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Small body simulations have played a significant role in the planning and development of 
many recent missions to asteroids and comets.  As closer approaches, and ultimately 
landings, are attempted, it will become necessary to simulate the surfaces of these bodies to 
increasingly high resolutions.  Techniques for doing this, originally developed for Mars 
surface simulations, are being extended to generate artificial small body topography to 
arbitrarily high resolution. 

Nomenclature 
A = Interim surface label 
c = crater distribution exponent 
d = crater diameter 
D = stochastic amplitude 
i,j = fundamental surface labels 
I,J = level specific surface labels 
F = face number 
K = face/level index 
L = level index 
N = counter 
R = chaotic function 
S = level spacing 
T = Tag array index 
v = surface vector 
w = generic vector 
w = magnitude of w 
n = unit normal vector 
Φ = crater density 
 

1. Introduction 
 
 Years before the NEAR spacecraft approached Eros for the first time, optical navigators at JPL were analyzing 
images of the asteroid in order to determine the spacecraft's orbit.  Before the impactor on board Deep Impact 
detached from the spacecraft and headed toward comet Tempel 1, its software had already taken the same journey 
millions of times.  Similar simulations were carried out in preparation for Stardust and Deep Space 1 encounters, 
and more recently for Hayabusa's upcoming encounter with Itokawa and Dawn's 2011 encounter with Vesta. 

All of these spacecraft had their initial encounters with small bodies that were created from the software 
described below.  Instead of the typical few hundred thousand vector model that most simulations use, these models 
have, potentially, almost 7 x 1018 vectors.  Of course, not all of the body needs to be constructed at any given time.  
To render a typical image, for example, a few million vectors will suffice, covering the entire body if the resolution 
is low enough or defining a restricted surface patch at high resolution.   

The significant feature of these models is that whatever portion of the surface is created, and at whatever 
resolution, the vectors are the same as they would have been had the full set of vectors been generated.  This is 
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accomplished by sorting the vectors into "levels", with a higher level vector array having lower resolution.  The 
generation of a vector at a given level depends only on those at higher level.  A second important feature is that 
stochastic processes are based on chaotic functions of position.  Random variations at one point are completely 
independent of those at a neighboring point.  This technique is a three dimensional extension of a Mars simulator 1,2 
that has been used in Pathfinder and MER landing and roving studies. 

Section 2 discusses the labeling scheme that allows small portions of the surface to be constructed with complete 
consistency.  Section 3 describes the shape models that are the inputs for the small body simulations.  Section 4 
treats the addition of high-resolution topography, including craters rocks and fractal surfacing.  Section 5 presents a 
few examples of the current applications of the techniques. 

 
2. Labeling Scheme 

 
The vectors of the models are labeled by grid points (i,j = 0,230) on the six faces of a cube (f=1,6). This 

automatically defines their connectivity, with edge and corner points common at adjoining faces. Each vector 
labeled by i,j,f is assigned a level, from 1 to 61, according to the following rule:  If i contains p factors of 2, and j 
contains q factors of 2, then its level L is 

 
                            2p+2  (p=q) 
               L(i,j)   =  2p+1  (p<q)               (1) 
                             2q+1  (p>q)   
 

For a corner point, i=0 or 230 and j=0 or 230, the level is 61.  The grid below shows the highest-level points: 
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          Figure 1. Highest-level grid points. 

 
The vector at a point is directly determined by its higher-level neighbors, on the diagonals for even level points 

and horizontally and vertically for odd level points.  These are called a point's parents.  A point on an edge, which 
always has an odd level, has one parent on another face.  The set of points which ultimately generate a point are 
called its ancestors, 

The array represented by Fig. 1 is very sparse, 81 elements in a 230+1 square array.  For this reason, a separate 
array is specified for each level.  The space of a level is defined by 

 
         S(L)=2[(L-1)/2]                   (2) 
 

where [x] represents the integral part of x.  The new array is labeled by I,J where i=SI, i=SJ are the indices of the old 
array.  For an odd level, one of I,J is odd, and the other even, while for an even level, both I and J are odd.  The 
exception is L=61, the corner points, where I=0,1 and J=0,1.   
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 The natural limits for a level L array are I,J=0,230/S(L).  If only a portion of the surface is to be generated, down 
to some level L0, then the limits are more restrictive.  Since there are six faces to the cube, a new label is introduced, 
 

