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GLOBAL SEARCH FOR PLANAR AND THREE-DIMENSIONAL  
PERIODIC ORBITS NEAR EUROPA* 

 
Ryan P. Russell† 

 
A global grid search is performed to find axi- and doubly-symmetric periodic orbits in the 
Restricted Three Body Problem using the dimensioned parameters associated with the Jupiter-
Europa system.  Derived local differential correctors are applied to regions of the initial 
condition phase space that appear to be near solutions.  The volume inside a three-
dimensional initial condition mesh with billions of nodes is evaluated and over 600,000 
periodic solutions are found.  Families of direct and retrograde solutions, both new and 
previously published, are identified and discussed.  Stability is analyzed for each solution and 
general regions of stability are noted.  The resulting global database of all the solutions is a 
practical reference for preliminary design of missions to Europa. 

INTRODUCTION 
 The dynamics of the Restricted Three Body Problem (RTBP) have been studied to near exhaustion 
over the past two centuries.  Only in recent years has the prospect of operating a spacecraft in this unique 
environment become a reality.  In our solar system, there are potentially hundreds of three-body systems that 
are modeled quite well by the RTBP.  As a result, engineering applications abound due to the growing appetite 
of the science community to send exploratory spacecraft to answer some of their most fundamental questions.  
Europa, in particular, has been the subject of heightened interest due to its suspected sub-surface and potentially 
life harboring ocean.  In anticipation of future spacecraft missions to Europa, this study seeks to improve the 
global view of the stability properties of the six-dimensional phase space in the vicinity of Europa.  Identifying 
and classifying periodic orbits in the Jupiter-Europa RTBP provide the basic framework for the analysis. 
 

Periodic orbits in the Restricted Three Body Problem (RTBP) have been studied and documented by a 
multitude of researchers.  The interested reader is referred to Broucke,1,2 Henon,3,4,5 Poincare,6 and Szebehely.7   
For further studies specifically related the three-dimensional orbits, see Jeffreys,8, 9 Goudas,10,11 Zagouras,12,13 
Markellos,14 and Lara.15,16,17  A variety of techniques have been introduced to identify both specific solutions 
and continuous families of solutions.  Under certain predictable conditions, families of solutions intersect at 
bifurcation points.  The typical approach to scanning a particular phase space for periodic solutions is to start 
with a known solution (obtained by any means necessary), then parametrically continue the solution along its 
family in both directions until it naturally ends while noting all potential bifurcation points along the way.  By 
this approach, a researcher can maneuver through the phase space along a web of bifurcating branches that has a 
structure that is a priori unknown.  An alternative approach to find periodic orbits is to simply perform a grid 
search for each the unknown parameters and integrate forward to check for conditions of periodicity.  Then if a 
solution is nearby, a differential corrector can be used to target the conditions exactly.  This latter brute force 
method is inefficient in terms of computational power, but for small enough meshes, can globally capture the 
full structure of most existing families without having to individually follow multiple bifurcations along a 
complicated set of branches.  The extraordinary speed of modern computers has not only made the brute force 
approach practical, but for global scans it is simpler to automate and therefore is often more efficient in terms of 
clock time.   

 
The present study applies the grid search approach on an ambitious scale to the dimensioned Jupiter-

Europa system approximated by the RTBP.  The differential correctors are modeled after the corrector methods 
used by Robin and Markellos;14 however, the predictor step is replaced by an exhaustive grid search.  The 
approach is based on the grid search of the planar Hill’s Problem by Henon and the three-dimensional (3D) grid 
search of small regions in the RTBP by Kazantzis and Goudas. 18  The study is global in its attempt to identify 
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all axi-symmetric solutions near Europa that close after crossing the xz-plane up to 32 times and all doubly-
symmetric  periodic orbits near Europa that close after crossing the xz-plane up to up to 64 times.  It is noted that 
the search does not seek that solutions with xz-plane symmetry and no x-axis crossing as well as solutions that 
are asymmetrics are precluded from the search.  In addition asymmetric solutions  

 
Families of simple periodic solutions in the context with their associated higher order resonances are 

illustrated in both two and three dimensions.  As a result the study gives a global perspective on dynamics in the 
vicinity of Europa.  Note, the third dimension makes presenting the results more of an art form and perhaps an 
exercise in data mining rather than simple procedure.   

 
The 3D motion clearly is related to the planar motion, and the planar motion is clearly related to one or 

more of the five simple periodic families that exist near Europa.  The analysis and discussion is based on this 
expected and verified phenomenon.  General boundaries are identified in the phase space that separate stable or 
mildly unstable motion from regions of strong instability.  A selected set of representative orbits are illustrated 
and their characteristics documented.  The final set of all solutions is archived and is of practical reference for a 
variety of mission design applications at Europa. 

BACKGROUND 
In this section, relevant background is presented including equations and appropriate derivations for 

the primary technical concepts associated with finding and analyzing periodic orbit. 

Equations of Motion 
 The equations of motion for a non-thrusting spacecraft in the Jupiter-Europa Restricted Three Body 
Problem (RTBP) centered at Europa are given in Eq. (1).  The equations are normalized such that the radius of 
Europa’s assumed circular orbit is one distance unit (DU) and the mean motion of Europa about the barycenter 
is one radian per time unit (TU).  The x-axis is fixed opposing the direction to Jupiter, the z-axis points along 
Europa’s angular momentum vector with respect to Jupiter, and the y-axis completes the right-handed 
coordinate system. 

( , )t=X f X  
(1) 
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Because the system is Hamiltonian and autonomous, an integral of motion, known as the Jacobi 

integral, exists of the form in Eq. (2).  Table 1 gives recent estimates for the dimensioned parameters specific to 
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the Jupiter-Europa system.19  Thus, for converting from normalized units to km and seconds, the distance unit is 
670900 km and the derived time unit becomes 48822.04433066813 seconds. 

Table 1:  Europa Parameters 

Parameter Value19 
Jupiter-Europa distance 6.709 x 105 km 
Europa radius 1560.70 km 
Europa gravitational parameter a (GmE) 3202.72 km3/sec2 
Jupiter gravitational parameter a  (GmJ) 1.2668654 x 108 km3/sec2 

a From Eq. (1) µ =2.528002607976249 x 10-5  

Variational Equations 
To first order, the general time-free variation to a reference state, X*, at a time t+δt, is illustrated in Eq. 

(3) and Figure 1. 

*( ) ( ) ( )t t t t tδ δ δ δ+ = +X X X  
(3) 
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Figure 1:  Variations 

The time-fixed variation at a given time is obtained by mapping an initial perturbation forward using 
the state transition matrix, Φ(t,t0), also known as the fundamental matrix.1   

0 0( ) ( , ) ( )t t t tδ δ=X Φ X  
(4) 

Equation (4) is derived by substituting X = X*+δ X into Eq. (1) and expanding the right-hand side into 
a Taylor series in X centered about X*.  The resulting first order linear differential equation is: 

( )
*

( ) ( )t tδ δ= ∂ ∂X f X X
 

(5) 

A solution is sought of the form given in Eq. (4).  Comparing Eq. (5) to a time derivative of Eq. (4) 
yields: 

( ) ( )0 0 0 0* *
( , ) ( ) ( ) ( , ) ( )t t t t t t tδ δ δ= ∂ ∂ = ∂ ∂Φ X f X X f X Φ X

 
 

Thus, for an arbitrary 0( )tδX , the state transition matrix is obtained by integrating Eq. (6) along the 
reference trajectory. 
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 The partial derivative in Eq. (6) is known as the Jacobian, and for the RTBP is given by: 
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Substituting Eq. (4) into (3), Eq. (7) is the general first-order expression for obtaining the state 

perturbations at a given time, t, due to small perturbations in t and the initial state. 

0 0 *( ) ( , ) ( ) ( )t t t t t t tδ δ δ δ+ = +X Φ X X  
(7) 

Equation (7) provides the derivatives of a final state with respect to an initial state and will be used to 
differentially correct initial conditions to find periodic orbits.  Additionally, the state transition matrix will play 
an important role in determining the stability of a given periodic orbit.  These applications will be addressed 
further in the following two sections. 

