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Abstract— We construct a protograph-based rate-compatible
family of low-density parity-check (LDPC) codes that cover a
very wide range of rates from 1/2 to 16/17, perform within about
0.5 dB of their capacity limits for all rates, and can be decoded
conveniently and efficiently with a common hardware imple-
mentation. In contrast to alternative methods that create codes
of different rates by puncturing, shortening, or expurgation,
our method uses a combination of expurgation and lengthening
(equivalent to an unusual extension) to produce lower-rate codes.
Advantages compared to the alternative methods include roughly
uniform utilization of common family decoder hardware for
different rates, implementation with uniformly low maximum
check node degrees despite high maximum rate, and a large
fixed portion of the protograph that can be labeled with a fixed
set of edge permutations for all rates.

We apply this method to create a rate-compatible code family
anchored by a particular code of (nominal) rate 7/8 and length
n = 8176 designed by Kou, Lin and Fossorier [1] whose edge
permutations are determined by Euclidean geometries (EG). All
members of our family retain all of the EG-designed edges and
circulant permutations of this anchor code, and this helps to
avoid weak spots in the code graph that usually arise when edge
permutations are assigned by greedy algorithms. There are also
varying numbers of auxiliary and ancillary checks, variables, and
edges, allowing realization of different rates, with fixed (nominal)
dimension k = 8176 for all rates. Simulations show that all
members of this family achieve steeply falling error rate curves
without detectable error floors, at least to codeword error rates
of about 10−6.

I. INTRODUCTION

Our aim in this paper is to construct a nicely structured rate-
compatible family of high-performance low-density parity-
check (LDPC) codes. A rate-compatible family is a set of
codes of different rates that can be decoded conveniently
and efficiently using a common hardware implementation.
All codes in the family should offer uniformly near-capacity
performance. It is desirable that each code be expanded from
a projected graph [2] or protograph [3] with a block-circulant
(quasi-cyclic) structure for ease of decoder implementation.

In this paper we describe by example a method for con-
structing a rate-compatible family of protograph-based codes
by a combination of expurgation and lengthening. Expurgation
is accomplished by splitting check nodes in the protograph,
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and lengthening is accomplished by attaching dedicated accu-
mulators to each new check.

II. CODE FAMILY CONSTRUCTION BY EXPURGATION AND
LENGTHENING

We start with an anchor code C2 ∗ Z of (nominal) rate 7/8
developed by Kou, Lin and Fossorier [1], and proposed as
a standard for space applications by Goddard Space Flight
Center [4]. This code is a purely regular (4,32) Gallager code;
its asymptotic iterative decoding threshold on an additive white
Gaussian noise (AWGN) channel is 3.35 dB, which is 0.51 dB
from the capacity limit for rate-7/8 codes. The code C2 ∗ Z
is constructed from a protograph C2 with 16 variable nodes,
2 check nodes, and 64 edges, illustrated in Fig. 1, where
each edge is labeled by a Z × Z circulant permutation with
Z = 511. The particular set of 64 circulants was chosen by
the elegant Euclidean geometry (EG) method detailed in [1].
Unlike methods such as progressive edge growth (PEG) [5]
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Fig. 1. The regular (4,32) anchor protograph C2.

or approximate cycle extrinsic message degree (ACE) [6] that
select permutations greedily in a predetermined edge order,
this expansion method avoids designing weak spots into the
graph of the full-size code. The expanded code C2 ∗ Z has
length n = 16Z = 8176 and nominal dimension k = 14Z =
7154; its actual dimension is k = 7156 due to two redundant
checks. Note that in our notation C2 denotes the protograph
and C2∗Z the expanded code, whereas C2 denotes the full-size
code in the notation of [4].
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Fig. 2. The expurgated protograph C16 of (nominal) rate 0, illustrating check node splitting based on a (4, 2) quaternary code of distance 3.

The protograph C2 anchors a natural family of protographs
of different rates obtained by splitting or merging check nodes.
By merging the two check nodes in C2, we obtain a protograph
C1 with (nominal) rate 15/16. By successively splitting the
protograph’s check nodes into four, then eight, then sixteen
checks, we obtain additional family members C4, C8, C16, with
(nominal) rates 3/4, 1/2, 0, respectively.

