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Abstract 

A method for collecting quantitative 
technology development information and 
matching it with capability needs of future 
NASA missions is described. Three 
quantitative analyses are performed, and 
results presented in terms of optimal 
portfolios, one at each of many varying budget 
levels. This is a tool that a decision maker can 
use to assess trends and better understand the 
underlying value of each capability area. 
These results show that quantitative decision 
making practices are possible in complex 
systems such as the NASA technology 
development program. 

Introduction 

The National Aeronautics and Space 
Agency (NASA) through its Office of the 
Space Architect1 organized an effort to enable 
a systematic approach to technology 

                                                 
1 A recent NASA reorganization has placed the Space 
Architect functions within a new Advanced Planning 
and Integration Office 
  

investment in support of space exploration. 
The Capabilities, Requirements, Analysis and 
Integration Team (CRAI) was formed as an 
inter-center effort to capture, validate, and 
analyze the relevant information.  

Information on capability requirements 
spanning multiple missions of interest to the 
agency was sought, including mission name, 
quantified capability need with uncertainty 
range ( and associated units), and date 
required for each of the capabilities. The team 
selected a mission set for a proposed 
Lunar/Mars campaign consistent with 
implementing the Presidential Vision for 
Space Exploration. 

Technologies which aim to satisfy one or 
more of the requirements were characterized 
within a structure which included state-of-the-
art and projected quantified performance, cost, 
schedule, and associated uncertainties, along 
with proposed milestones. 

Decision-maker preferences are important 
for any analysis. One possibility for guiding 
investment decisions would be the “mission-
enabling” approach: select sets of technologies 
that adequately enable particular missions. An 
alternative is a “democratic” approach: select 
technologies based only upon relative 
performance gain and applicability to the 
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mission set. This study took the democratic 
approach, as it is most applicable for long-
term planning studies where focused mission 
designs have not as yet been selected.  

A second study was completed at the Jet 
Propulsion Laboratory (JPL) under separate 
sponsorship, in parallel with the CRAI effort. 
This study utilized the same analysis structure, 
and its results are presented here with the title 
“Exploration Mission Analysis.” 

Methodology 

 
The CRAI team employed a methodology 
described in Reference 4, and in the web site: 
http://start1.jpl.nasa.gov. This method has 
been developed over several years at JPL and 
several papers have been published. 1 2 3 4

CRAI and the NASA Space Architect’s 
Architecture Group were to work closely 
together to develop requirements. 
Unfortunately, the President’s announcement 
in February 2004 of a new exploration focus 
for NASA made the immediate acquisition of 
specific requirements difficult. Therefore, 
CRAI decided to use three pre-existing 
architectures as a focus for their work. These 
architectures are: 
 
1. 1998 Mars Reference Mission 5 
2. OASIS mission 6 
3. JSC Architecture #1 7 
 

These three architectures were chosen 
because they were available, substantial, and 
somewhat quantitative. The CRAI block leads 
extracted quantitative requirement data from 
these reports.  

Technology Data Collection 

A data template was created early in the 
process to meet the needs of the analysis. 
Intended to capture quantitative data provided 
by hundreds of technologists, it was designed 

to be as simple as possible. The key data that 
it collects are: contact information, technology 
name, linkage to the capability-breakdown 
structure, expected cost, probability of success 
(PoS) if fully funded, metrics used, state of the 
art (SOA), expected increase over state of the 
art, and budgetary and development plans. 

CRAI Analysis 

The CRAI effort supplied a total of 440 
technology data sheets, categorized into the 
following Technology Areas: 
 
2.1 Communications & Info Systems 
2.2 Space Utilities and Power 
2.3 Human Support Systems 
2.4 Automation and Robotics 
2.5 In-Space Transportation 
2.6 Scientific Instruments and Sensors 
2.7 Structures and Materials 
2.8 Crew Mobility 
2.9 Launch Access 
 

Of the 440 data sheets, 102 were unusable 
due to incompleteness in some of the essential 
fields. The remaining 338 data sheets were 
matched to requirements extracted from the 
three architectures. A technology was 
considered matching only if its metrics were 
the same as the requirements, i.e., the 
technology “Ka-Band Travelling-Wave Tube 
(TWT) 100 to 250W” was considered to be a 
needed technology because its metric, watts of 
power in a travelling-wave tube, was matched 
by a requirement of 100W of power for a 
TWT in the Mars Reference Mission. This 
strict matching of requirements to 
technologies reduced the number of 
technologies eligible for analysis to 47, and 
only technology areas 2.1-2.5 had matches.  