Stability 
 The state transition matrix evaluated after a full period, t=T, of a periodic orbit is referred to as the 
Monodromy matrix.  This matrix provides a linear mapping for small initial state perturbations across one full 
period.  By definition, an eigenvalue, λ (real or complex), of the Monodromy matrix is a scalar proportionality 
factor that satisfies the relation: 

0( , )T t λ=Φ ξ ξ  
(8) 

 Thus, for an eigenvalue with a magnitude greater than unity, perturbations in the eigen-direction, ξ, 
will grow after one period, and the orbit is unstable in this direction.  Because of the symplectic20 nature of the 
state transition nature, Broucke, among others, has shown that the eigenvalues of the Monodromy matrix occur 
in reciprocal pairs. 1  Furthermore, for the RTBP, one of the eigenvalues will be unity due to the existence of the 
Jacobi integral stated in Eq.(2). 1,21   Thus, the eigenvalues for the Monodromy matrix for the three-dimensional 
RTBP will have the form {λ1, 1/λ1, λ2, 1/λ2, 1, 1}.  Therefore, if an eigen-direction exist that leads to a 
contraction, then there is also an accompanying eigen-direction that leads to an expansion.  Thus, to avoid 
expansions in any direction, all eigenvalues must have a magnitude of 1.   
 
 The characteristic equation of the Monodromy matrix is written as, 

[ ] ( ) ( ) ( ) ( ) ( )2
0 1 1 2 2det ( , ) 1 1/ 1/ 0T t λ λ λ λ λ λ λ λ λ λ− = − − − − − =  Φ I

 
(9) 

 
Eq. (9) can be rewritten to define two sets of commonly used stability parameters (a1,a2) and (k1,k2). 1, 17   
 

( ) ( ) ( ) ( ) ( )2 24 3 2 2 2
1 2 1 1 21 1 1 1 1 0a a a k kλ λ λ λ λ λ λ λ λ λ− + + + + = − − + − + =

 
(10) 

Note that ai is always real because the quartic in Eq. (10) comes directly from the determinant of a real matrix, 
while factoring it into the two quadratics may require ki to be complex.   
 
 The roots of Eq. (10) lead to seven categories for eigenvalue classification, each corresponding to a 
specific region in the (a1,a2) plane. 1  Only one region (with a rather complicated shape) corresponds to linear 
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stability, i.e. ensures that λ1 and λ2 are on the unit circle.  Stated in terms of the (k1,k2) plane, the region of 
stability is the much simpler shape defined by the rectangle |ki| ≤ 2, with the requirement that ki is real. 
  

The current study seeks a wide range of solutions, not limited to orbits with non-complex values of ki.  
Furthermore, due to the complicated shape of the stability region in the always real (a1,a2) plane, it is it difficult 
to comparatively measure how far a particular unstable orbit is from the stability boundary.  Thus, for unstable 
orbits, a single, real, scalar index of instability is proposed and defined in Eq. (11). 

( )1 1 2 2max , 1/ , , 1/ρ λ λ λ λ=
 

(11) 

Stable orbits will have a ρ value of 1, and because each eigenvalue shares a reciprocal pair, 1 is the 
lower bound.  Note that for a stable orbit, it is still interesting to evaluate the k stability indices (ki=λi+1/λi) 
because they are always real and have a range -2≤ki≤2.  Certain critical values of ki lead to potential 
bifurcations, or points of intersection between two or more families of periodic orbits.  A great deal of 
references discuss these bifurcations and the associated stability indices. 1,5,713,14  The search method implored in 
this study is a global grid search and does not depend on bifurcations;  therefore, the indices discussed in this 
section are evaluated for each of the identified solutions only for analysis and potential future use. 

 
From comparing coefficients in Eqs. (9) and (10), the following relations are found. 
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Eq. (13) gives a fast method for calculating ai and is derived in Ref. 10 and restated in Refs 12 and 13.  
(Note, the equations presented are correct but there is an error in Ref 10 regarding the stability when ki is 
complex.3)   
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Thus, a fast method for obtaining the eigenvalues and all of the associated stability and instability 
indices of the Monodromy matrix is found from Eqs. (11)-(13).   

Symmetries 
If the variable transformation {t=-t, y=-y} is applied, then the state and associated derivatives become:  

[ ] [ ]
[ ] [ ]
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x y z u v w x y z u v w
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T T

T T

 

 

  
Plugging the derivative transformations into the left side of Eq. (1), and state transformations into the 

right side, the resulting equations are identical to those prior to the transformation.  The RTBP equations of 
motion are therefore invariant under the transformation {t=-t, y=-y}.  The implications are as follows: If an 
arbitrary initial condition (x0, y0, z0) is integrated forward in time, the resulting trajectory will be a mirror-image 
(with respect to the xz-plane) of the trajectory integrated backwards in time starting from the initial conditions 
(x0, -y0, z0).  This is illustrated in Figure 2a.  
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Figure 2: Symmetry in the RTBP 

 
Thus, if a trajectory has an initial position on the xz-plane and an initial velocity perpendicular to the 

xz-plane, then the backwards integrated mirror-image motion will have a continuous position and velocity with 
the forward integrated motion at the xz-plane crossing.  Therefore, instead of two mirror-image trajectories with 
discontinuities (as seen in Figure 2a), it can be considered as one continuous trajectory that exhibits symmetry 
centered around a perpendicular crossing of the property of the xz-plane.  If, in addition, the trajectory ends in a 
perpendicular crossing, then this state also will exhibit the symmetric motion when integrated forwards and 
backwards with no discontinuities.  Therefore, the trajectory is closed, and the motion is periodic.  It follows 
then, if a RTBP trajectory is found with two perpendicular crossings of the xz-plane separated by a time, T/2, 
then the trajectory is periodic with a period, T.  

 
The equations of motion can also be easily shown to be invariant under the transformation {t=-t, y=-y , 

z=-z}.  If an arbitrary initial condition (x0, y0, z0) is integrated forward in time, the resulting trajectory will be a 
180ο rotation (of the x axis) of the trajectory integrated backwards in time starting from the initial conditions (x0, 
-y0, -z0).  This is illustrated in Figure 2b.  It follows then, from a similar argument to that above, if a RTBP 
trajectory is found with two perpendicular crossings of the x axis separated by a time, T/2, then the trajectory is 
periodic with a period, T.  This type of simply-symmetric orbit is referred to as an axi-symmetric periodic 
orbit.12, 14     

 
The most obvious symmetry of the RTBP is the symmetry with respect to the xy-plane.  In this case the 

equations of motion are invariant under the simple transformation {z=-z} with no reversal of time.  Thus, if an 
arbitrary initial condition (x0, y0, z0) is integrated forward, the resulting trajectory will be a mirror image (with 
respect to the xy-plane) of the trajectory integrated forward starting from the initial conditions (x0, y0, -z0).   

 
A doubly-symmetricorbit is one that enjoys the xz-planar symmetry and x axis symmetry.8,9,10,18    Note, 

that it also exhibits the xy-planar symmetry but there is no mention of it being called a triply-symmetric orbit in 
the literature.  If an orbit begins on and perpendicular to the x axis with initial conditions (x0, 0, 0, 0, v0, w0) and 
ends perpendicular to the xz-plane with a state (xT/4,0,zT/4,0,vT/4,0) and t=T/4, then by the xz-plane symmetry, the 
orbit will trace a mirror image and re-encounter the x axis with a state (x0,0,0,0,v0,-w0) and t=T/2.  Then, by the 
xy-plane symmetry, the orbit will re-trace the full trajectory with z=-z and re-encounter the x axis with the 
original state (x0, 0, 0, 0, v0, w0) and t=T.  It is also axi-symmetric because it has two perpendicular crossings of 
the x axis.   