Our specific node-splitting rules for constructing the low-
rate members of this family are designed to maximally and
symmetrically spread each protograph’s interconnections be-
tween its variable nodes and check nodes. First, C4 is obtained
by splitting the two check nodes of C2 into pairs such that
C4 has no parallel edges; this yields four check nodes for
C4 numbered 0, 1, 2, 3. Each of the 16 variable nodes of
C4 is connected by one edge to each of its four check nodes.
Next, C8 is obtained from C4 by splitting each check node c =
0, 1, 2, 3 into a pair of check nodes (c.0, c.1) and connecting
the corresponding edge from variable node v to either c.0
or c.1 according to value of the cth bit in the 4-bit binary
representation of the numeric label of v. With this rule for
splitting the check nodes, any two variable nodes in C8 share
at most three neighboring check nodes. Finally, C16 is obtained
from C8 by further splitting each check node c.0 or c.1 into
a pair of nodes (c.00, c.01) or (c.10, c.11), respectively. The
16 variable nodes in C16 are labeled by two rows of 4 bits each,
with each 2-bit column representing a code symbol of a (4, 2)
quaternary code with distance 3. The first row is the same 4-bit
label used to create C8 from C4. The second row determines the
second level of node splitting used to create C16 from C8. With
this rule for splitting the check nodes, any two variable nodes

in C16 share at most one neighboring check node, because
the underlying quaternary code defining the node splits has
distance 3 and length 4. This implies, for example, that the
C16 protograph is carefully constructed to possess no loops
of length 4. Our application of these node-splitting rules is
illustrated in Fig. 2 for the protograph C16.

Since all of these protographs retain the same 64 edges
present in the anchor protograph C2, they can all be expanded
to the same length n = 16Z using the same set of 64 EG-
designed Z ×Z circulants. We denote the resulting family of
expanded codes by {C1, C2, C4, C8, C16} ∗ Z.

Splitting check nodes in the protograph is equivalent to
expurgation and produces a sequence of codes of successively
lower rates with constant length n. This technique has been
proposed, e.g., [7], as a favorable method for constructing rate-
compatible code families. Others have constructed code fami-
lies by shortening a high-rate code, e.g., [8], or by puncturing
a low-rate code, e.g., [9], to obtain codes of successively lower
or higher rates, respectively.

The protograph family {C1, C2, C4, C8, C16} constructed
by expurgation achieves reasonable decoding thresholds at
high rates, but very poor thresholds at low rates. The pro-
tographs in this family are regular (4, d) Gallager codes with
d = 64, 32, 16, 8, 4, respectively. The decoding threshold of
1.53 dB for the rate-1/2 protograph C8 is 1.34 dB worse than
the capacity limit, and the protograph C16 corresponds to a
meaningless code of (nominal) rate 0.

To improve threshold performance relative to rate-dependent
capacity limits, we modify this family by attaching a dedicated
accumulator to each check node in the protograph, obtaining



lengthened protographs {C+
1 , C+

2 , C+
4 , C+

8 , C+
16}, of rates 16/17,

16/18, 16/20, 16/24, and 16/32, respectively. Each dedicated
accumulator is represented in the protograph by an ancillary
variable node connected to its corresponding check node by
two edges, as described in the next section and illustrated in
Fig. 3 on the next page.

This process of expurgation followed by lengthening keeps
k = 16Z constant while increasing n, for the codes {C+

1 ,
C+
2 , C+

4 , C+
8 , C+

16} ∗ Z expanded from these protographs. It
has the same effect as extension, but it is extension in a non-
straightforward way, because the new parity symbols sent to
the channel are not simply computed from new check nodes
inserted into the graph while keeping the rest of the graph
unchanged.

III. FAMILY HARDWARE DECODER IMPLEMENTATION

Fig. 3 on the next page depicts how the entire family of
expurgated and lengthened codes, {C+

1 , C+
2 , C+

4 , C+
8 , C+

16}∗Z,
can be decoded with common decoder hardware. The 64 edges
in the upper part of the graph are labeled with the 64 EG-
designed Z×Z circulant permutations, identically for all codes
in the family. All codes in the family use the same 16 variable
nodes at the top of the graph and the same 4 edges emanating
from each, as well as the same 16 numbered check nodes and
the same 4 edges connecting each of these checks to the fixed
set of 16 variables. The only variability from code to code is
in the bottom part of the graph.