Scoring Algorithm 

To compare disparate technologies with 
completely different goals is a difficult task. 
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Either the level of abstraction has to be so 
high as to remove any individuality of the 
technology, or a method has to be determined 
that allows the technology to be represented 
by a unitless score. Our scoring algorithm 
begins by converting the projected technology 
metrics into unitless scores.  

For clarity, we will illustrate a simplified 
example: Disposal of Human Waste (a 
perhaps distasteful, but essential component to 
any human exploration). It has two metrics. 
Each metric is scored separately and the 
results are averaged. 

We begin with the metrics that the 
technologist provided: 

Table 1: Disposal of Human Waste 
Technology 

Metric SOA Need 
Time Waste 
Contained 

0.25 years 200 years 

Stored Volume 
Density 

70 kg/m3 700 kg/m3

 
To make the score unitless, we divide the 

need by the state of the art: 

Table 2: Calculations #1 

Metric Division Result 
Time Waste 
Contained 

200/0.25 800 

Stored Volume 
Density 

700/70 10 

 
There is often a large difference in scores, 

some of them being so large that they are 
unintelligible. To gain a better physical 
intuition of these make these results more 
intuitive, we take the log2 of the score. This is 
then a measure of how many times a 
technology’s performance needs to double to 
reach the need: 

Table 3: Calculations #2 

Metric Log Result 
Time Waste log2(800) 9.64 

Contained 
Stored Volume 

Density 
log2(10) 3.32 

 
The scores are then averaged. Averages 

are taken instead of sums to keep technologies 
with many metrics from scoring arbitrarily 
high. 

Finally, the score is multiplied by the 
percentage chance of success to arrive at an 
expected value for the score: 

Table 4: Final Calculation 

Average Score % Success Expected 
Value: 

6.48 90% 5.83 
 

Now the unitless score can be seen as an 
estimate of the expected benefit of this 
technology to a single mission. If this 
technology were needed for another mission, a 
score would be calculated for that mission’s 
needs, and the two scores added. The average 
technology score for the 47 CRAI 
technologies using this method is 
approximately 1.56 points. 

With a score and a cost, a benefit-cost 
ratio can be obtained. This ratio is calculated 
for each technology under consideration. A 
sample budgetary level for technology 
development across NASA is assumed, and a 
simple “grab-bag” optimization is performed. 
The sample budget level is then increased and 
the optimization ran again. By looking across 
a wide range of budgets, trends can be seen.  

Exploration Mission Analysis 

Similar to the CRAI analysis, the 
Exploration Mission analysis performed at 
JPL focused on the technology needs of a set 
of missions. Here, we examine these missions: 
 

1) Mars Sample Return (MSR) 
2) Astrobiology Field Laboratory (AFL) 
3) Mars Science Laboratory (MSL) 

 
 



 
 

4) Lunar Precursor Mission (LPM) 
 

Other missions were considered in 
addition to these four, including the Jupiter 
Icy Moon Orbiter (JIMO) and a Lunar Sample 
Return mission. However, the JIMO office 
was still performing technology trades and 
thus could not provide information, and the 
Lunar Sample Return mission required only a 
few minor new technologies, making it less 
interesting for this study.  

Technology Data Collection 

Technology data was collected through 
interviews with the study managers, chief 
technologists and technologists for particular 
technologies for these four missions. Data 
collected was similar to the CRAI effort.  

Each mission required several new 
technologies. MSR required 15, AFL 17, MSL 
12 and LPM required 8, for a total number of 
52 technologies to analyze.  