 
From the discussion above, it is only necessary to integrate half of the full period for an axi-symmetric 

orbit and one-quarter period for the doubly-symmetric orbit.  However, the Monodromy matrix, or the state 
transition matrix evaluated over one full period, is needed  to evaluate stability.  Equation (14) gives a fast 
method to calculate the Monodromy matrix for the axi- and doubly-symmetric orbits that start on the x axis 
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without having to integrate the full period, where L and K are 6 x 6 identity matrices with the exception of L1,1= 
L4,4= L6,6= K1,1= K3,3= K5,5=-1. 14   

 
1

0 axi 0 0
21

0 doubly 0 0

( , ) ( / 2, ) ( / 2, )

( , ) ( / 4, ) ( / 4, )

T t T t T t

T t T t T t

−

−

=

 =  

Φ LΦ LΦ

Φ LΦ KΦ
 

(14) 

Differential Correctors 
 In this section, local differential correctors are derived in order to target axi- and doubly-symmetric 
orbits based on their respective conditions for periodicity and Eq. (7).  The equations are based on the first order 
terms in a linearization of a highly nonlinear system; therefore, the initial orbit must be in the neighborhood of a 
solution, and typically several iterations are required for convergence.22 

Axi-symmetric 
An orbit with two perpendicular crossings of the x axis is axi-symmetric.  One set of associated 

conditions for periodicity is given as,   

{y0 = z0 = u0 = 0} and {yT/2 = zT/2 = uT/2 = 0} (15) 

The first three conditions of Eq. (15) are automatically satisfied by starting all orbits on and perpendicular to the 
x axis.  Thus, the search parameters become {x0,v0,w0,T/2}.  It is desired to adjust these four parameters such 
that the final three conditions are met.  Given a reference orbit that is near axi-symmetric, the search 
perturbations to the initial state to be used in Eq. (7) become 

0 0 0 00 0 0x v wδ δ δ δ =  X
T

 
(16) 

Inserting Eq. (16) into Eq. (7), the perturbations of interest at the final state become 

/ 2 0 / 2

/ 2 0 / 2

/ 2 0 / 2/ 2

T yx yv yw T

T zx zv zw T

T ux uv uw TT

y x y
z v z t
u w u

δ δ
δ δ δ
δ δ

 Φ Φ Φ     
      = Φ Φ Φ +      
      Φ Φ Φ        

(17) 

The yT/2=0 periodicity condition of Eq. (15) can be automatically enforced by terminating the state 
propagation after the spacecraft has exactly N crossings of the xz-plane.  The reference orbit, then, ends with 
yT/2=0 exactly.  Of course the corrected orbit should also end on the xz-plane, and thus δyT/2 is set to zero.  
Solving for δt in the top row of Eq. (17) gives,  

( ) ( )/ 2 0 0 01 T yx yv ywt y x v wδ δ δ δ= − Φ +Φ +Φ
 

(18) 

Inserting Eq. (18) into the remaining rows of Eq. (17) gives 

( )
0

/ 2
0

/ 2 / 2
0

1T zx zv zw
yx yv yw

T ux uv uw T

x
z z

v
u uy

w

δ
δ

δ
δ

δ

 
Φ Φ Φ        = − Φ Φ Φ       Φ Φ Φ           

(19) 

Eq. (19) is under-constrained because there are three unknowns and two constraints.  Thus, any of the 
three initial perturbations to x, v, or w can be fixed to zero and a unique expression is easily obtained for the 
other two.  For example, if a solution is sought with the same x axis crossing as the reference orbit, then 

0 0xδ =  and 

( )/ 2 0

/ 2 0/ 2

1T zv zw
yv yw

T uv uw T

z z v
u uy w

δ δ
δ δ

Φ Φ        
= − Φ Φ        Φ Φ          

 

The reference orbit ends with some near-zero values for zT/2 and uT/2.  In order to drive these to zero for 
the corrected orbit, δzT/2 and δuT/2 are set to -zT/2 and -uT/2 respectively.  Solving for the unknowns gives the final 
form for the differential corrector used in this study when searching for axi-symmetric orbits.  Note that Eq. 
(20) is valid given a near-axi-symmetric reference trajectory is provided.  Also, remember that T/2 is chosen 
independently for both the reference trajectory and the corrected trajectory such that yT/2 is zero to machine 
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precision.  The matrix in Eq. (20) can is always invertible because the columns of the state transition matrix are 
simply a scaled set the linearly independent general solutions to Eq. (5). 

1
/ 20

/ 20 / 2

zv yv zw yw T

uv yv uw yw TT

z y z y zv
u y u y uw

δ
δ

−Φ − Φ Φ − Φ −     
=     Φ − Φ Φ − Φ −     

(20) 

Doubly-Symmetric 
An orbit with one perpendicular crossing of the x axis and one perpendicular crossing of the xz-plane is 

doubly-symmetric.  One set of associated conditions for periodicity is given as   

{ y0 = z0 = u0 = 0 } and { yT/4 = uT/4 = wT/4 = 0 } (21) 

Note, the initial three conditions from Eq. (21) are identical to those in Eq. (15).  Thus, for a doubly-
symmetric, the search perturbations to the initial state to be used in Eq. (7) are identical to those in Eq. (16).  
The final three conditions in Eq. (21) are same as those in Eq. (15) except for a doubly-symmetric orbit the 
target is zT/4=0 instead of wT/4=0.  By a similar procedure as shown for the axi-symmetric orbit, Eq. (22) gives 
the final form for the differential corrector used in this study when searching for doubly-symmetric orbits.  Note 
that Eq. (22) is valid given a near-doubly-symmetric reference trajectory is provided.  As in the case for the axi-
symmetric orbit, the resulting corrected trajectory will have the same initial x0 as the reference.  And again, T/4 
is chosen independently for both the reference trajectory and the corrected trajectory such that yT/4 is zero to 
machine precision. 

1
/ 40

/ 40 / 4

uv yv uw yw T

wv yv ww yw TT

u y u y uv
w y w y ww

δ
δ

−Φ − Φ Φ − Φ −     
=     Φ − Φ Φ − Φ −     

(22) 

Planar 
If motion is restricted to the xy-plane, Eq. (20) can be reduced to a one-dimensional expression given 

in Eq. (23).  Henon calls this N periodic symmetry, where a solution has N-1 intermediate non-perpendicular 
crossings of the x axis.  Equation (23) can also be derived from Eq. (22) because, in the planar case, a 
perpendicular crossing of the x-axis is also a perpendicular crossing of the xz-plane.  Note that the time between 
perpendicular crossings is T/2 rather than T/4 because the planar orbit does not require the period doubling 
associated with the xy-plane symmetry of the three-dimensional doubly-symmetric orbit.  

( )
/ 2

0

/ 2

T

uv yv T

uv
u y

δ −
=

Φ − Φ
 

(23) 

GLOBAL GRID SEARCH 
As discussed above, axi- and doubly-symmetric periodic orbits can be initiated on and perpendicular to 

the x axis.  Thus, an exhaustive grid search over the four dimensional space { x0, v0, w0, T } is sufficient to find 
all axi- and doubly-symmetric periodic orbits.  The search parameter, T, or the orbit period, can be replaced by 
the integer-valued N because the terminal conditions for both types of orbits occur at xz-plane crossings.  Thus, 
for a given set of { x0, v0, w0 }, the trajectory is integrated forward with y0 = z0 = u0 = 0 and is terminated on the 
Nth crossing of the xz-plane with a final time, tf .  If the the final velocity is near perpendicular to the x axis, then 
Eq. (20) is applied and the process is iterated until convergence if possible.  If a solution is found, it is deemed 
an axi-symmetric N periodic orbit with T = 2tf .  If the the final velocity is near perpendicular to the xz-plane, 
then Eq. (22) is applied and the process is iterated until convergence if possible.  If a solution is found, it is 
deemed a doubly-symmetric N periodic orbit with T = 4tf .  Figure 3 shows a sample trajectory with the labeled 
search parameters { x0, v0, w0, N }. 
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Figure 3:  Sample trajectory and associated search parameters: x0 , v0, w0, and N 

 
 To be consistent with Henon,3 x0 is allowed to be positive or negative while v0 and w0 are restricted to 
be positive only.  Note that any solution with positive w0 in the RTBP also exists with negative w0 due to the xy-
plane symmetry.  Also note, for every perpendicular x axis crossing with a positive v, there is a reciprocal x axis 
crossing with a negative v.  Thus, duplicate orbits are avoided by seeking only positive values for v0.  
Trajectories with positive x0 move initially in a direct motion with respect to Europa, and trajectories with 
negative x0 are initially retrograde. 
 
 It is noted that the search space is limited to trajectories with x-axis crossings.  Therefore, the class of 
orbits that exhibit the xz-plane symmetry, but not the x axis symmetry (i.e. not doubly-symmetric) will not be 
found with this search.  The halo family23 is a notable example that is precluded from the present search.  For 
examples of the halo family for the Jupiter-Europa system, see Ref. 17. 
 
 For a given x0, the {v0, w0} space is searched for N=1→Nmax, and Eq. (20), (22), or (23) is applied to 
find axi-symmetric, doubly-symmetric, or planar solutions respectively.  In general, the solutions appear as 
points in the v0w0 plane.  This process is repeated for a sufficient number of x0 values, and when all the solutions 
are plotted in the three-dimensional {x0, v0, w0} space, families of solutions appear as two-dimensional lines.  
For a slice of constant x0, Figure 4 illustrates the interior mesh points in the v0w0 plane and example solutions.   
 
