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STABILITY MAPS, GLOBAL DYNAMICS
AND TRANSFERS

Benjamin Villac* Martin Laraf

Homoclinic and heteroclinic connections associated with unsta-
ble periodic orbits structure the global transport phenomena
in phase space. From a spacecraft trajectory design viewpoint,
these connections correspond to thrust-free, dynamical transfers
relating, potentially, distant regions of phase space. Stability
maps based on a fast Lyapunov indicator are shown to exhibit
the main connections of a class of unstable periodic orbits ly-
ing at the boundary of stability regions in the planar circular
restricted three-body problem. The corresponding transfers are
shown to present good recovery properties and may thus form
the basic building blocks for some trajectory design problems in
planet-satellite systems. The graphical representation of these
global dynamics thus enable a quick overview of possible trans-
fer path between different dynamical regimes. These ideas are
illustrated in the Jupiter-Europa system.

INTRODUCTION

Dynamical system theory has proven useful for trajectory design and analysis of
recent and currently proposed mission [1, 2, 3, 4]. It allowed new classes of transfers
to be analyzed and shed some light on the dynamical structures influencing these
dynamics. The main methodology for designing such transfers is based on the use
of unstable periodic orbits (u.p.o) and their associated manifolds to find thrust-free
transfer arcs between different regions of phase space.

While these dynamical transfers are very attractive from a fuel budget viewpoint,
these transfers present, however, several difficulties. Aside from the well studied case
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of the libration point dynamics, the choice of the source/target u.p.o. needs trial
and errors, and systematic trade-offs between different classes of u.p.o. do not seem
available. The current understanding comes from the notion of resonance region,
where the u.p.o. of lowest period, appearing when invariant tori of quasi-periodic
orbits are destructed, seem to govern the transport in and out of the resonance region.
This is particularly true in the 2D case where resonances can be defined as regions
of phase space bounded by branches of stable/unstable manifolds of such u.p.o.. The
spatial problem is more complex as multiple u.p.o. associated with a given resonance
generally exist and have to be taken into account. The separation property of the
manifolds, that holds in the 2-dimensional case, fails in the spatial problem. The
computation and choice of such u.p.o. for a particular purpose thus represents a
difficult task.

A second concern generally associated with these dynamical transfers are the
strong sensitivity with respect to the initial conditions, and thus, the sense of in-
stability associated with these transfers. While the Soho and Genesis mission have
demonstrated that such trajectories can be flown in the Earth-Moon-Sun system [1, 5],
it remains true that the instability of such transfers may become a challenge when
it comes to systems such as the Europa-Jupiter system, where the instability time
scale is now on the orders of days, rather than month or year in the Earth-Moon-Sun
system.

However, these dynamical transfers may present remarkable recovery properties.
For example, since these transfers consist of long coast arcs converging toward an
u.p.o., a low-thrust powered transfer that would lie near such manifolds at each in-
stant of time during the transfer would present predictable coast arcs _ the manifold
_ without any impact/escape risk on any major body for a period of time, in the
event, of loss of power. Thus, while immersed in a chaotic sea, some of these trans-
fer would seem very interesting even for missions with strong planetary protections
requirements.

While this recovery property exist in theory, the target of very unstable u.p.o.
reduces its effectiveness, as a particle would converge and depart from the u.p.o. too
quickly to allow for an acceptable error margin or recovery time. The target of higher
order u.p.o., however, provides a solution to this problem, as the guaranteed coasting
arcs are now much longer and the instability time scale can also be longer. The
location of the particular u.p.o. is related to their proximity with stability island
formed by sets of stable, quasi-periodic orbits which can be detected using chaoticity
indicators [6].

This paper aims at discussing how chaoticity indicators (via the use of the Fast
Lyapunov Indicator, or FLI), can be helpful in analyzing the above issues. In partic-
ular, the use of stability maps allows us to place the transfers into context, relating
u.p.o. to the nearby stability islands, and thus indicate possible initial conditions



that lead to more stable transfers.

Note that, while the complete design of a high-fidelity trajectory proceeds gener-
ally in two distinct steps:

e computation of the desired transfer based on the choice of u.p.o. in a simplified
system, such as the Circular Restricted Three-Body problem.

e differential correction to adapt the initial transfer estimate to a more realistic
model (e.g., ephemeris)

only the first step requires some knowledge of the global dynamics of the system and
appears as the most challenging part in the design. Our discussion will focus on this
first step and will use the planar circular restricted three-body problem (PCR3BP)
to illustrate the ideas.