Exploration Analysis 

The same scoring algorithm used to 
analyze the CRAI data was used here with the 
one modifier that probabilities of success were 
not assessable for all technologies and 
therefore it was assumed that each technology 
was comparable regarding this parameter.    

CRAI Results 

Figure 1 presents technology-investment 
recommendations as a function of total 
resources available. The decision maker can 
choose to fund at any level and examine the 
portfolio for that budget. For instance, if the 
technology budget for the next 10 years were 
$300 million, approximately $60 million 
should be invested in Comm and Info 
Systems, approximately $30 million in Space 
Utilities and Power, approximately $110 
million in Human Support Systems, 

approximately $70 million in Automation and 
Robotics, and approximately $20 million in 
In-Space Transportation for a goal of 
maximizing total technological improvement 
while moving towards enabling the three 
CRAI design reference missions (The other 
areas do not appear in this graph because of 
lack of data). 
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Figure 1 -- Investment Recommendations 

for Different Technology Areas as a 
Function of Resources Available 

One of the more interesting results of this 
analysis is demonstrated clearly by the 
“Comm and Info Systems” (referred to as 2.1 
from now on) portion of this graph. As the 
potential budget increases from $25 million to 
$100 million, the optimal portfolio increases 
the budget of 2.1. However, at $125 million, 
the amount of money given to 2.1 actually 
decreases slightly. This displacement is due to 
a more expensive technology, which has a 
higher benefit/cost score, entering the 
portfolio. In other words, the budget has 
increased to a size where a technology that 
costs more, but has a higher benefit/cost ratio, 
can enter the optimal portfolio. This drop in 
funding in the 2.1 area occurs again at higher 
budget levels, and occurs in other areas at 
various times. 
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Ordering 

Other factors beyond the particular budget 
investments were also of interest. These 
included: 1) the order that technology areas 
came into the portfolio, and 2) the order the 
technology areas “saturated,” i.e., when every 
technology that could be chosen was chosen. 

The order in which technology areas first 
come into the portfolio shows us where the 
“low hanging fruit” is, where the highest 
return-per-dollar technologies are. The order 
of the five areas that had technology-
requirement matches was: 
 
     1) 2.1 – Comm and Info Systems 
     2) 2.3 – Human Support Systems 
     3) 2.4 – Automation and Robotics 
     4) 2.2 – Space Utilities and Power 
     5) 2.5 – In-space Transportation 
 

Primarily, this order is because there are 
medium-scoring, more affordable 
technologies in the Comm and Info Systems 
and Human Support Systems categories. For 
instance, High and Low Data Rate Coding 
Systems and Data Compression,” has a cost of 
only $2M, so it is funded early on. Its score of 
3.3 places it well above the average of 1.56.  

The order of saturation is different, 
however. An area will saturate when there is 
enough budget to enable every technology 
within the area, i.e., when the technology that 
has the worst benefit to cost ratio is funded. 
The order of saturation is: 

 
     1) 2.4 – Automation and Robotics   
     2) 2.1 – Comm and Info Systems  
     3) 2.5 – In-space Transportation 
     4) 2.3 – Human Support Systems  
     5) 2.2 – Space Utilities and Power 
 

The limiting technology for Space Utilities 
and Power is “Regenerative Fuel Cell 
Systems”, a technology that costs $40M and 
has a score of only 0.08. (This low score is 

likely due to an error of communication 
between the technologist and the analyst, since 
what the architecture states as a need is 
actually met by the state-of-the-art system!) : 

 

Table 5: Negative Score 

Regenerative 
Fuel Cell 
Systems 

SOA Architecture 
#1 

OASIS

W-h/KG 1880 400 1000 
 
Since the need is significantly less than the 

SOA, the scoring algorithm produces a 
negative score. When combined with the 
positive score of the technology’s other 
metric, this gives an average score of 0.08. It 
seems clear that only the positive-scoring 
metric should have been submitted. This 
demonstrates the importance of iteration and 
communication in such a large project. 

