipitation Radars (PR, at 35
GHz or lower) and Cloud Profiling Radars (CPR, at 35 GHz or higher).

2.Why Doppler?

Spaceborne Doppler Atmospheric Radar:
an overview for measuring atmospheric dynamics

The use of coherent systems is well established in the ground and airborne weather radar and the ad

brought by the Doppler capability (i.c., direct measurement of the speed of the hydrometeors relative to the radar) are widely
recognized.

Although, the use of Doppler systems from space to measure atmospheric targets is hindered by the high orbiting velocity of
the radar (which introduces issues and effects otherwise negligible for slower platforms), the average vertical velocity can be
measured to acceptable accuracy levels. Such result can be obtained only by appropriate selection of radar parameters and data
processing algorithms, and by recognizing some general trade-off considerations in the radar system design.
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Latent Heat in Precipitating Systems

Agparant Hest Soure

o Latent Heat Absorption/Release due to the water phase
changes is one of major contributors to the overall heating.

o Stratiform ~ Precipitation: heating in the upper troposphere
and cooling in the lower troposphere. Vertical profiles are
quite consistentover the globe (aside fiom the altitude of the

OsignOchange which is dependent on the altitude of the

‘melting layer)

o Convective Cells: Heating and cooling are determined by
the prosence and magnitude of updrafts and downdrafis.
Vattical - profiles of latent heating differ significantly from
stratiform ipitation  and are also quite different for
different regions, seasons and even within the diumal cycle.

o Surface Rainfall Rate: assuming no horizontal advection,
the surface mainfall rate comosponds to the integral (column)
amount of condensated liquid water and can therefore be
used to estimate the integral latent heat released.

o Refer to: Yanai et al. 1973, Houze 1982, Houze 1989, Tao
ctal. 2001
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3. Airborne and Spaceborne Doppler Radars

JPL Airborne Precipitation Radars

The 3-D high resolution datasets obtained by the two
IPL airborne radars are the primary dataset used in
this investigation.

ARMAR: Ku-band, dual-pol, Doppler, scanning radar
APR-2: See table below and diagram to the right
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+14 GHz (Ku-band) and 35 GHz (Ka-band) dual-frequency radar
* Deployable antenna reflector with matched beams (4 m x 4.3 m x 3 panels)
—  Horizontal resolution: 2.5 km @ h=380 km
+ Wide-swath coverage using adaptive scanning: + 30°scan, ~440 km swath @ h=380 km
« Simultaneous HH and HV polarization
+On-board, real-time pulse compression: 250 m vertical resolution
+Transmit peak power required: 640 W @ 14 GHz; 280 W @ 35 GHz
*Enhanced minimum detectable Z: 6 dBZ @ 14 GHz; 2 dBZ @ 35 GHz
+14-GHz vertical Doppler meas. @ 1 m/s precision
+On-board processing: Doppler, pulse averaging

Nexrad-In-Space (Dr. Eastwood Im)

Monitoring time evolution of rain & cloud from GEO (alt. = 36,000 km)
35-GHz, 4° spiral scanning radar to cover 5300-km diameter earth disk (equivalent to coverage of
48" latitude and 48" longitude)

Deployable spherical aperture antenna to obtain 12 to 14 km horizontal resolution

Innovative antenna scan strategy:
— 1 transmit feed and 1 receive feed with fixed spacing to compensate for pulse delay
— Scan by motion of 2 feeds on spiral path
+ Advantage over 2-D electronic scan, which requires millions of phase shifters
+ Advantage over mechanical rotation of entire antenna, which creates unacceptable torque
« Advantage over S/C rotation, which requires custom-made,
usually very expensive S/C

Vertical resolution of 300 m using pulse compression

Rain detection sensitivity: ~ 5 dBZ (after 100 sample averaging y
— ~12 dB more sensitive than the TRMM radar

Vertical Doppler profile measurements with 0.3 m/s precision

One 3-D full-scan image once per hour

Real-time processing to reduce downlink data volume/rate

EarthCARE (ESA/NASDA
Earth Explorer selection ‘04)

+ 94 GHz (W-band) radar
« Vertical Doppler meas.




@ e JIPL

4. DAR performance in Doppler measurements

“The natural Doppler velocity spectrum of rainfall

« Shape: approximately Gaussian.

« Spectral width o in the 1-5 ms range, depending mainly
on DSD, turbulence and wind speed.

© Mean vertical velocity: depends mainly on the DSD and
vertical component of wind (up- and down-drafs).

el i el

Received complex signal: zero-mean Gaussian.
« Signal power fluctuation: negative exponential distribution.
Radar obxerved  Doppler velocity s the radial component of the

relative. motion of the farget (raindrops) in an clementary volume
at coordinates (7, 6, ¢) with respect 1o the radar
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A pulsed Radar calculates the moments of the Doppler
spectrum from sequence of M complex radar samples 5,

5. 3D Doppler Radar Simulator

ARMAR - 3D Z & V fields

Cartesian Res - Hor: 200m, Ver:60m

- R=az
« 4= f(R) in the DSD expr.
«v,(D)=(D) by Atlas
26KV, ik [ Mie

Radial Spectrum

Broadening
« Turbulence
*Wind Shear
+Satellite Motion

Small Volume
A8=6,,/10 Ag=10°
P

W(ro.r)

ARMAR and APR-2
3D HiRes fields of

reflectivity and Doppler vel.

from TOGA/COARE,
KWAJEX, CAMEX-3,
CAMEX-4 and WAKASA
BAY campaigns.