Besides the 16 numbered checks, Fig. 3 shows (in light red)
an additional 15 auxiliary check nodes and 30 auxiliary edges
attached to the auxiliary checks. Also shown (in light green)
are 16 degree-2 ancillary variable nodes and 32 ancillary
edges attached to the 16 numbered checks, representing the
16 dedicated accumulators in the protograph C+

16. The 30 aux-
iliary edges are all labeled with identity permutations. Without
loss of generality, one of each pair of ancillary edges can
also be labeled with the identity permutation, and the other
permutation within each pair is a circulant selected by PEG.
The 16 nontrivial circulants on the ancillary edges define how
the 16 ancillary accumulators interact with the fixed part of
the graph.

The auxiliary checks and edges, and the ancillary variables
and edges, are activated or deactivated according to the sched-
ule shown in Fig. 4 in order to achieve any of the desired rates.
Deactivating an auxiliary or ancillary edge from an unused

Protograph a b c d e w x y z
C+
1 + + + + +
C+
2 + + + + +
C+
4 + + + + +
C+
8 + + + + +

C+
16 + + + + +

Fig. 4. Activation schedule for ancillary variable nodes and edges of types
{a, b, c, d, e}, and auxiliary check nodes and edges of types {w, x, y, z}, as
labeled in Fig. 3.

check or variable means setting its message to an infinitely

reliable hard-decision 0 where it is connected to an active
check node; this is equivalent to reducing the degree of its
neighboring active check node by 1. For protograph C+

1 , all
of the auxiliary checks and edges are active, and all except
one ancillary variable and its pair of edges are inactive. At the
other extreme, for protograph C+

16, all of the auxiliary checks
and edges are deactivated, while all of the ancillary variables
and edges are active. For all rates, the activation/deactivation
schedule is such that exactly 32 of the 62 total auxiliary and
ancillary edges (as well as all 64 of the original fixed edges)
are active.

Rate-compatible families generated by puncturing or short-
ening do not achieve such uniformity of hardware utilization
across rates. Decoders for families created by puncturing are
designed for the lowest-rate code, and successively greater
numbers of edge messages are deactivated for higher rates.
Decoders for families created by shortening are designed for
the highest-rate code, and successively more variables and
edges are deactivated as the rate is lowered. By contrast, our
expurgated and lengthened family achieves relatively uniform
hardware utilization over a very wide range of rates from 1/2
to 16/17.

In contrast with families created by shortening, our family
{C+

1 , C+
2 , C+

4 , C+
8 , C+

16} uses relatively uniformly low check-
node degrees despite covering a very wide range of rates. This
is possible because the cascade of auxiliary check nodes in
Fig. 3 active for higher rates effectively reproduces the internal
computations of a single high-degree check node in the usual
graph for a high-rate code. Thus, our explicit introduction of
auxiliary check nodes and auxiliary edges can be regarded
as a method to make the internal check node computational
complexity relatively uniform across rates.

A final advantage of our family compared to one obtained
by shortening is that codes of a given dimension k are all
obtained by using same-size circulants on the protographs
of different rates. For families created by shortening, each
shortened protograph has smaller dimension, and the circulant
size Z for the corresponding expanded code must be increased
in order to maintain constant dimension k.

IV. FURTHER IMPROVEMENT OF DECODING THRESHOLD

Our construction method has thus far produced a family
of protographs of different rates that are all variants of a
generalized family of semi-regular “repeat-4-and-accumulate”
(R4A) codes. While the decoding thresholds achieved by this
family are much better than those achieved by the completely
regular (4, d) Gallager codes, there is still plenty of room for
further improvement.