 The differential correctors require multiple shooting of the integration of the six-state plus 36 
variational equations.  Computationally they are roughly two orders of magnitude more expensive than simply 
integrating a six-state just once.  For a sufficiently fine mesh then, it is neither efficient nor practical to apply 
each of the differential correctors at every node.  Ideally, each converged solution should only require one 
implementation of a differential corrector.  For example, from Figure 4, all 9 nodes might be lead to final states 
that are near the periodicity conditions associated with the indicated solution, however it would be inefficient to 
apply the differential corrector each time only to find the same solution.   
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Figure 4: Interior mesh points for the v0w0 grid at a 
given x0 

Figure 5: Near-solution criteria and initial guess 
for differential corrector 

 
 

To reduce duplicate solutions, the differential corrector is only called when a defined criteria is met 
indicating a solution is nearby.  The chosen criteria is based on sign changes for the target conditions.3,18  As 
illustrated in Figure 4, an axi-symmetric solution generally exists at the intersection of two lines where the signs 
of zf  and uf change, and a doubly-symmetric solution generally exists at the intersection of two lines where the 
signs of uf  and wf  change.  The term generally is used because it is possible, though unlikely, that a solution 
exists without such a boundary.  For instance, the uf corresponding to a solution may have a zero value with no 
sign change boundary because it is a local extremum.  If the boundary does exist however, a solution is in the 
vicinity if a step in any direction on the grid leads to a sign changes in both periodicity conditions.  For 
example, if the step is taken from node (r+1,c) to node (r+1,c+1), this indicates the presence of a nearby axi-
symmetric solution because both zf  and uf change signs.  A doubly-symmetric solution is detected if stepping 
vertically from node (r+2,c+1) to node (r+1,c+1) because both wf  and uf change signs.  Note, in this example, 
no single step in the vertical direction detects the axi-symmetric solution whereas no single step in the 
horizontal direction detects the doubly-symmetric solution.  Thus for completeness, multiple directions require 
evaluation.  It is noted that the mesh must be sufficiently fine such that two unique boundary lines for the same 
variable are never crossed in one step, otherwise, a change in sign for this variable will go undetected.   

 
For fine meshes, the sign change boundaries become lines and the intersections become an ‘X’ as 

illustrated in Figure 5.  The six step-directions are introduced and all are evaluated for a dual crossing.  If a 
solution exists inside the four nodes and if the boundaries are in fact lines, then the ‘X’ can be oriented such that 
as few as one or as many as four step directions have dual crossings.  In the example shown, steps 2 and 5 meet 
the criteria.  The normalized distances, d2 and d5, are evaluated via interpolation assuming uf and zf behave 
linearly from node to node.  The initial guess for the differential corrector is then placed at the midpoint 
between the two intersections on the step associated with the smallest distance.   
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FOR  x0 = x0min to x0max by dx0 (increment ix) 
FOR  w0 = w0min to w0max by dw0 (increment iw) 

FOR  v0 = v0min  to v0max by dv0 (increment iv) 
X = X0  (y0 = z0 = u0 =0) 
FOR N=1 to Nmax by 1 

Propagate X to the next crossing of xz-plane (or impact/escape Europa) 
IF [no impact or escape] 

Store zf ,uf ,wf in Row(iv,1:3)  
IF [w0=0 and iv>1] 

Planar=False 
IF [sign change in uf ] 

Use Row to interpolate to zero uf crossing (record x0 and vp0) 
Planar=True 

ELSEIF [iv>1 and iw>1]  
FOR Step=1 to 6 by 1 

Axi-symmetric=False, DoublySymmetric=False 
IF [sign changes in uf and zf  along Step direction] (Use Row and LastRow) 

Interpolate to find zero crossings on the Step line 
Calculate axi-symmetric dStep from Figure 5  
Axi-symmetric=True   

IF [sign changes in uf and wf  along Step direction] (Use Row and LastRow) 
Interpolate to find zero crossings on the Step line 
Calculate doubly-symmetric dStep from Figure 5 
DoublySymmetric= True 

END Step loop 
IF [Axi-symmetric]   

Evaluate best va0, and wa0 based on min(axi-symmetric dStep) 
Send x0, va0, and wa0 as initial guess to axi-symmetric differential corrector 

IF [DoublySymmetric]   
Evaluate best vd0 and wd0 based on min(doubly-symmetric dStep) 
Send x0, vd0, and wd0 as initial guess to doubly-symmetric differential corrector  

IF [Planar]   
Send x0 and vp0 as initial guess planar differential corrector 

Record any differential corrector solutions  
Check for repeated solutions and false classifications (N and symmetry) 
Evaluate the stability and other characteristics (N, T,…) of final solution 

END N  loop 
END v0 loop 
LastRow=Row 

END w0 loop 
END x0 loop 

 

Figure 6:  Grid search algorithm 
 

The implementation effort for the described process is significantly reduced by simplifying the 
interpolation scheme or removing it entirely and only giving node values as initial guesses.  However, because 
the 2D grid search must be repeated for sufficiently spaced slices of constant x0, even with the extraordinary 
speed of modern computers, there is a practical limitation in the fineness of the mesh resolution.  Thus, for a 
large-scale 3D global search, it remains beneficial to wisely select a near-solution criteria along with an initial 
guess interpolation scheme.  It is noted that a variety of other interpolation strategies and near-solution criteria 
are possible.  The described approach is generally found to be an appropriate balance between computational 
effort and search completeness.  The algorithm is given in Figure 6. 
 
 The planar and the 3D cases are evaluated independently because entire families of planar solutions are 
known to exist and the reduced dimension affords a much finer mesh.  In both cases, the algorithm is applied 
first with a course mesh with liberal values for ranges on the search space { x0, v0, w0, N } to determine 
appropriate mesh sizes and ranges for later more refined searches.  Table 2 presents the associated mesh 
parameters with each of the final four search regions. 
 

All trajectories are integrated with a variable step Runge-Kutta 7(8) routine that is modified to allow 
for a general stopping condition, i.e. at xz-plane crossings.  For the initial shooting, the error tolerance is set 
such that the Jacobi constant remains fixed up to 8 significant digits.   In the differential correctors, the error 
accuracy is increased to maintain approximately 13 digits in the Jacobi constant, and the convergence criteria, 
or the norm of periodicity constrains,  must be met to a tolerance of 1E-10. 
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Table 2:  Global search regions and parameters for Nmax =16 

Search Region x0min 
 

x0max  
 

# x0
a  v0min 

(km/s)  
v0max  
(km/s) 

# v0
d w0min 

(km/s)  
w0max  
(km/s) 

# w0
 a 

Planar Retrograde  -150,000 km surface b 2,000 0.0 7.0 80,000 0.0 0.0 1 
Planar Direct surface b L2c 1,000 0.0 2.0 40,000 0.0 0.0 1 
3D Retrograde I -150,000 km -50,000 km 2,000 2.0 7.0 2,500 0.0001 1.5 750 
3D Retrograde II -50,000 km Surface b 3,000 0.0001 2.5 1,250 0.0001 3.0 1,500 
3D Direct surface b L2c 1,000 0.0001 2.0 1,000 0.0001 2.0 1,000 
a number of equally spaced values  b Europa radius defined in Table 2  c L2: far-side of Europa collinear libration point, xL2 = 13,744 
km, L1: interior collinear libration point, xL1 = -13,559 km  

 

RESULTS 
In total, over 10 billion grid points are evaluated and 616,942 solutions are found using approximately 

950 hours of total computer time on Linux machines with 3066 MHz processors.  Approximately 5% of the 
solutions, or 30,040, are found to be stable in a linear sense and have close approaches above Europa’s radius.   
Of those, 19,383 are planar. 

Planar Case 
 It is customary to parameterize RTBP solutions with the Jacobi constant because it is indeed an 
integral of motion.  Accordingly, although the grid search is performed in the (x0,y0) space, the solutions are 
plotted in the (J,x0) space.  Figure 7 and Figure 9 give a global view of planar motion periodic solutions in the 
vicinity of Europa for up to N=16.  Note, there are three levels of stability indicated in all of the following plots: 
linearly stable (ρ=1), mildly unstable (1< ρ <10), and highly unstable.  The highly unstable solutions have an 
instablililty metric ρ that can vary by orders of magnitude anywhere from 10 to 1012.  Subsurface solutions are 
calculated for up to 100 km below Europa’s mean radius.  By this approach it is easy to track the end of a 
family to a physical collision. 
 