After reviewing the dynamical background associated with these transfers, a dis-
cussion of FLI maps, their relation to periodic orbits and their potential uses is pre-
sented. These ideas are then illustrated by the computation and analysis of several
examples of such transfers.

UNSTABLE PERIODIC ORBITS AND TRANSFERS

This section quickly reviews the basic dynamics underpinning of dynamical trans-
fers and discuss interesting recovery properties of such transfers. While the dynamical
background can be found in many references (see [8, 9] for example), we were not able
to find a reference discussing the recovery properties of these dynamics for spacecraft
applications after a brief literature search.

Unstable periodic orbits and their manifolds

The nature of a periodic orbit is determined by analyzing the eigen-structure of the
monodromy matrix associated with any state along the given orbit. The monodromy
matrix, M, is the state transition matrix evaluated after one complete period, 7', of
the periodic orbit. Therefore, it captures the linearized dynamics of the flow sampled
every T instant of time. A periodic orbit is stable when the monodromy matrix
possesses an eigenvalue or characteristic multiplier, A greater than one.

Indeed, the state resulting from a small perturbation du, from a state x, on the
periodic orbit will be mapped after one period to the state z, + M.du,. If one of
the eigen-values has modulus greater than one, a small perturbation in the direction
of the corresponding eigen-vector, will result in an increase in the perturbation after
one period: M.6u, = Adu,, so that ||[M.0u,|| > ||du,||. Moreover, as the pertur-
bation M.ju, lies also in the same direction as u,, in the linear approximation to
the dynamics, the set of initial conditions perturbed in the direction of this unstable
eigen-direction from the initial state z, forms a 1-dimensional subspace, which, after



propagation in time, results in a 2-dimensional linear manifold, the (linear) unstable
manifold associated with the periodic orbit.

Now, In the autonomous hamiltonian framework of the model considered (PCR3BP),
the state transition matrix associated with the linearized dynamics around any so-
lution is symplectic, so that its eigen-values come in reciprocal/complex-conjugate
pairs or quadruples. Thus, the existence of an unstable eigen-values A, |A| > 1, of the
monodromy matrix implies the existence of a corresponding “stable” eigen-values, X,
M| =1/|A] <1, and a corresponding stable eigen-direction and (linear) stable man-
ifold. Any initial condition lying on this stable manifold will converge towards the
initial periodic orbit as time increases. The phase portrait of these saddle dynamics
is illustrated in Figure 1. Thus stable and unstable manifolds corresponds to the
contracting and expanding subspaces in the vicinity of an u.p.o.

Figure 1: Cartoon representing the saddle dynamics appearing on a surface
of section (red), that results from an unstable periodic orbit (green). The
light blue and pink lines on the right plot, represent the cross-section of
the stable and unstable manifolds of the u.p.o., respectively..

A classical theorem in dynamical systems [8, 9], guarantees that this linear pic-
ture is preserved in the actual dynamics of the original system. The linear manifolds
obtained from the linear analysis now exist as smooth 2-dimensional manifolds em-
bedded in the energy manifold*.

Thus, an unstable manifold, denoted W"(uy), is smooth set of trajectories which
converge towards the u.p.o., u,, as time goes to —oo. Similarly, a stable manifold,

*In our autonomous hamiltonian framework, the hamiltonian function defines a first integral of
motion and the set of initial conditions resulting in a given value for the hamiltonian form a sooth
manifold of codimension one in phase space. This manifold is called the energy manifold.



denoted W*(u,), is a smooth set of trajectories which converge towards u, as time
goes to +00.

Finally, we note that the above linear analysis provides a simple tool to numerically
approximate the manifolds of an u.p.o., once a state on the u.p.o. and its period are
known.

Manifolds and transfers

While, in general, the manifold W* and W* do not coincide (as sets of points
in phase space), they often intersect and the trajectories lying in such intersections
converge towards the corresponding u.p.o. as time goes toward both +co and —oo.
These particular trajectories are called homoclinic connections.