We improve the {C+
1 , C+

2 , C+
4 , C+

8 , C+
16} family of pro-

tographs by allowing one or more of their 16 original fixed
variable nodes to be “pre-coded” in the style of accumulate-
repeat-accumulate (ARA) codes [10]. For example, the proto-
graph obtained by pre-coding of variable node 0 in protograph
C+
4 is denoted by C+

4 [0]. Here pre-coding means puncturing
the pre-coded variable node in the protograph and attaching
a new degree-3 check node with two edges connected to the
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Fig. 3. Common family hardware decoder implementation for codes expanded from {C+
1 , C+

2 , C+
4 , C+

8 , C+
16}.

pre-coded variable and one edge connected to a new degree-1
variable sent to the channel. Fig. 5 shows the graph fragment
that replaces a pre-coded punctured variable node; here the
white circle denotes the original variable, now punctured, and
the black circle denotes the new transmitted variable.

Fig. 5. The graph fragment replacing a punctured pre-coded variable node.

This type of resculpting of the protograph does not change
k or n, but can improve the decoding threshold slightly. If
more than one variable node is to be pre-coded, we require
for simplicity that this same pre-coding rule be applied to each
pre-coded variable separately. More complicated pre-codings
of combinations of variable nodes are possible, but do not
offer large further reductions in threshold.

No pre-coding of this type is possible for C+
1 or C+

2 ,
because all of the check nodes would be disabled on the first

iteration due to inputs from punctured pre-coded variables.
Similarly, only one variable can be pre-coded in this way for
C+
4 . The maximum numbers of pre-codable variables are 5

and 9 for C+
8 and C+

16, respectively. Each new pre-coding
of a variable typically lowers the decoding threshold by at
least a few hundredths of a dB. However, our most robust
code constructions do not use maximal pre-coding. Codes
constructed from maximally pre-coded protographs usually
require excessive iterations for convergence, and can produce
less steep falloff in their error curves. Thus, we have opted
for a set of lightly pre-coded protographs C+

4 [0], C+
8 [0, 15],

C+
16[0, 3, 12, 15], for which only 1, 2, 4 variables, respectively,

are pre-coded. For light pre-coding, we require that all check
nodes can compute at least one useful output on the first
iteration despite the puncturing of the pre-coded variables. Vi-
olation of this condition seems to cause a substantial increase
in the total number of iterations, not just slow convergence at
the beginning of the decoding cycle.

The family decoder hardware for implementing the lightly
pre-coded family will require 4 additional pairs of degree-3
ancillary checks and degree-1 ancillary variables, along with
their corresponding 12 additional ancillary edges. The new



ancillary checks, variables, and edges are simply activated
or deactivated depending on whether the corresponding fixed
variable nodes are to be pre-coded for the given rate.

Fig. 6 plots the iterative decoding thresholds achieved
by the {Ci} family, the {C+

i } family, the lightly pre-coded
{C+

i [light]} family, and the maximally pre-coded {C+
i [max]}

family, relative to the corresponding rate-dependent capacity
limits. We see that light pre-coding of the {C+

i } family is
sufficient to keep the decoding threshold within about 0.4 dB
to 0.5 dB of the capacity limits for all rates in the family.
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Fig. 6. Iterative decoding thresholds above the capacity limits for several
code families.

V. PERFORMANCE AND COMPLEXITY COMPARISONS

Figs. 7 and 8 show error performance and decoding com-
plexity of our codes of rates 1/2, 2/3, 4/5, with and without
light pre-coding, expanded to k = 8176 using the 64 EG-
designed circulants of [1] or [4] with Z = 511. Performance
on an AWGN channel is shown as codeword error rate (WER)
versus Eb/N0 in Fig. 7. Complexity is shown in Fig. 8 as WER
versus Mb, defined as the total number of edge messages per
decoded bit computed in the decoding graph throughout all
iterations. All of the performance curves in Fig. 7 show a
consistently steep falloff in error rate and no error floor above
WER = 10−6, to the limits of detectability of our software
simulation.

We see from Figs. 8 and 7 that light pre-coding costs just
over 1 dB in iterative decoding complexity in return for only a
small improvement of 0.1 dB to 0.2 dB in error performance
at low WER. For heavier pre-coding the marginal return is
even worse (not shown). In a practical coding system, the
small reductions in iterative decoding threshold achievable by
light or maximal pre-coding should be weighed against the
significant increases in decoding complexity required to realize
them.
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