 As expected, the simply periodic (N=1) families form the backbone for all solutions.  Starting with the 
direct case, there are three simply periodic solutions.  The nomenclature for the families varies in the literature 
and is not descriptive in general because there are too many families to describe.  Here, descriptive names are 
introduced for the main simply periodic solutions.  The Circle-Egg family begins as a direct circular grazing 
orbit around Europa near J=568.75 km2/s2 and slowly transitions into an egg shaped orbit with its base oriented 
towards Jupiter.  This is equivalent to Brouke’s H1 family and Robin and Markellos’ g1 family.  This family is 
stable for almost the entire region of interest becoming unstable just prior to impact.  The family transitions 
from being dominated by a circular shape to an egg-shape near an extremum in x0 around J=566.23 km2/s2.  The 
evolution of this family is followed in Row 5 of Figure 8.   
 

The Egg-Diamond family begins as a grazing egg-shaped orbit with its base away from Jupiter 
(J=566.18 km2/s2 , x0=11,500 km) and smoothly transitions to a circular- then diamond-shape and finally ends 
with two loops at the top and bottom of the diamond before colliding with the surface.  This family is equivalent 
to Broucke’s H2 family or Robin and Markellos’ g2 family.  From Figure 7, the family is stable for most of the 
egg-shaped portion until its maximum J value near 566.215. km2/s2.  The solutions for decreasing values of J 
move rapidly towards instability.  The evolution of this family is given in Row 4 of Figure 8.   
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a) overview b) zoom 

Figure 7:  Planar direct solutions (Nmax=16) 

 

 
Figure 8:  Evolution of the five simple periodic (N=1) planar families.  Coordinates are 
associated with Figure 7 and Figure 9 and given in J (km2/s2) and x0 (km). 

 
It is noted that Henon’s g and g′ family in the Hill’s model intersect3 whereas Figure 7b shows a clear 

gap between the Circle-Egg and the Diamond-Circle families.  In fact, by the current nomenclature, Henon’s g′ 
family is egg shaped on both ends, and the g family transitions from a circle to the diamond shapes, opposite 
from what is seen in the RTBP.  Further investigation of this phenomenon is left to future work.  To simplify 
discussion, however, the regions will be discussed in terms of branches: the circular-branch, the lower egg-
branch (both of the Circle-Egg family), the upper egg-branch, and the diamond-branch (both of the Egg-
Diamond family). 
 

The final direct simple period family is the L2 family.  This consists of closed orbits around the 
collinear libration point on the far side of Europa with respect to Jupiter.  This family, unstable in its entirety, is 
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shown as the top left most curve in Figure 7a.  It is noted that the curves on the bottom-left of Figure 7a indeed 
end with an impact, but the search failed to find these solutions because the escape condition was defined too 
liberally.  The L1 family is analogous to the L2 family only based on the interior collinear libration point.  This 
family is part of the bottom-right most curves given in Figure 9c.  The highly unstable top-left most families in 
Figure 9c are multiple period non-continuously orbiting (i.e. consecutive crossings of the xz-plane are not 
necessarily on opposite sides of Europa) families with properties of both the L1 and Diamond families.  The L1 
and L2 simple period families are illustrated in rows 2 and 3 respectively of Figure 8. 
 

 

a)   overview b)   zoom, far away c)  zoom, neck and close region 

Figure 9:  Planar retrograde solutions.  Motion is centered around the stable DRO family. 

 
 The DRO (Distant Retrograde Orbit)24 family begins as a grazing retrograde circular orbit and slowly 
transitions to a vertically aligned near-ellipse.  The family continues to exist for increasing distances from 
Europa, and is remarkably stable to well beyond 150,000 km.   From Figure 9, the DRO family is the stable 
curve that forms the central backbone for planar retrograde motion..  The evolution of the simple period DRO 
family is illustrated in row 1 of Figure 8.  The DRO is analogous to Broucke’s family C and Henon’s and Robin 
and Markellos’ family f.  Figure 9 illustrates the three distinct regions of motion near the DRO.  Clearly inside 
approximately 13,000 km, the bifurcated families are oriented with a minima in J, while beyond approximately 
25,000 km, the bifurcated families achieve a maxima in J at the intersection.  In between these two points is 
commonly referred to as the “neck” of the DRO.  Accordingly, the stability region around the neck shrinks in 
the planar case as indicated by the lack of neighboring families at the beginning and end in Figure 9c.17  Closer 
inspection reveals the boundaries are marked (and possibly enforced) by the intersection of the DRO curve with 
the associated N=3 curve.  The stability region opens beyond the neck and remains intact for remarkable 
distances from Europa, making this an attractive region to investigate in the third dimension.  Note the absence 
of intersecting families near and far away from Europa can be reduced by increasing Nmax.  This effectively fills 
in stable regions with stable and near-stable periodic orbits of higher resonance and fills the chaotic regions 
with highly unstable periodic orbits of higher resonance.  This principle is valid for all of the presented results. 
 
 The families that surround the five planar simply periodic solutions in general are similar to their 
originating curves, but exist at a different resonances with respect to Europa’s revolution around Jupiter.  For 
example, the trajectory that that bifurcates horizontally from an egg shaped orbit will appear similar to the top 
view of the orbits shown in the Appendix in Figure 15s and Figure 16d among others.  Orbits bifurcating 
horizontally from DROs will appear similar the top views of the orbits shown in Figure 15a-f for example.  
Orbits bifurcating from the circular-branch such as those on the right side of Figure 7b appear similar to the top 
views of the orbits in Figure 16o, q, r, and s.  Many of the circular-branch solutions appear to have symmetry in 
the yz-plane, but in fact do not in a similar manner that upper egg-branch family does not share exact symmetry 
with the bottom branch.  The solutions that appear as near-vertical lines on the right side of Figure 7a are near-
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circular, very-near-stable, high-resonance orbits that appear as bird nests in the rotating RTBP frame.  These are 
effectively 2-body ellipses around Europa with a migrating orientation primarily due to the rotating frame.  The 
orbits have a similar appearance to the top view of the orbit illustrated Figure 16e. 
 
 The results of the grid search in the planar case provide a global view of the geometry of the main and 
bifurcated families along with general regions of stability.  Figure 10 shows a well defined “cliff” where the 
stability properties change from near-stable with pockets of stability to clearly unstable.  The diamond-branch 
and the L2 family clearly dominate the unstable motion, while the two egg-branches, the circular-branch, and 
the saddle structure that appears on the circular-branch near J=567.3 18 km2/s2 dominate the stable and near-
stable regions and provide meaningful boundaries to classify the behaviors of the emanating orbits.  In the 
retrograde case, the stable regions are clearly centered around the DRO family where the neck seems to play a 
critical role in the size of the region.  The simply-periodic solutions and the general regions of stability provide 
the necessary framework for the discussion of the three-dimensional case. 

Three-Dimensional Case 
 

The addition of the third dimension brings added burden not only to the computational and algorithmic 
effort, but it also presents a new set of challenges associated with visualizing and interpreting the overwhelming 
number of resulting orbits and associated properties.  The adopted strategy is first to present the results in a 3D 
volume view of the associated initial conditions.  Then, each vector of initial conditions is represented in an 
alternate frame consisting of a proposed inclination angle that gives added insight and can be plotted against the 
x0 axis crossing for a 2D view that captures the general essence of the associated 3D space. 

The families of 3D periodic orbits are known to exist as lines through the (x0, v0, w0) space.  Again, 
similar to the planar case, the Jacobi constant is included in the parameterization and the results are presented in 
(x0, J, w0) where w0 is easily recovered using Eq. (2).  To emphasize the notion that most 3D solutions have a 
bifurcation history connecting them to the planar case, the planar solutions are included in the 3D views.   

Figure 11 presents several views of the same set of the direct 3D solutions.  Immediately, the apparent 
clustering of stable and near-stable solutions apart from the highly unstable solutions is evidence that 
boundaries of stability do indeed exist in the 3D case similar to that of the planar case.  It also clear at first 
glance that most solutions bifurcate from the planar case as expected.  Figure 11a gives the appearance of a 
sitting swan.  (Note that a rotated view gives the appearance that the swan is taking flight!)  The neck and head 
of the swan in Figure 11a are clearly related to the unstable regions of diamond-branch and the L2 family from 
the planar case.  The tail or the side of the body facing the viewer is clearly full of near-stable motion with 
many pockets of linearly stable solutions.   