Whereas a transfer from a periodic orbit back to the same periodic orbit does
not seem of immediate utility, the general case of a transfer between two different
u.p.o. is certainly useful. For example, the one of the legs of the trajectory of the
Genesis mission approximated a dynamical transfer relating two different halo orbits
[1], one near the libration point L1 of the Earth-Sun system, and the other, near the
corresponding Lo, point.

Trajectories lying in the intersection of an unstable manifold of a u.p.o., u;, and
a stable manifold of a u.p.o., uq, are called heteroclinic connections. They depart the
neighborhood of the first u.p.o.f, and converge towards the second u.p.o. as time goes
to +o0.

Thus, it appears that in non-integrable systems, such as the CR3BP, where man-
ifolds of different u.p.o. intersects, “thrust-free’ transfers are possible and present
a potential class of transfers for current and future space missions. The design of
such transfers relies on the knowledge of a source and target u.p.o. (and possibly
intermediary u.p.o., as well), their associated manifolds and connections.

Trade-offs and design

As noted in the introduction the design and implementation of dynamical transfers
present several difficulties:

e The set of u.p.o. in phase space is very large and a choice of the source and
target u.p.o. for some design problem is not clear.

e If analyzed over a sufficiently long time, the unstable dynamics associated with
these transfers present a high sensitivity with respect to the initial conditions.

While the first difficulty can be addressed by placing the different periodic orbits
into context (next section), the second difficulty represents, in fact, a trade-off be-

t Assuming that both u.p.o., do not lie in the same neighborhood.



tween time scale and sensitivity, complementing the AV v.s. time-of-flight trade-off
considered in [10].

Indeed,while the above dynamics are the backbones of chaotic motion* and, thus,
result in high sensitivity with respect to the initial conditions, these phenomena
involve the consideration of the flow over relatively long time spans. The motion
near a given u.p.o. and for short enough time spans, is a smooth deformation of the
linear dynamics which present a certain recovery property that may be of interest for
trajectory design that requires to take into account the potential failure of the engines
during maneuvers that would stay at each instant of time along such manifolds.

In order to illustrate our point, we consider the archetypical system corresponding
to the normalized linear picture of the saddle dynamics around a u.p.o. on a Poincaré
surface of section:

(m"“):(A ?)(“) with Ae R,A>1
Yn+1 0 by Yn

The stable manifold branches of this system are given by the positive and negative
y-axis, while the z-axis corresponds to the unstable manifold. The general solution
of this system is easily seen to be (z, = A"z, y, = A "xg), so that the hyperbolic
relation, z,y, = %Yo, holds.

Now, requiring a spacecraft to be in a neighborhood of size € at a given time n > 0,
results in constraining zy and y, to satisfy the relation:
&2
Zo.yo < € or, assuming, yo > 0, o < — (1)
Yo
This condition shows a trade-off between the initial distance from the u.p.o. and
the closeness of the initial state from the stable manifold to reach the u.p.o. within
a certain accuracy. The farther away from the u.p.o. the spacecraft initially lies, the
closest it must be from the stable manifold.

In practice, the accuracy on the knowledge of the state of a spacecraft is not
infinite and the upper bound on zy cannot be taken arbitrarily small. Thus, let us
assume that the state can only be known to within an accuracy §. Using the previous
constraint, we see that the largest distance that a spacecraft can be from the u.p.o.
in order to reach it within € is constrained by:

62

< — 2
Yo 5 (2)

For example, a positional accuracy ¢ of 1 km and a requirement to meet an u.p.o.
within 100km results in requiring the spacecraft to lie within 1 km of the stable
manifold at a distance no greater than 10, 000km. Note that these estimates are only

¥Chaotic motion is, by definition, the nature of the flow in the neighborhood of connections [8, 9].



given here to illustrate our point. Even in simple models, such as the PCR3BP, The
manifold of an u.p.o. are curvy so that the path length along the manifold is not
directly related to the distance from the u.p.o., and far away from the u.p.o., the
non-linear effects are certainly of importance. However, the above argument shows
that, depending on the constraints imposed on the trajectory, the targeting of a stable
manifold can be performed from some distance to the final u.p.o., while still ensuring
convergence towards the approximate target for some time span.