         K=F+6(L-1)                   (3) 
 

where the faces F are numbered from 1 to 6.  For the six K at level L0, some external constraint, such as a camera 
field of view, determines the minimum and maximum values of I and J, Imin(K), Imax(K), Jmin(K), Jmax(K).  If the 
constraint excludes all level L0 vectors on a face, the minimum is set to 0, and the maximum to -1.  The same null 
limits are set for lower levels, L<L0.  Limits for L>L0 are determined recursively, by finding the set of parents of all 
points of a given level and determining its index domain.  Notice that even if there are no level L0 points on a face, 
there will be some higher level points because eventually, as the recursion proceeds, a parent of a point on one face 
will lie on an adjoining face. 
 Once the limits for each array have been determined, for all K from 1 to 366, the number of possible points is 
specified by 
 

         N(K) = (Imax(K)-Imin(K)+1)(Jmax(K)-Jmin(K)+1)         (4) 
 

This is actually an over-estimate, by a factor of about 2 for odd levels and a factor of about 4 for even levels.  An 
intermediate label is determined from the N according to  
 
          A(I,J,K) = N(K+1)+(I- Imin(K)) )(Jmax(K)-Jmin(K)+1)+ )(J-Jmin(K)+1)   
 (5) 
 
where N(367)=0.  Since only about one third of these labels represent an actual grid point, a modified tag T is 
determined by counting the number of actual points as A increases.  T(A) is zero if A does not correspond to a valid 
point, and if A is a valid point then T(A) equals the number of valid points with a label less than or equal to A.  If LK 
is the level corresponding to K from Eq.. (3), then the validity condition is 
 
          LK = L(I*S(LK),,J*S(LK))              
 (6) 
 
The tag T is used to label all quantities defining the simulated surface, such as vectors, albedo, and fractional rock 
coverage. 
 

3. Initialization of the Shape Model 
  
 The initial shape model defining a small body consists of a set of vectors labeled as described above, with an odd 
minimum level L0 and the natural limits on I and J of 0,q=230/S(L0). With 
the ancestors included, this represents a 6q2+2 vector model after duplicate 
vectors on the edges have been eliminated.  A frequent choice is q=512, 
leading to a 1.57 million vector initial model.  This is the standard form for 
high-resolution shape models being produced by applying stereo-
photoclinometry (SPC)3-7 to imaging data.   

Other initial shape models are re-sampled to fit this format by 
projecting them onto unit vectors defined by grid points on the faces of a 
cube. This can result in an uneven distribution of points on the surface.  
Once this initial model is found, a new set of direction vectors is 
constructed by stretching the cube into a rectangular solid with edges a, b, 
and c, and shifting the center by an offset vector O.  These parameters are 
chosen in order to equalize the surface areas of the shape model 
corresponding to each of the six faces. The resulting distribution is shown in Fig. 3a.  The intersections of the grid 
lines within each face are then deformed in order to most nearly equalize the surface area projections of the cells on 
that face.  The revised distribution is illustrated in Fig. 3b.   
 

 
Figure 2. Initial direction vectors.  
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      Figure 3. Distributions after a) face area equalization, b) cell area equalization. 
 
 If the resolution of the initial model is sufficient, then the surface generation algorithms are applied to the 
existing set of points.  If a high-resolution sub-area is desired, then initial points are determined from stochastic 
interpolation between the existing points.  The process proceeds from high level to low, starting at level L0-1.  If the 
new point is at i,j in the fundamental array, then its parents are at i±S(L),j and i,j±S(L) if its level L is odd, or at 
i±S(L),j±S(L) if L is even.  If vk (k=1,4) are the vectors defining four parent points, arranged in clockwise order as 
seen from above, then the unit normal n to the surface is in the direction of w=(v3-v1)x(v4-v2)=nw, and the vector to 
the new point is 
 
          v = (v1+v2+v3+v4)/4 + D(√(w/2))R(i,j)n          (7) 
 
where D is a scale-dependent stochastic amplitude.  R is a random function that varies between (-1,1).  It is a chaotic 
function of position, in the sense that each point i,j on the fundamental grid has its own generator, completely 
independent from neighboring points.   
 