Surprisingly most of the 3D solutions are found to exist to the left of the planar saddle structure (see 
Figure 7a near the critical energy level of 567.25 km2/s2.  Solutions to the right of the saddle do exist as 
evidenced by the peppering of solutions on the left side of Figure 11a and the right side of b).  These families 
bifurcate from the circular-branch, and b) indicates they generally start stable in the plane then transition to 
instability at some critical inclination.  This is consistent with the results from Ref. 17.  From b) and c) it is can 
be inferred that a large pocket of stable or near stable motion exists around 6000 to 8000 km and energy levels 
between 567 and 567.2 km2/s2. Note, this is directly above the planar, highly unstable region.   

The vast majority of the solutions found in the 3D case bifurcate directly from the generally small 
region of planar solutions illustrated in Figure 7b.  From b) and d), it is apparent that the general flow of the 
families is from one side of the circular-branch out of the plane towards the central stability region.  In fact, 
many of the families bridge the gap entirely with the 3D motion by starting and ending on either side of the 
circular-branch.  For example, Figure 11b) shows clearly one continuous family with a stretch of linear stability 
that vertically bridges the two closest opposing saddle curves in the planar case.   
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a)     overview 
 

c)     3D view from top 
 

b)     rotated and zoomed view d)     3D view from side 

Figure 11: Direct 3D and planar solutions combined, 3D view. 

 
 Because many science missions require inclined orbits for mapping or other purposes a pseudo 
inclination, i, is introduced that is simply the out of plan angle of departure from the x axis.  This provides a 
general metric of the expected out of plane motion for a particular orbit.  Figure 12a gives plots this value 
against x0 for each of the solutions.  Figure 13a and b gives more detailed views.  Note, that these are 2D plots, 
and the solutions are stacked on top of one another in the order of subsurface, highly unstable, mildly unstable, 
and finally stable.  The resulting picture is representative of the understanding based on Figure 11.  It re-
emphasizes the notion that the solutions clearly bifurcate from the plane and flow towards a highly inclined 
central region.  The somewhat remarkable result is the existence of a plethora of highly (pseudo) inclined stable 
orbits.   
 

Further investigation of the individual solutions that make up Figure 12a reveal that most of the stable 
solutions are of three general flavors, each corresponding to one of the three stable simple periodic planar 
branches shown in Figure 7:  In general each of the stable solutions has qualities that are associated with either 
the circular-branch (Figure 16s for example) or one of the two egg-branches (Figure 15v or Figure 16p 
respectively).  As all three types approach the pinnacle of the stability region (around 7000 km and 70 deg) they 
move towards a highly inclined near-circular orbit with less distinguishable characteristics.  The more circular 
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orbits exist on and near the central ridge that runs vertically through the top of the stability region.  This ridge is 
seen most clearly in Figure 13b.  Representative orbits near this feature include those presented in  Figure 16f-l.  
In general, the wavy families and the families with minima in inclination are related to the egg-branches, while 
the smoother more well behaved solutions, such as those that dominate the left side of Figure 12a, are related to 
the circular-branch. 
 

Note, the isolated stable solution near x0=11,000 and i=87 deg.  This somewhat pathological trajectory 
is plotted in Figure 16u.  Referred to as the “squid orbit” because of the top-down view, this orbit surprisingly 
meets the stability conditions, and indeed is stable enough to withstand numerical integration for thousands of 
periods.  However, when perturbing the initial position or velocity slightly, the trajectory quickly escapes 
indicating the stability island surrounding this orbit is very small. 
 

 

a) direct b) retrograde  

Figure 12:  Pseudo inclination vs. x0 , Overview 

 
 The retrograde case, appears much less complex than the direct case.  The inclination overview is 
given in Figure 12 with more detailed views in Figure 13c and d.  The 3D volume views are given in Figure 14.  
Overall, the stable motions tend to stay closer to plane than that of the direct case, and the flow of the more 
stable families is generally vertical, however the more unstable with the clear exception being the 3D families 
very far away that move in the direction of Europa but almost parallel to the plane.  The vertical seeking 
families seen best in Figure 13c cease to exist for Nmax≤16 beyond roughly 50,000 km.  In general these families 
start stable and eventually switch to high instability at a critical inclination near 25ο but may pass through the 
linear stability regions one or more times prior to the final switch.  This is in general agreement with the “Red 
Sea” plot from Ref. 24.  Also, the change in behavior of the solutions and the general absence of stable 
solutions near L1 is also generally consistent with the “Red Sea” plot.   
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a)  direct, zoom I.  Some families appear to exist for 
the full x0 span only at high inclinations.  Orbits 
from Figure 16k and r are two stable solutions 
from such a family. 

c)  retrograde, zoom I.  Note the absence of stable 
solutions near L1.   

b)    direct, zoom II.  Central highly inclined 
stability region.  The central ridge consists of the 
near-circular orbits.    

 

d)  retrograde, zoom II, inside L1.   

Figure 13: Pseudo inclination vs. x0 , Zoomed views 

 
Note, the 3D solutions near -150,000 km begin at low inclinations and are similar to the DRO family, 

but have near collision flybys with Europa that generate large out of plane motion and accompanying 
instability.  The solutions close to Europa that vertically bifurcate from the simple period DRO family appear as 
the sparse solutions that rise almost exactly vertical from the plane in Figure 13d, but are infrequently spaced 
because of the high resonances associated with close periodic solutions. 
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a)     overview  

c)     3D view from top 

 
b)     rotated and zoomed view close to Europa.  
Note the near stable highlighted solutions appear 
as loops in the left side of Figure 13c. 

 
d)     3D view from side 

Figure 14: Volume views of the 3D and planar solutions combined 

 
 Similar to the direct case, the 3D solutions are closely related to their related planar families as 
indicated by Figure 14a and c.  Isolated pockets of relatively high inclined orbits with linear stability are noted 
from Figure 13c and Figure 14c and d.  These are documented in Figure 15c,e,g, and h.  It is quite remarkable 
that stable solutions exist at such distances (both in-plane and out-of-plane) from Europa.  In the case of the 
orbits from Figure 15c and e, the stability pocket is does enjoy a non-trivial radius as indicated by the multiple 
contiguous solutions that enjoy stability as best seen from Figure 14d.   
 

Figure 15a-r give representative families of the set of found stable 3D retrograde orbits.  For the 
retrograde case, the stable periodic orbits generally take the shape of a cylindrical surface that maintain the 
shape of the DRO family of orbits when viewed from above.  This is true despite the variety of behaviors or the 
different families of stable solutions seen in Figure 14 and Figure 13c and d.  Even the near pathologically 
inclined orbit from Figure 15h partially maintains this general DRO shape when viewed from above.  A second 
exception is the case of the axi-symmetric orbit seen in Figure 15p where the cylinder is form is clearly 
destroyed. 
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The highly unstable orbits, both in the direct and retrograde cases have received much less attention 
and further analysis is left to future work.  Figure 17 and Figure 18 are nonetheless included to give a general 
idea of the types of unstable solutions.  Because approximately 95% of the found solutions are unstable, these 
figures are much less exhaustively representative of all the solutions.  For simplicity only low resonance 
solutions are included, and the set shown is indeed representative of the solutions of low resonance.  The 
solutions are ordered in increasing instability.  These orbits are of general interest for manifold dynamics 
applications such as low energy captures or escapes from Europa.  It is noted that orbits such as the one 
presented in Figure 17b-h have already been successfully applied for such applications and the results will be 
presented in a future paper. 

CONCLUSIONS 
 The conclusions fall into three general categories.  First, an efficient means of globally identifying a 
complicated set of 3D periodic orbits near Europa is demonstrated.  Differential correctors for axi- and doubly-
symmetric orbits are derived and a grid search algorithm is proposed with slight modifications to existing 
techniques.  The main contribution is the application of the grid search method to the Jupiter-Europa system and 
the previously unapproachable scale of the search due to the extraordinary speed of modern computers.  The 
approach proves an efficient means of finding complicated intersections of families of periodic orbits, even 
those of high resonances, in a global manner without a priori information.  It is noted that differential correcting 
to follow specific families of solutions is clearly still an invaluable tool for analysis; the grid search is only 
emphasized as an efficient method for identifying solutions and improving the preliminary global view of the 
dynamics.   
 