While the knowledge of the path length from the current state to the target may
be of interest, recovery properties during maneuvers are generally stated in terms
of time requirements. For example, one can imagine a spacecraft performing a low-
thrust transfer and encountering a hardware malfunction that would results in the
loss of thrust capability for some period of time. Assuming that such a transfer lie
within ¢ of the stable manifold of some u.p.o., what would be the time span allowed
by the dynamics before the spacecraft would embark upon an undesirable path from
which the recovery of the nominal path may be difficult to perform?

While the above path length constraints do not depend on the characteristic mul-
tiplier of the u.p.o., the above problem does involve the time scale of the problem,
and u.p.o. with a mild instability will result in larger recovery time (at constant fun-
damental period) than a highly unstable periodic orbit. Indeed, using our simplified
saddle dynamics, we can see that an e-neighborhood of the u.p.o. stretches apart
along the unstable directions, so that an uncertain state in this neighborhood will
have equal probability in going along either branch of the unstable manifold (i.e., the
positive or negative z-axis in the example chosen). When dealing with actual space-
craft trajectories, this may mean being ballistically captured or not by a planetary
satellite, as for example in the dynamics associated with the libration points [ref].
Thus, the recovery time allowed by the dynamics is less than the time taken to travel
from the current state along the stable manifold to the e-neighborhood around the
u.p.o.

From the previous equations, we easily see that the recovery time n is thus bounded
by the following relation:
loge/d 3
log A )
The smaller the characteristic multiplier of the u.p.o., the longest the recovery
time. For example, assuming again that 6 = 1km, ¢ = 100km, the recovery time
for A = 1.5 is ~ 11 time units, while it is only 2 and 1 time units for a A value of
10 and 100, respectively. Note that in the simple dynamics considered to illustrate
the trade-off between recovery time and characteristic multiplier, the fundamental
period of the u.p.o. does not enter, as the saddle dynamics considered is based on
the monodromy matrix analysis. However, recalling the definition of this matrix, one
immediately see that the unit time of the problem are in fact set as this fundamental
period. Thus, a A value of 1.5 would result in approaching the periodic orbit in 11
fundamental periods. The longest this period, the longest the recovery time.
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STABILITY MAPS AND CONNECTIONS

From the previous discussion, we have seen that the design of dynamical transfers
rely on the computation of u.p.o. and their manifolds. However, as we pointed out,
the number of u.p.o. is large and not every connection seem suitable for designing
transfers, due mostly to the too high sensitivity of some of these transfers or the too
lengthy time of flight required.

From a design viewpoint, the knowledge of a single trajectory meeting some given
requirements is generally not sufficient as changes in policy, funding, or the event of
a missed maneuver result in a modification of the requirements and back-up options
or alternatives are often sought for. Thus placing trajectory into their dynamical
context may help future trajectory designer in answering some of these challenges
more efficiently. Stability maps present one tool that may help in this endeavor.

Stability maps

In a range of energy near that of the libration points, the phase space of the
PCR3BP is a mixture of regular and chaotic motion. Regular motion, or stable
periodic and quasi-periodic motion, tends to group into small clusters forming regions
of long-term stability. While tiny chaotic layers may still exist in these region, the
approximate, numerical distinction of chaotic and regular motion using chaoticity
indicators can seem sufficient to locate such stability regions [6, 7]. The time scale
used for these computations is indeed finite and the tiny chaotic layers appear as
regular motion at these time scales.

The fast Lyapunov indicator (FLI) is a chaoticity indicator based on the expansion
properties of the state transition matrix that allows for a quick separation of strongly
chaotic motion from regular trajectories [11]. While several definition have been used
in the literature, we use the definition adopted in [6] with a normalizing factor based
on the current state, so as to obtain a scale invariant indicator.

FLL(T) = sup flog |[6u:(8) ] (@)

where {du;} represents the state at time ¢ of the evolution of a basis of initial per-
turbation vectors. The evolution of these perturbations is obtained by integrating
the first variational equations. Noting that a small perturbation vector can be
split into a position and velocity part, du = (dr,dv), the norm ||du|, is defined
as v/(||0r[|/r)2 + (||6v||/v)2, where ||.|| is the usual Euclidean norm and r and v are
the magnitude of the position and velocity at the current state of the spacecraft. The
use of this metric thus results in a scale invariant definition of the FLI. The time
scale, T', entering the definition of the FLI has been taken to be 628 normalized units
in the PCR3BP, which represents a time span of about 100 periods of Europa around
Jupiter.