CRAI and Supplemental Data 

As the data collected was sparse, we 
decided to supplement it with the JPL 
Exploration study (noted here on as the Pilot). 
Eleven more technology areas were added, 
with 156 new technologies, for a total of 203 
technologies arranged into 16 areas. The new 
technologies were matched to requirements 
from future NASA missions.  

Investment Strategies 
Sm all CRAI and Pilot Data
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As can be seen in Figure 2, the total 
possible investment has increased. As before, 
the decision maker can choose to fund at any 
level and examine the optimal portfolio for 
that budget. Here, the “InSitu Resource 
Utilization” and the “Autonomous Robotics” 
categories have the largest possible budgets. 
This is due to more—and more expensive—
technologies in these two categories. 

Ordering 

The order of the CRAI technology 
categories entering the optimal portfolio does 
not change. The amount of budget necessary 
for the CRAI areas to enter increases as they 
compete against the pilot study’s 11 areas.  

What is interesting, however, is that the 
order of saturation does change. The order is 
as follows for both studies: 

Table 6 -- Order of Saturation 

CRAI only CRAI and Pilot 
2.4 – A & R 2.1 – Comm  
2.1 – Comm  2.4 – A & R 
2.5 – In-space Trans. 2.3 – Human Support 
2.3 – Human Support 2.5 – In-space Trans. 
2.2 – Space Utilities 2.2 – Space Utilities 
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What changes the order of saturation is not 

well understood. In fact, the last technology 
enabled in every area is identical between the 
CRAI-only and the CRAI-and-Pilot studies. 
The order may change because the addition of 
different technologies changes what mix of 
technologies is optimal. This has little effect 
in the beginning, where the funding is 
extremely limited and the best inexpensive 
technologies are chosen. Further on, when the 
budgetary levels are large enough to enable 
many of the average technologies, this larger 
set of technologies makes possible the 
“dropping” of average technologies to select 
technologies with better benefit/cost ratios. It 
is thought that because of this larger budget, 

and because of the complex interaction of the 
technologies, the order of saturation changes. 

Another possibility is the step size within 
the budget. If the technologies are of a lower 
order of magnitude than the step size, then a 
set of less expensive technologies are enabled 
all at once. Having a larger number of 
technologies increases the number of 
technologies that are an order of magnitude 
less than the step size, which can affect the 
complex interaction in the optimal portfolio. 

Exploration Missions Results  
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2.5 m Drill
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Sample Transfer System
Integrated Scoop-Canister
Eye-in-Hand Manipulation
Rover Sampling Tool
Covered Sample Tool
MEMS Avioncs
Impact Energy Absorber
TPS Design and Testing
Trajectory and Aerothermal  
Figure 3 – Investment Recommendations 

for Different Technologies as a Function of 
Resources Available 

Figure 3 gives the optimum technology 
choices at various budget levels, with the final 
budget level funding all technologies.  These 
recommendations are the result of the 
democratic method, which allows for the 
greatest increase in technology without taking 
into account the constraints of having to 
satisfy any mission’s entire technology suite. 

In Figure 4, we combine the technologies 
in Figure 3 working for the same mission 
together at each budget level to see how close 
the democratic method gets us to enabling any 
of the four missions.  
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Figure 4 – Recommended Technologies 

Combined by Mission 
From Figure 4 we begin to see that at 

some budget levels the democratic approach is 
not meeting any mission’s full technology 
needs. For example, it is clear that AFL does 
not have its full technology suite until large 
budgets. Filtering technologies which are not 
enabling a mission from Figure 4, we see that 
the democratic approach maximizes overall 
technology capabilities, but does not 
maximize the number of missions enabled for 
lower budgets (see Figure 5 below).   
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Figure 5 – Missions Enabled via the 

Democratic Method 
From Figure 5, an odd conclusion is 

reached. At a technology investment budget 
level of $210 M, only MSL is enabled – but to 
enable MSL’s entire technology suite is only 
on the order of $40 M. In fact, for $210 M, 
MSL plus MSR and LPM could all be 

enabled. The democratic approach is not the 
method for optimizing enabled missions.  