Secondly, the Jupiter-Europa RTBP phase space is analyzed in the planar and 3D case capturing a 
global view of the main solutions along with the flow of the accompanying higher order resonant solutions.  
Similar curves to those presented in this study have been previously published for other mass ratios and for 
N=1, 2 and 3, but the full picture with the higher order resonances has received much less attention.  This 
approach facilitates the identifications of boundaries in phase space that separate regions of stability and mild 
stability with regions of strong chaos and instability.  Several such boundaries are identified in all four cases:  
the planar direct, planar retrograde, 3D direct, and 3D retrograde.  One of the fundamental results is the relative 
abundance of highly inclined direct 3D stable orbits compared to the retrograde side at similar distances to 
Europa.  This is in clear opposition to the general attitude of mission planners that retrograde orbits are always 
more stable, presumably because of the impressively stable planar DRO family.   
 

Lastly the resulting orbits of the study are of great practical use for preliminary design of missions to 
Europa.*   The more stable solutions have obvious applications such as parking orbits, science orbits, and 
intermediate transfer orbits, while the more unstable solutions are ideal for transfer applications using manifold 
dynamics.  Each of the documented 616,942 solutions is associated with a list of defining characteristics 
including initial conditions, period, stability indices, type of symmetry, number of xz-plane crossings, 
minimum/maximum altitudes, and any other quantity that exists or can be defined in order to group or 
differentiate specific solutions.  The final set of solutions is archived in an electronic text file and can be queried 
or sorted in a customized manner for a variety of potential mission planning applications. 
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* Note also that the solutions can generally be scaled to be almost-valid for any RTBP system with small mass ratios using a ratio of the 
corresponding L1 distances.  Of course, if Hill’s model were initial used, the solutions would be reasonable for any system with a small 
mass ratio.  However, regions of interest of this study extend by an order of magnitude the valid range for Hill’s model. 
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APPENDIX 
 Selected periodic orbits of interest are given in Figures A1-A4 and accompanying data in Table A1. 

 
Figure 15: Representative set of 3D stable periodic orbits around Europa.  Part I.  Each orbit is illustrated 
from 4 viewing angles.  From left to right:  viewed from 1) negative y axis,  2) positive x axis, 3) positive z 
axis, 4) azimuth=-130ο, elevation=40ο.  Orbits are ordered in increasing x0. 
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Figure 16: Representative set of 3D stable periodic orbits around Europa.  Part I.  Each orbit is illustrated 
from 4 viewing angles.  From left to right:  viewed from 1) negative y axis,  2) positive x axis, 3) positive z 
axis, 4) azimuth=-130ο, elevation=40ο.  Orbits are ordered in increasing x0. 
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Figure 17: Representative set of 3D unstable periodic orbits around Europa.  Part I.  Each orbit is 
illustrated from 4 viewing angles.  From left to right:  viewed from 1) negative y axis,  2) positive x axis, 3) 
positive z axis, 4) azimuth=-130ο, elevation=40ο.  Orbits are ordered in increasing instability. 
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Figure 18:  Representative set of 3D unstable periodic orbits around Europa.  Part II.  Each orbit is 
illustrated from 4 viewing angles.  From left to right:  viewed from 1) negative y axis,  2) positive x axis, 3) 
positive z axis, 4) azimuth=-130ο, elevation=40ο.  Orbits are ordered in increasing instability. 
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Table 3: Data for representative 3D orbits illustrated in Figure 15-Figure 18 

ID N x0  
(km) 

v0 
(km/s) 

w0 
(km/s) 

T 
(days) sym

a 
J 

(km2/s2) 
inc.

b

(deg) 
hmin.