HiRes Cartesian grid:
Ax = 200m (along track)
Ay = 200m (cross-track)
Az =60m (vertical)

Spaceborne radar volume of
resolution for 6,45 = 0.3°:

in the along track, track and vertical direction

aonponents received from each resolution cell
respectively. Vs is the satelite speed (around 7 k')

T.=4PR
w=p | [f 11l
time

Normalized spectral widths
for different radar configurations (Op.Freq.,Antenna Size D (m) & PRF (Hz))

[\
When the Doppler broadening induced by the
satellitedominates over the width of the
rainfall spectrum o, the normalized Doppler
spectral width is inversely proportional to
antenna size,

‘The aliased portion of the Power spectrum and 3 turbulence regimes (s=1 m/s mild, o,=3 m/s moderate, a,=5 ms extreme)
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Earth Surface reference system
Satellite Motion reference system

Gray Circle: 6dB IFOV
Empty Circle: 54dB IFOV

* NUBF (Non Uniform
Beam Filling)
induces a bias on
the mean Doppler
velocity estimate.
Using conventional
Pair-Pair or FFT
techniques, the
magnitude of such a
bias can be of
several m/s.

The bias is highly
correlated with the
reflectivity
gradient  in the
along-track
direction. In fact
the isodops for
small 6,55 can be
approximated by
lines in the cross-
track direction.
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6. Correction of NUBF effects
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(3) NUBF induced error
Combined
Frequency-Time
(CFT) technique

Front projection

“Target Track’ in v-x (f-) plane

Standard Doppler spectrum

(3) NUBF induced error
ARMAR-KWAJEX case study
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7. Correction of Pointing Errors

(4) Pointing induced error
Effects of Pointing Error

Options to satisfy
the scientific requirement of 1 m/s accuracy
in vertical rainfall velocity estimates:
1. VERY TIGHT POINTING ACCURACY BUDGET:
rms(8,) = 4 arcsec is challenging for LEO satellites
2. ANALYSIS OF SEA SURFACE DOPPLER SPECTRUM:

« Clear air or uniform attenuation field: the measured mean

Challenging pointing error budgets
Pointing

(max

Doppler velocity of the surface corresponds to v,.

- NUBF: the sea surface Doppler spectrum is unevenly
attenuated and its mean Doppler velocity does not

correspond to vy, in general

8. Retrieval of Rainfall Parameters

(DFV Bayesian algorithm, Dr. Jonathan Meagher)

Ku band Reflectivty [dEZ] Ka bend Reflectvty [d5Z]

Reflactivity [dBZ]

10. Classification of Precipitation aer-2 aioritim, s Taneiiy

Melting Layer Detection - 3D Algorithm Results

Wakasa Bay — Stratiform rain over ocean (V. Light to Heavy)
January 19th 2003 - Flight #3
From 32°50' N, 137° 05'E (at 05:42 UTC) to 32° 10" N, 135° 20' E (at 06:04 UTC)

Linear Depolarization
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DF - RR [log10(mm/hn] o
il Wil a Dopplervekocty[mis]  E
\ <
e - Along-rack distance [km]
x , Jan 29, 2003 02:00 Wakasa Bay — Isolated Snow Cells
. l B i January 29th 2003 - Flight # 9 - Line 1
A From 36" 30 N 135° 30 E (at 03:18 UTC) to 38° N 135° 30 E (at 03:32 UTC)
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11. Analysis of impact of Multiple Scattering

(Dr. Satoru Kobayashi)
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9. Retrieval of Latent Heat profiles
= - LATENT HEATING
Z,A‘ftﬂlul) [dBZ], M (E\arc‘l;;’r)am‘ blue—grax\xpel. red . Calculated from Troe F
. [] '!I.*'
Aoparsn o = = |
N n!red : i = s
MHydrometeor Phase | W Estimated through non-Doppler measure Z
Changs Rute Y - =
Mydromabeor Vertical "B - z
Mass Pz ; = &
Mean fmarsawighted] { B i - 3
...:,,.m:(-w . Eﬁllmated through Doppler measurem g
Partscle Valocity v i - . - i | g
TR . CFT Estimated v, (color) [mis] i = 3
NN _ —3 1| [ = g
W ; % s W | Diagnosed by the CRM

CFT Error [m/s] . ¥

- o0 “.U.I g 1 w

Time-independent analytical model includes effects of muliple
scattering as estimated by radiative transfer theory and of
backscattering enhancement as well as a finite beam geometry.
Incremental reflectivity is relative to single scattering return.
Marshall-Palmer DSD, 35 GHz, 100m layer thickness.

Frequency : 95 GH
Analytical wave theory (AT) and radiative transfer theory (RT)

Diameter : 1mm

Copolarization
Frequency : 95 GHz
Footprint radius : 22 m

141, +C, (AT) Water spherical particle

95| 1+L, (RT)

Diameter : Imm
L,+C, cross-pol
: Number density: 5x10° m

Layer thickness : 100 m

Increment in reflectivity (dB)

Scattering angle 0,

Layer thickness / mean free path
(Optical thickness)