As the democratic approach has a poor 
time enabling missions at lower budget levels, 
we can see if we can do better with the 
mission enabling approach. Here, the analysis 
is run on each mission’s technology suite 
rather than each individual technology, where 
the score and the cost of the mission’s 
technology suite are simply the sum of each 
technology’s score and cost in that suite.  The 
results of the mission enabling method can be 
seen in Figure 6 and can be compared with the 
results of the democratic method in Figure 5.  
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Figure 6 – Missions Enabled via the 

Mission Enabling Method 
The biggest difference between Figure 5 

and Figure 6 is that the mission enabling 
method allows for more missions at lower 
budget levels. This is due to the fact that each 
mission has those technologies that are 
considered good by the democratic method 
(those that have a high score and a low cost), 
and those that are not considered as good 
(those that have a lower score and a higher 
cost). In the democratic method, since each 
mission has some of these lower ranking 
technologies that it needs, and because these 
are always chosen last as they do not optimize 
the budget, the missions must wait until higher 
budgets are reached which can then allow in 
the lower ranking technologies in to complete 
the technology suite. This differs from the 

 
 



 
 

mission enabling approach, where the better, 
cheaper technologies bring along the weaker, 
more expensive technologies at all times – the 
missions that are fully funded most frequently 
will be missions that have strong technologies 
to compensate for their weaker technologies.    

It is seen that the lunar precursor mission 
is the third mission chosen in the mission 
enabling method, whereas in the democratic 
method, it is the second mission to be enabled. 
This is because those missions that have the 
smallest number of low ranking technologies 
tend to be enabled first in the democratic 
method, whereas in the mission enabling 
method, those missions with higher total 
scores and lower costs will be chosen first.  

Competition Border 

As was seen in the above analyses, as the 
budget level increases, some technologies fall 
out to allow in the more expensive (but higher 
scoring) technologies in. Figure 7 is a 
graphical representation showing the 
interaction of technologies as they come in 
and out of the Exploration Missions portfolio. 

 

 

Figure 7 – Technology Competition Border  
In Figure 7, the horizontal axis represents 

each of the 52 technologies. The technologies 
are ordered with the highest score/cost ratio 

technologies on the left, decreasing towards 
the right as the trend line indicates. The main 
vertical axis indicates the total budget level. 
The color coding indicates each technologies 
funding status at each budget level. 

Grey indicates that a technology has yet to 
be included at any budget level. Examining 
the rightmost technologies (those with the 
lowest score/cost ratio) remain grey through 
many budget increases.   

Green indicates when the budget has 
increased enough to fund the technology.   

If after turning green a technology then 
turns blue, this indicates that the technology 
has continued to be funded.  However, if a 
technology turns red, the technology has lost 
its status of being funded do to competition. 
The region defined by the red and green is 
referred to as the “Competition Border.”    

Technologies which never turn red are the 
stronger technologies. Looking to the left of 
Figure 7, we see several technologies which 
enter at a low budget level, turn blue and 
never turn red – the competition is no match. 

Technology #12, on the other hand, 
entered (turned green) at the first budget level, 
but at the first increase turns red. The reason 
for this is that at the first budget level, it was 
just cheap enough to fill in the remainder of 
the budget, and it was cheaper then the higher 
score/cost ratio technologies to its left. 
However, once the budget increased a step, 
the higher score/cost ratio technologies could 
enter the budget – provided that they also took 
away #12’s funding! Several other 
technologies can be seen entering the budget 
before their better neighbors to the left, only to 
be booted shortly thereafter.   

Sensitivity/Robustness Analysis 

Once all of these levels are run, there is an 
optimal portfolio for each budgetary level. 
This represents the recommended investment 
under the proposed conditions stated earlier. 
But how sensitive is a portfolio 
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recommendation with respect to uncertainties 
regarding the capability requirements and 
technology improvement characterization? 

To measure the robustness of inclusion for 
each technology, a sensitivity-type analysis 
was run. For each budgetary level, every 
technology’s score and cost were adjusted a 
random amount from -5 to 5% and the 
optimization was run. This was repeated 200 
times for each budgetary level. 