By computing the FLI for a set of initial conditions and representing the index



value as a density map over the chosen set, one obtains stability maps indicating
the different stability islands intersecting the set of initial conditions considered. For
example, Figure 2 represents an FLI map in the PCR3BP modeling the Jupiter-
Europa system. The initial condition plane considered corresponds to trajectories
crossing the z-axis with y > 0 at a fixed Jacobi constant of C' = 3.0. From this
picture, one can see the existence of a large chaotic sea (higher values of the FLI,
orange-yellow color on the picture) and the different stability islands associated with
distant retrograde motion around Europa and resonant motion around Jupiter (lowest
values of the FLI, purple color). Other Stability maps can be found for example, in
6, 7].
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Figure 2: Example of an FLI map in the Jupiter-Europa system modeled
by the PCR3BP with ;= 2.528 x 107% at a Jacobi constant of C' = 3.0.

Relation to periodic orbits

The transition from regular motion near the boundary of the stability regions
is structured by the presence of u.p.o., which correspond to members of families
of periodic orbits bifurcating from some stable family in the stability island under
consideration [7].

For example, one can find simple periodic orbits near the center of each croissant
shaped stability island in the previous maps. Starting from the smaller island located



around x ~ —1.1, the series of simple periodic orbits orbits for the successive first
four islands are presented in Figure 3.

1

0.5 1

-0.5 1

Figure 3: (a) Resonances 11:10 (red) and 8:7 (purple) (b) Resonances 10:9
(green) and 9:8 (blue). Jupiter is represented as a marron disc and Europa
as a blue square.

Note that these periodic orbits make about 11, 10, 9, and 8 complete revolutions
around Jupiter, while Europa completes, 10, 9, 8 and 7 orbits, respectively. We will
thus refer to these stability islands as the 11:10, 10:9, 9:8 and 8:7 resonant isalnd,
respectively.

Now, as the Jacobi constant varies, the shape and size of the stability islands
vary [7] and the central periodic orbit may bifurcate with some families of unstable
periodic orbits. At these points, the size of the stability region surrounding these
simple periodic orbits disappear (at least in the planar case). This is what have been
observed by several researchers for the case of the distant retrograde orbits (DRO)
[14, 6, 13], leading the a weakening of the strong stability of these orbits, known as the
“neck region”. The bifurcation of the DRO familiy in the planar case occurs through
a period tripling bifurcation and the corresponding family of periodic orbits lie at the
boundary of the stability region assocaited with the DRO family for C' values away
from these bifurcation points.

Similarly, by plotting the linear stability indices of the period 10 family of orbits of
whom one member has been presented in Fig. 3(b), another period tripling bifurcation
occurs at C' = 2.98745. In the same manner, as for the DRO case, this family “sticks”
to the boundary of the 10:9 stability resonant island, and turns out to correspond to
one of the most influencing periodic orbit for transfers relating to this resonant island.
Figure 4 presents the linear stability indices of these families and the period tripling
bifurcation point. The corresponding critical orbit is also shown on that Figure.
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Figure 4: (a) Shape of the periodic orbit of the 10:9 family at the pe-
riod tripling bifurcation point (Europa represented as a green dot). (b)
Horizontal, linear stability indices of the 10:9 periodic orbits family (dark
blue) and the triple period, bifurcating , unstable family (light blue). The
orange curve represents the vertical stability index of the 10:9 stability. It
is very close to, but smaller than 2.

These boundary unstable periodic orbits, or b.u.p.o., thus play a a fundamental
role for transfers using stability islands as source or target. They are generally as-
sociated with some kink in the boundary of the stability region and are thus, rather
easily recognizable given an FLI map of sufficient resolution. If the information of
the bifurcation diagram of the family under consideration is not available (or that
one is only interested in a quick overview of the dynamics at a particular Jaocbi
constant value), the use of a differential corrector to refine the initial conditions of
the b.u.p.o. read from the FLI map is a quick and conveninent tool to explore the
dynamics. Aside, from these main bifurcations, many b.u.p.o. of higher period exist
and correspond to the transition in stability properties of some families of periodic
orbits of long period lying in the stability island considered’. These b.u.p.o. tends to
have a lesser influence on the dynamics that concerns us, as their time scale is very
long.