4. Construction of the topography 
 
 The topography is constructed by successively applying a series of processes, attempting to mimic the geological 
history of the surface.  The small body generator is not as mature as the Mars simulator 1,2, in the sense that fewer 
processes are available.  However, it is more advanced in the sense that it is closer to being three dimensional.  It is a 
true vector representation, rather than simply describing 
height as a function of horizontal location.  The basic 
processes include fractal surfacing, cratering, and rock 
distribution.  The last can be use to add large lumps to an 
initial body to mimic accretion.  The simplest process is 
surfacing, which is accomplished by the stochastic 
interpolation described above.  The only difference is that 
the second term in Eq. 7 is added to a pre-existing vector, 
rather than the average of the parents vectors.   
 The addition of rocks and craters is a level-dependent 
process, so that sub-resolution features are not included.  
Notice that odd level points form a diagonal array that, 
with the extension to other faces, completely covers the 
body.  A rock or crater center is randomly placed within 
one of the cells, such as at the point x in Fig. 4.  Its size 
must be small enough that it not extend beyond the 
adjoining cells, and large enough that it cannot be 
accommodated in the same way in a lower odd-level array.  
The number of rocks or craters added is determined by the 
appropriate distribution function, measuring the number 
per unit area with sizes in the appropriate range.  For 
craters, a power law is used 8,9: 
 
          Φ (d) = Φ (d0)(d/d0)-c                (8) 
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   Figure 4. Odd-level grid points. 
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where Φ represents the number of craters per square kilometer with diameter greater than d.  The exponent c is 
typically in the range from 2 to 4.  The rock distribution is determined from Golombek’s model 10, and varies with 
fractional surface coverage.   
 Once the center has been chosen, the topography corresponding to the feature is added.  Rocks are elliptical in 
shape, with a randomly varying eccentricity and a height varying with fractional coverage according to the 
Golombek model.  Small craters are bowl shaped, but larger ones acquire a flattened bottom.  New surface is then 
added by stochastic interpolation.   This process is carried out sequentially for rocks, from high levels to low.  For 
craters, the centers are determined, and a random clock time is determined.  Then the cratering is done according to 
the clock time, so that small craters can appear inside large ones, or large craters can obliterate small ones.  A 
similar delay is used for rocks in the Mars model.  The fractional rock coverage is carried through the calculation as 
a finction of position, just like albedo and surface height.  It can change, being reset to zero after a crater impact, but 
then increased as the crater ejecta produces more rocks.  Only at the end are the actual rocks constructed. 
 

5. Examples 
 
 There have been several close proximity missions recently, for which high-resolution simulations of the imaging 
data has proven useful.  Next month, the Japanese spacecraft Hayabusa will encounter asteroid 25143 Itokawa.  It 
will hover about 20 km away for several weeks.  In October it will move in to 7 km, making further observations.  
Then, in November, it will touch down twice, taking samples to return to Earth. A series of several hundred images 
of a simulated Itokawa was studied to test how well SPC techniques could reproduce the shape and surface 
topography, and how well landmark optical navigation could predict the spacecraft trajectory during proximity 
navigation.  The simulated asteroid, shown in Fig. 5, was based on a radar model 11 of Itokawa, with added craters, 
rocks and fractal surfacing.  This is a small asteroid, only about 600 meters in its longest dimension.  The simulation 
7 demonstrated that landmark navigation techniques will be able to locate the spacecraft to about 50 cm during 
approach. 
 

           
Figure 5. Simulated asteroid Itokawa.  

 
 Another simulation, for asteroid 4 Vesta, is shown in Fig. 6.  This is based on a shape model 12 constructed from 
Hubble Space Telescope data, with added craters and fractal surfacing.  Rocks were not added, since they will be 
sub-resolution.  Vesta is about a thousand times larger than Itokawa, about 600 km in diameter.  Notice the flattened 
bottoms of the larger craters.  This simulation is being used in Dawn development studies. 
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Figure 6. Simulated asteroid Vesta.  

 
 The final example is based on a 1.57 million vector model of Phobos 5 determined from SPC.  Fig. 7a shows an 
image of the shape model corresponding to Viking Orbiter image 343A15.  Notice the small craters that have been 
added by the simulation.  Although the image resolution is 8 m/pixel, the global model only has a resolution of 30 
m/pixel.  Fig. 7b shows the central portion of the image, zoomed in by a factor of 4 and showing further detail from 
the simulation.  Only a small portion of the surface was generated to produce this image. 

 

 Figure 7. Phobos shape model with added topography  Figure 8. Central region at 2 m/pixel resolution 
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 Figure 9. Central region at 50 cm/pixel      Figure 10. Central region at 12.5 cm/pixel 
 

Figure 9 shows a further zoom into the center, this time at 50 cm/pixel, while Fig. 10 reduces this by a factor of four 
to 12.5 cm/pixel.  This technology is being used to study the feasibility of autonomous optical navigation 3 during 
possible landings on Phobos or other small bodies. 
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