c 

(km) 
k1

 d
 k2

 d
 ρ

 d
 

1216180 15 -5.38888889E4 2.20016215 0.23241350 9.91361806E1 D 565.579 6.0 2.42E4 7.53E-1 -1.74E0 1 
1227706 16 -4.83708054E4 2.02455647 0.73731430 1.08864020E2 D 565.075 20.0 4.56E4 -1.74E0 -2.00E0 1 
1245359 14 -4.42652349E4 1.78351364 1.57417442 9.52268856E1 D 563.555 41.4 4.27E4 -1.07E0 -2.00E0 1 
1251375 13 -4.27989597E4 1.83726468 0.33348899 8.72318410E1 D 565.560 10.3 4.08E4 -1.93E0 -2.00E0 1 
1251472 12 -4.27826678E4 1.77688902 1.03701719 8.07451033E1 D 564.813 30.3 4.12E4 1.20E0 -2.00E0 1 
1261682 13 -4.03551678E4 1.75115279 0.49798404 8.70214382E1 D 565.469 15.9 3.42E4 -1.56E0 -1.65E0 1 
1319794 5 -2.89996812E4 1.14109433 1.59105726 3.15533851E1 D 563.965 54.4 2.59E4 1.30E-1 -1.93E0 1 
1328368 7 -2.75822819E4 0.79326209 3.19546760 4.60257067E1 D 556.864 76.1 2.23E4 -2.36E-1 -5.47E-1 1 
1329353 14 -2.74030705E4 1.19161155 0.45551095 3.95055903E1 S 566.066 20.9 2.22E4 8.49E-1 -1.39E0 1 
1348961 3 -2.43890604E4 1.09970988 0.42928366 1.62064532E1 D 566.124 21.3 2.28E4 -1.11E0 -1.86E0 1 
1357937 11 -2.28413255E4 1.05637236 0.35406749 2.83892476E1 S 566.199 18.5 2.11E4 1.69E0 -1.98E0 1 
1374128 15 -1.88497987E4 0.93533819 0.25374370 6.34213758E1 D 566.344 15.2 1.70E4 1.14E0 -2.00E0 1 
1387412 10 -1.43695134E4 0.82273252 0.21717565 3.01875505E1 D 566.473 14.8 1.11E4 -5.82E-1 -1.33E0 1 
1412768 11 -1.09644966E4 0.78186509 0.22057707 2.49854049E1 D 566.565 15.8 9.16E3 4.06E-1 -2.00E0 1 
1416479 13 -1.00521477E4 0.73042229 0.25756442 2.31248108E1 D 566.653 19.4 4.97E3 -1.78E0 -1.97E0 1 
1427910 15 -6.90780201E3 0.66816745 0.52088088 2.19708850E1 D 566.757 37.9 6.33E2 3.50E-2 -1.73E0 1 
1431086 16 -4.57805369E3 0.91664623 0.19292502 1.16287865E1 D 567.036 11.9 3.02E3 1.04E0 -2.00E0 1 
1431502 11 -2.63931208E3 0.98198381 0.59816765 3.66411901E0 D 567.601 31.3 1.08E3 -1.98E0 -2.00E0 1 
1440351 4 2.80661224E3 1.15769161 0.51731633 7.95973106E0 D 567.172 24.1 5.94E2 -8.68E-1 -1.96E0 1 
1449568 9 3.51004082E3 0.89312066 0.57479361 6.26782759E0 S 567.200 32.8 1.95E3 -1.99E0 -1.99E0 1 
1449639 13 3.51004082E3 0.68382762 0.85141010 2.12323776E1 D 567.135 51.2 1.60E3 1.98E0 -1.90E0 1 
1449566 15 3.51004082E3 0.94827283 0.51570043 2.97760253E1 D 567.163 28.5 7.72E2 4.97E-1 -1.94E0 1 
1451570 12 3.63565306E3 0.52686236 0.90435700 1.53448697E1 D 567.170 59.8 1.68E1 -1.77E0 -1.99E0 1 
1463004 4 4.32652041E3 0.63233404 0.49118888 3.34340758E0 D 567.350 37.8 2.76E3 -9.15E-1 -2.00E0 1 
1472520 7 4.84153061E3 0.47178282 0.72636967 6.35999329E0 S 567.090 57.0 3.05E3 -1.15E0 -1.23E0 1 
1480596 2 5.25605102E3 0.61615530 0.45236343 3.21078235E0 D 567.156 36.3 3.55E3 -1.44E0 -1.99E0 1 
1489671 7 5.68313265E3 0.43451902 0.55331736 9.87662356E0 D 567.160 51.9 4.06E3 -2.00E0 -2.00E0 1 
1500107 13 6.17302041E3 0.19939772 0.72537174 2.78513050E1 D 567.007 74.6 2.27E3 -1.46E0 -1.68E0 1 
1506466 5 6.46192857E3 0.25910759 0.65136063 9.93223453E0 D 567.040 68.3 4.24E3 -4.65E-1 -1.99E0 1 
1507698 16 6.51217347E3 0.18620979 0.69810413 3.46549601E1 D 567.002 75.1 2.36E3 -4.37E-1 -9.26E-1 1 
1508245 5 6.53729592E3 0.25898815 0.64274970 9.93580189E0 D 567.041 68.1 4.42E3 -1.45E-2 -1.98E0 1 
1510389 7 6.62522449E3 0.22764513 0.64215903 6.65127933E0 S 567.045 70.5 4.84E3 1.98E0 -2.00E0 1 
1516805 13 6.90157143E3 0.24526771 0.61488819 1.32368170E1 S 567.037 68.3 4.63E3 -1.98E0 -2.00E0 1 
1524936 13 7.24072449E3 0.16093253 0.65095131 2.99916208E1 D 566.988 76.1 3.95E3 4.39E-1 -1.95E0 1 
1536482 5 7.79341837E3 0.30569385 0.43479349 9.42502216E0 D 567.103 54.9 2.85E3 -1.19E0 -1.97E0 1 
1542144 15 8.10744898E3 0.13522813 0.48379377 1.20042117E1 S 567.107 74.4 5.26E2 1.24E0 -1.76E0 1 
1574993 10 9.60223469E3 0.19574278 0.28856133 8.85300281E0 S 567.148 55.8 1.06E3 1.53E0 -1.62E0 1 
1574978 14 9.60223469E3 0.22971910 0.25352166 2.60567868E1 D 567.152 47.8 1.28E3 1.08E0 -1.91E0 1 
1581767 14 9.90370408E3 0.21509958 0.17287166 1.17671228E1 S 567.180 38.8 4.93E2 5.76E-1 -9.13E-1 1 
1586953 13 1.01298061E4 0.12645618 0.29459818 1.13900048E1 S 567.145 66.8 7.64E2 -1.55E0 -1.82E0 1 
1596078 7 1.05317653E4 0.11978504 0.16994878 5.58429568E0 S 567.191 54.8 3.07E2 -1.17E0 -1.56E0 1 
1605664 16 1.10090918E4 0.17861206 0.17296747 1.94798048E1 S 567.158 44.1 2.06E2 -1.76E0 -2.00E0 1 
1606263 4 1.10342143E4 0.02419184 0.42492975 4.73215069E0 S 567.038 86.7 6.49E2 1.83E0 -4.52E-1 1 
1609237 1 1.12100714E4 0.17785598 0.09891667 2.41012034E0 D 567.174 29.1 2.13E2 1.76E0 -7.48E-1 1 
1550114 6 8.49684694E3 0.23926555 0.43381321 6.11147444E0 S 567.086 61.1 2.52E3 -2.04E0 -3.27E0 2.93E0 
1502741 3 6.29863265E3 0.31905840 0.64980487 3.27437882E0 S 567.030 63.8 4.27E3 -1.82E0 -3.50E0 3.19E0 
1505401 2 6.41168367E3 0.01516162 0.72512880 3.43247503E0 D 567.012 88.8 4.77E3 -2.00E0 -1.10E1 1.10E1 
1428170 3 -6.81005034E3 0.35668804 0.68175103 3.67123649E0 D 566.895 62.4 5.11E3 -2.00E0 -1.19E1 1.18E1 
1524871 3 7.24072449E3 0.03137750 0.69425009 3.41027619E0 S 566.955 87.4 5.32E3 -1.81E0 -1.36E1 1.35E1 
1426791 2 -7.26622483E3 0.15356112 0.76160114 3.45364150E0 D 566.832 78.6 5.71E3 -3.89E0 -3.67E1 3.67E1 
1417161 2 -9.87293624E3 0.56390318 0.53604013 4.10426372E0 D 566.655 43.5 8.31E3 -3.55E0 -6.51E1 6.51E1 
1482378 1 5.33141837E3 0.14029454 0.86662059 3.03142037E0 D 566.954 80.8 3.77E3 1.32E0 -1.24E2 1.24E2 
1406991 2 -1.18442617E4 0.77642010 0.45940119 5.30691679E0 S 566.393 30.6 7.61E2 1.96E2 -2.30E1 1.96E2 
1464357 2 4.38932653E3 0.00263312 1.40419427 6.42279922E0 S 565.999 89.9 2.83E3 -3.81E0 -2.66E2 2.66E2 
1376378 1 -1.81655369E4 0.74387369 0.17620778 2.32440307E0 S 566.679 13.3 2.96E3 -2.09E0 -3.53E2 3.53E2 
1416418 1 -1.00847315E4 0.30140764 1.02616364 3.03682020E0 D 566.108 73.6 8.52E3 -7.03E0 -3.99E2 3.99E2 
1538243 1 7.88134694E3 0.07051949 0.88819045 2.40015997E0 S 566.584 85.5 6.32E3 -2.14E0 -4.08E2 4.08E2 
1420822 2 -8.86283557E3 0.03174888 0.85205153 2.38083605E0 S 566.583 87.9 7.30E3 -2.06E0 -4.39E2 4.39E2 
1429697 2 -6.02803691E3 0.99350835 0.22857417 3.99321009E0 S 566.557 13.0 6.74E2 4.83E2 -2.54E0 4.83E2 
1344834 3 -2.50244463E4 1.06720556 0.59398454 1.61707067E1 D 566.060 29.1 1.28E4 -1.20E2 -6.82E2 6.82E2 
1352279 3 -2.38677181E4 0.99780131 0.62452875 7.83794453E0 S 566.105 32.0 3.29E3 5.25E1 -1.49E3 1.49E3 
1584915 3 1.00293163E4 0.01978593 0.66126393 4.52087233E0 S 566.814 88.3 4.72E3 -5.07E2 -3.02E3 3.02E3 
1369650 2 -2.02346141E4 0.86977938 0.83967727 9.86919522E0 D 565.868 44.0 1.64E4 -7.53E1 -3.60E3 3.60E3 
1605591 3 1.09965306E4 0.02136769 0.51863276 4.88201569E0 S 566.951 87.6 1.11E3 -4.18E0 -4.59E3 4.59E3 
1394657 3 -1.31150336E4 0.18290585 0.42493343 4.12260170E0 S 566.981 66.7 4.48E3 -1.26E2 -1.11E4 1.11E4 
1456684 3 3.94968367E3 0.01037729 1.07954634 7.16576896E0 D 566.963 89.4 2.39E3 -9.11E1 -3.61E4 3.61E4 
1401795 2 -1.23493121E4 0.09452075 3.36673782 1.06121186E1 D 555.857 88.4 7.89E3 -1.88E3 -5.03E4 5.03E4 
1452028 3 3.66077551E3 0.00908213 1.13212780 7.01340821E0 D 566.972 89.5 2.10E3 -3.41E1 -6.49E4 6.49E4 
1467111 3 4.54006122E3 0.19929656 1.25464836 8.57965374E0 S 566.310 81.0 2.98E3 -2.64E2 -7.76E4 7.76E4 
1422603 3 -8.42295302E3 0.78470294 0.45373928 6.91411796E0 S 566.516 30.0 1.98E3 8.03E4 -2.39E1 8.03E4 
1377892 3 -1.76767785E4 0.72871009 0.46995860 7.08977522E0 S 566.498 32.8 2.15E3 8.07E4 -3.12E1 8.07E4 
1529456 2 7.44170408E3 0.12962822 0.81496500 6.87744331E0 D 566.736 81.0 3.37E3 5.16E-1 -3.11E5 3.11E5 
1456274 3 3.92456122E3 0.12204927 1.07198126 8.90492158E0 D 566.975 83.5 2.36E3 1.95E0 -3.49E5 3.49E5 
1489221 6 5.65801020E3 0.16422706 0.81512762 1.57210818E1 D 566.968 78.6 3.78E3 1.01E-1 -4.25E5 4.25E5 
1408772 3 -1.16650503E4 0.17156078 0.54422447 5.62437457E0 D 566.884 72.5 1.41E3 -2.34E0 -6.23E5 6.23E5 
1313405 2 -3.00912416E4 1.23585853 0.24852279 1.04408738E1 D 566.286 11.4 5.32E2 -4.16E2 -6.38E6 6.38E6 

a
 Doubly-symmetric (D) or Axi-symmetric (A).     

b
 pseudo inclination, range is between 0 and 90 degrees, equal to tan-1(w0 / v0)  

c
 close approach altitude.      

d
 for all cases presented the ki values are non-complex.  For stability, | ki | ≤ 2 or ρ=1.  For unstable orbits, ρ is a scalar instability metric. 
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