Stability maps and manifolds

Besides indicating the location of some u.p.o., the stability maps reveal some struc-
tures in the chaotic sea. Indeed, looking back at the above map (Fig. 2), one can
observe small variations in the FLI values in the chaotic sea forming 1-dimensional
curves. Notably, some of these curves emanate from the vicinity of the location of

$These “higher order” periodic orbits also appear as bifurcations from the fundamental periodic
orbit.
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Vx

the b.u.p.o. and the superimposition of the intersection of their manifolds with the
slices of initial conditions corresponding to these stability maps confirm indeed that
these particular structures do correspond to the trace of the manifolds associated
with these b.u.p.o. For example, Fig. 5 presents such an operation for the unstable,
planar DRO and one can clearly attest of the match.

0.008 FLin 0.008
30
0.004 ¢ 0.004
0 20 0
-0.004 -0.004
10
-0.008 -0.008
-0.0195 -0.019 -0.0185 -0.018 -0.0175 -0.0195 -0.019 -0.0185 -0.018 -0.0175
X X

(a) (b)

Figure 5: (a) Forward FLI map around a distant retrograde orbit (mag-
nification of the small stability dot, “lost” in the chaotic sea of Fig. 2
between z = —0.05 and z = 0.0); (b) with b.u.p.o. initial conditions (green
squares) and stable manifold branches overlaid (blue and pink triangles).

These features appear more apparent as the integration time in the FLI compu-
tation time is not taken to be too long and reflects the fact that the initial conditions
lying near the stable manifold linger around for some time before getting caught and
being scattered away by the unstable manifolds. Thus if the integration time is not
too long, the stretching in the immediate negihborhood of the stable manifold will be
less than for an initial condition lying a little further away. As the time increases, the
width over which this effect can be observed shrink and the curvy lines approximating
the stable manifold in the FLI computation are less pronounced. Thus we used half
the time adopted in the creation of the first map of this paper (Fig. 2) to generate
the previous two maps (Fig. 5) and the maps that follows in the paper.

Similarly, unstable manifolds present the same contraction property as the stable
manifolds, when one considers the dynamics in backward time. Thus, it is to be
expected that the computation of stability maps in backward time would reveal the
trace of the unstable manifolds of the b.u.p.o. This is illustrate on Fig. 6 which
presents the same set of initial condition as in Fig. 5, but with a backward computa-
tion of the FLI. As for Fig. 5, the unstable manifold of the boundary unstable DRO
is superimposed, showing again the good agreement between the structures revealed
by the FLI computations and the unstable manifold.
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Figure 6: (a) Backward FLI map around a distant retrograde orbit; (b)
with b.u.p.o. initial conditions (green squares) and unstable manifold
branches overlaid (blue and pink triangles).

Thus, the computation of backward and forward maps indicates the evolution of
the unstable and stable manifolds associated with the b.u.p.o., without computing
either the corresponding periodic orbit or the manifolds themselves. As the heuristic
argument and the examination of several stability maps showed, the trace of the these
manifolds is the more apparent, the smaller the characteristic exponents are small.

Forward /backward maps and connections

We have seen that connections are the result of the intersection of stable and
unstable manifolds associated with some u.p.o.. Thus, by superimposing two stability
maps, one computed in forward time and the other computed in backward time, the
main connections between the different b.u.p.o. appears. This superimposition can
be performed in several manner, and the method chosen here, consist in computing
the mean value of the FLI associated with an initial conditions. That is, if F'LI*
denote the FLI value when computed using forward integration, and F'LI~ the FLI
value obtained with backward integration, we define the mean FLI as:

1
FLI, =5 (FLI" + FLI") (5)
Applied on the previous case of the stability region around the DRO at C' = 3,
one obtains Fig. 7 where both the stable and unstable manifolds are visible directly

on the map. More globally, Fig. 8 and 9 show the stability maps computed on a
larger scale, showing the different connections present between the different resonant
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island. These connections appear as intersections of the traces of the manifolds as-
sociated with the different b.u.p.o.. Once can, for example, observe the pronounced
connections between the 9:8 and 10:9 stability islands (primary intersection point at
x ~ —0.0921, % ~ 0.0553) and the 7:8 and the 8:7 islands (primary intersection point
at £ ~ —0.0980,x ~ 0.0805. Note that the resonant island tends to regroup in pair,
with similar positioning of the even/odd numerators of the resonance relations.