The Monte Carlo robustness/sensitivity 
runs showed several technologies at each 
budgetary level that did not switch in and out. 
These technologies were different at each 
budgetary level. This is understood when 
examining Figure 7— once a technology has 
passed a certain level, it is always selected. 

The technologies that shift in and out of 
the optimal technology portfolio are more 
interesting. The following graph will be used 
for illustration: 
 

 
Figure 8 -- Estimation of Robustness 
The boxes each represent a technology and 

its uncertainty bounds. The curved line is 
imagined to be the optimal portfolio border. 
Its shape is unknown and changes with each 
analysis run, but is drawn here for reference.  

The red boxes have too high of a cost for 
their score, so they are not included in the 
optimal portfolio. The green boxes are within 
the border; they have a lower cost-benefit ratio 

and are included. The yellow boxes are on the 
line. Depending on their score and cost, they 
will be included in the portfolio or not. By the 
number of times they are chosen in the 200 
runs, we can estimate how close to the line the 
center of their box is, a measurement of how 
robust the technology is within that portfolio.  

Conclusions 

This work has demonstrated that a 
portfolio analysis approach applicable to 
strategic decision-making for the Exploration 
Mission is feasible. This process: 
– Is objective, traceable, quantitative, and 

repeatable 
– Is capable of enabling a strategy to tactics 

approach 
– Provides a method to determine the 

robustness of results to alternative data 
sets and policy preferences through a 
systematic sensitivity analysis   

Primarily due to the lack of data, and the 
lack of verification of the data we had, we are 
unable to say that the graphs above actually 
reflect optimal portfolios. However, there are 
several things that became clear through 
analysis of the data: 

Certain categories were consistently 
chosen by the algorithm at lower budgets than 
others, even with the Monte Carlo analysis. 
An example of this is the 2.1 – Comm and 
Info Systems area. This was due to lower cost 
or higher value technologies being a part of 
the category. These technologies tend to be 
chosen first, thus the category received 
funding at a lower budgetary level. 

Certain categories were consistently 
“saturated” first, meaning that all of the 
possible technologies were chosen by the 
optimization routine first. What stood out in 
these categories was that there were no low-
scoring, high-cost technologies. An example 
of this is 2.4 – Automation & Robotics. This 
area’s technologies are consistently used by 

 
 



 
 

multiple missions, giving many of them 
relatively high scores. 

Certain technologies were always chosen, 
regardless of budgetary levels, technology 
mix, or sensitivity/robustness runs. These 
technologies are robust technologies and were 
most often technologies that were used by a 
number of missions. A few examples: 

a. 2.1: Ka Band TWT 100 to 250W – 
used by multiple missions, low cost 

b. 2.3: Water Recovery From Waste – 
very high score, fairly low cost 

c. 2.4:  End-Effector placement – 
relatively low cost 

Certain technologies were never chosen, 
most likely due to data collection errors. Many 
of these had negative scores, showing us that 
even simple data collection becomes difficult 
when the data collection effort is scaled to an 
agency as large as NASA. A few examples are 
provided here: 

a) 2.5: LOX?L-CH4 OMS Engine – 
negative score, the SOA is sufficient 

b) 2.2: Stirling Reactor – negative score, 
the state of the art is sufficient 

Lessons Learned 

There are several recommendations that 
can be made to facilitate this process if 
attempted in the future: 

Begin with a web-based data collection 
system. It is believed that this will make the 
data entry job easier for the technologists. 
This type of system also eases transfer of the 
data into a spreadsheet. 

Block leads should spend the time up front 
to create a hierarchy showing all of the 
technologies that they hope to collect data for. 
This will show alternative technology pairs, 
technology pairs that should be enabled 
simultaneously, and also any dependencies 
that might exist. 

Data collection should be done early to 
give enough time for a thorough analysis. 

The analysis structure can be created early 
on with preliminary data, and all analysis 
routines can be constructed with preliminary 
data as well. Preliminary results, while not 
believable, can be used to verify that the 
structure has been written correctly and that 
the technologists understand how their data 
will be used.  

The CRAI effort has shown that 
quantitative data collection and analytical 
decision making can, in fact, be done  
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