Note also on Fig. 9 the lobe structures associated with the connections that govern
the transport phenomena involving the resonance region [12]. We can also appreciate
on this Figure, the benefit of using the mean value of the FLI, as the location of the
b.u.p.o. are much more easy to distinguish: b.u.p.o. lie at the 'x’ shapes near the
boundary of the stability islands.

0.008 Eiin g 0.008
30
0.004 FHE 0.004
0 20 0
-0.004 -0.004
-y ) 10 &
<0/008 ~—— = -0.008
-0.0195 -0.019 -0.0185 -0.018 -0.0175 -0.0195 0013 -0Q0185 0018 -0.0175
X X

(a) (b)

Figure 7: (a) Mean FLI map around a distant retrograde orbit; (b) with
b.u.p.o. initial conditions (green squares) and associated manifolds over-
laid (blue triangles: stable manifold branch; pink triangles: unstable
branch).

Note that in the problem considered, PCR3BP, the time reversal symmetries can
be used to obtain the forward/backward time knowing only the forward map. In-
deed, if (z(t),y(t), (), y(t),t) represents a solution of the equations of motion of the
PCR3BP, it is a simple matter of substitution to check that (z(—t), —y(—t), —2(—t),
y(—t),—t) and (—z(—t),y(—t),&(—t),—y(—t), —t) are also solutions of these equa-
tions. These discrete symmetries also hold for the variational equations, so that the
forward FLI value on an initial condition of the form (z,,0, Z,, 9,) is the same as the
backward FLI value for the initial condition (z,, 0, —Z,, y,). A similar situation holds
for the initial conditions of the form (0, y,, %o, Jo) and (0, Yo, Lo, —¥o), respectively.
Thus, on the initial condition plane defined by the conditions, x = 0 and § > 0 (or
y =0 and & > 0, for e.g.), computing the forward FLI maps and performing simple
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Figure 8: Mean FLI map corresponding to the case shown in Fig. 2.
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data operations on the resulting file, suffices to generate the corresponding mean FLI
maps.

Finally, note that the computation of and FLI in forward time and backward time
for half the value of a given time span 7' is overall equivalent to computing the FLI
values for the whole time span. Looking back to Fig. 7, one can observe that the
features in the chaotic sea are indeed less apparent, as would be if a forward map
using an integration twice as the one used for generating Fig 5(a). Thus, the use of
symmetries in conjunction with the choice of the initial condition plane can result
in decreasing the computaional cost of the map generation by two. The resulting
maps are in fact more interesting with all regards, as the mean value of the FLI does
reveal the stability island features more sharply. This is due to the smoothing of the
lingering effect of the trajectories near the stable manifolds for forward maps (and
unstable manifolds for backward maps), resulting in seemingly elongated streches of
the stability regions. By computing the mean FLI value, this lowerig value of the FLI
is uniformized, without eleiminating the structures appearing in the chaotic sea.

TRANSFER EXAMPLES

As we have seen in the background section, connections are synonyms with thrust-
free transfers legs. The mean FLI maps, thus allow us to obtain a quick overview
of the possible transfers between different regions of phase space. Moreover, the
knowledge of the nearby stability islands indicates the expected type of motion to be
enountered in the vicinity of the source and target u.p.o., thus placing these transfers
into their dynamical context.

Transfer between two resonant islands

To illustrate how the dynamical maps obtained can be used for a transfer design,
we consider the case of a to transfer of a spacecraft from the boundary of the 10:9
resonant island, towards another resonance region. While the two main connections
pointed out in the previous section would result in such a transfer, the changes in
orbital elements (relative to Jupiter) would seem to be small.

By scrutinizing more closely the mean FLI map of Figs. 8 and 9, one can see that
some orange lines emanating from the 10:9 resonant island intersects another such
line that emanates from the 8:7 resonant island. An approximate initial condition
for this intersection point can be read! from Fig 8: z = —0.076; # = —0.0613 (at
y =0, C' = 3.0). While this initial condition only approximate the actual connections
present in this model, Generating a zoom around this point allows us to refine the
initial condition for this connection, as shown in Fig. 10(a). Using the reading

9The reading is done via the pointer of a mouse on a computer. The coordinate of the mouse
pointer automatically reflects its position on the graph, so it is easy to get fairly accurate readings
quickly.
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x = —0.0764766 and & = 0.0618624, one obtains the transfer shown on Figs. 10(b)
and 11.

As we can see the backward integration of the initial condition obtained from the
FLI map results in a converging trajectory towards the source u.p.o., represented in
red on Fig 11(b) and corresponding to the member of the period-tripling bifurcated
familie at C' = 3.0. We note, that this b.u.p.o. is in an approximate 30:26 resonance
with Europa, very close from the approximate 10:9 relation of the simple periodic
orbit lying at the center of the resonance island. The forward integration of the
initial condition does also lead to the desired resonance region, resulting in a change
in periapsis radius of about 0.05 normalized unit, or ~ 33,500 km. Note, however,
that the transfer time is rather large ~ 1.5 year, thus illustrating the important
trade-off between time-of-flight and the use of mildly unstable dynamical pathways.

FLIn
0.068 25
20
0.064
*
= 15
0.06
10
0.056

-0.15 -0.125 -0.1 -0.075 -0.05
-0.08 -0.078  -0.076  -0.074 -0.072

(a) (b)

Figure 10: (a) Mean FLI map near a connection point relating the 10:9
and 8:7 resonance regions. The connection point is naturally emphasized
by a low FLI value. (b) Corresponding transfer viewed on the surface of
section y =0 and y > 0.

Transfer between an unstable DRO and a resonant island

The refinement of the above initial conditions for the transfer can be alternatively
obtained by computing the unstable manifolds of the source b.u.p.o., the stable man-
ifolds of the target b.u.p.o. and their natural intersections. The FLI maps helps us
in this case by indicating that the desired connection does indeed exist. This mani-
fold computation method does seem, however, necessary when close fly-bys result in
too much stereching for the features present in the chaotic sea to remain apparent
(scattering).

17

Vx



Figure 11: (a) Transfer representation on position space. The red square
corresponds to the connection point, the green leg represents the forward
integration in time, while the blue leg represents the backward integra-
tion. (b) backward leg (blue) with the source periodic orbit. Jupiter is
represented by the marroon disc centered at (—1,0).

For example, in order to compute a transfer between an unstable DRO and a
b.u.p.o., the unstable manifold of the unstable DRO is first computed and the inter-
section with the stable manifold associated with the target b.u.p.o. is then obtained
via the FLI maps method!l.

Note that, as opposed to the previous transfer example, this transfer (not shown)
involves a large change in sem-major axis, which results from the presence of a fly-by
after the departure form the DRO region. This example is typocal of a DRO type
capture/escape [4].

This brief description of this transfer is here to show that both the map and
manifold computations can be complementary. A comprehensive appraoch using a
variety of tools seem to be the most esffivcient way of dealing with difficult questions
regarding these complex dynamics.

CONCLUSIONS AND FUTURE DIRECTIONS

An illustration of the potential use of chaoticity indicators based on the state tran-
sition matrix has been presented. By placing the transfers into a dynamical context,
the maps may help a mission trajectory designer in analyzing potential alternative
trajectories from a reference trajectory. The recovery properties of transfers target-
ting mildly unstable periodic orbits have also been discussed from an heuristically

Il Alternatively, one can also computate the stable manifold of the target b.u.p.o..
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viewpoint and related to the existence of nearby stability islands.

While only thrust-free transfer legs have been discussed in this paper, the ideas
and tools presented here may also be useful to better understand low-thrust transfers
from a dynamical viewpoint. This understanding may lead to the efficient generation
of good initial guesses to input in optimizers. This problem is intimately related on the
chaining of several coast arcs by using simple control laws near the unstable periodic
orbit. A future paper will aim at discussing these issues. Another direction of study
should also aim at extending the ideas presented in this paper to the 3-dimensional
problem, which would illustrate more fully the advantage of using chaoticity indicators
to partially reduce the dynamics on initial condition planes. These methods may also
be useful for designing resonant fly-by and analyze the trade-offs present between
the inter-moon transfers in orbital environment such as the Jupiter-Galilean moon
system.

Finally, we should like to point out that further investigations of other types of
indices for transfer analysis purposes would be of interest. For example, chaoticity
indicator based on the frequency analysis of spacecraft trajectories may present cer-
tain advantages, as they do not require, for example, the integration of the variational
equations of the system.
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