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REFINEMENTS TO THE Q-LAW FOR LOW-THRUST
ORBIT TRANSFERS

AAS 03-630

Anastassios E. Petropoulos∗

We consider low-thrust orbit transfers around a central body, where specified changes are
sought in the orbit elements except true anomaly. The desired changes in the five elements
can be arbitrarily large. The Q-law is a Lyapunov feedback control law developed by the
author, based on analytic expressions for maximum rates of change of the orbit elements and
the desired changes in the elements. Q, the proximity quotient, serves as a candidate Lyapunov
function. Three refinements to the Q-law are presented here. First, the concept of relative
effectivity, rather than absolute, is introduced for deciding whether to thrust or to coast at
any particular point on the transfer. Second, a mechanism is introduced to avoid chatter in
the thrust direction when the spacecraft is very near the target orbit and is in an unfavourable
location on the osculating orbit. Third, for changing the argument of periapsis, the beneficial
effect of out-of-plane thrust, particularly as inclination approaches 0 or 180 degrees, is better
utilised. The first two refinements are primarily of use for circle-to-circle transfers, while the
latter refinement is of use in orbit transfers involving changes in the argument off periapsis.
Two sample orbit transfers demonstrate the utility of the refinements. As before, the Q-law
permits a rapid evaluation of the trade-off between propellant mass and flight time, provides
reasonable estimates of the flight path and performance of optimal orbit transfers, and also
serves as a mechanism for recovering from flight-path disturbances.

INTRODUCTION

The problem of computing many-revolution, low-thrust orbit transfers around a central body
is a difficult one; its study began at least as early as the 1950s1,2 and continues today. Much of
the work has focused on finding propellant-optimal trajectories using either indirect or direct tech-
niques or mixtures of the two, as recently exemplified by Refs. [3–6], [7,8], and [9,10], respectively.
Given the dearth of analytic solutions to the optimisation problem, and the difficulty of computing
optimal solutions, some attention has also been focused on heuristic control laws. The advantage
of the heuristics lies in the speed of computation, which can be orders of magnitude greater than
that for optimisation, while the drawback is that the solutions are non-optimal. One category of
heuristics11–13 involves “blending” the instantaneously optimal thrust directions for changing each
of the orbit elements during each of several phases of the orbit transfer. The precise nature of the
blending and the delineation of the phases is guided by experience of the mission designer and per-
haps by optimisation of the parameters in the control scheme. A second category of heuristics13–16

is based on Lyapunov feedback control, where a suitable Lyapunov function must be defined by the
mission designer.

In this paper, we refine the Lyapunov feedback control law of Ref. [14] (the Q-law), with the aim
of improving approximations to, and good initial guesses for, propellant-optimal, low-thrust orbit
transfers which involve specified changes in all orbit elements except true anomaly. In Ref. [13], the
candidate Lyapunov function, termed the “proximity quotient,” Q, did not adequately capture the
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utility of decreasing inclination to decrease the difficulty of making changes in argument of periapsis.
The present work presents a method for capturing this utility. The present work also introduces
the concept of relative effectivity, rather than absolute, for deciding whether to thrust or to coast
at any particular point on the transfer. Also introduced is a mechanism to avoid chatter in the
thrust direction when the spacecraft is very near the target orbit and is in an unfavourable location
on the osculating orbit. The refined Q-law again has but few input parameters, yet captures the
complexity of a wide variety of orbit transfers, including those involving multiple coast arcs.

We present a two orbit transfers computed using the refined Q-law and compare them to results
using the previous Q-law.14 some of these to optimal orbit transfers. A description of the Q-law
algorithm is reproduced from Ref. [14], with the above-mentioned refinements introduced at the
appropriate points.

Both continuous and intermittent thrusting is permitted for the transfer, but no constraints are
placed on when thrusting can occur. When non-zero, the thrust is assumed to be constant, and
the specific impulse is similarly constant. The Q-law, as currently formulated, does not attempt
to capitalise on the increasing thrust acceleration — the increase will often be of small utility for
high specific-impulse missions. The current Q-law logic is oblivious to thruster characteristics and
simply provides a thrust direction on the osculating orbit, and an indication of whether to thrust
or not. The central body is modelled as a point mass, and the initial and final orbits are assumed
closed. No perturbing forces are considered, although the Q-law can be used to rectify changes in
the orbit caused by perturbations.

THE Q-LAW ALGORITHM

Definition of the proximity quotient, Q

The proximity quotient, Q, which serves as a candidate Lyapunov function, attempts to judi-
ciously quantify the proximity of the osculating orbit to the target orbit. Q is defined as follows:

Q = (1 +WPP )
∑

œ

WœSœ

[

d(œ,œT )
˜̇œxx

]2

, for œ = a, e, i, ω,Ω (1)

where the five orbital elements (œ) are the semimajor axis (a), eccentricity (e), inclination (i),
argument of periapsis (ω), and longitude of the ascending node (Ω); WP and the Wœ are scalar
weights greater than or equal to zero; the subscript T denotes the target orbit element value (without
subscript, the osculating value is indicated); ˜̇œxx nominally (see Eq. 11) denotes the maximum over
thrust direction and over true anomaly on the osculating orbit of the rate of change of the orbit
element (due to thrust); P is a penalty function; Sœ is a scaling function; and d(œ,œT ) is a distance
function. The penalty function is used in the present paper to enforce minimum-periapsis-radius
constraints and takes the form

P = exp

[

k

(

1− rp
rpmin

)]

(2)

where k is a scalar, rp is the osculating periapsis radius, and rpmin is near or equal to the lowest
permissible value of rp. The scaling function is used primarily to prevent non-convergence to the
target orbit and takes the form

Sœ =











[

1 +

(

a− aT
maT

)n] 1
r

for œ = a

1 for œ = e, i, ω,Ω

(3)
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where m,n, and r are scalars with nominal values of 3, 4, and 2, respectively. The distance function
is defined as

d(œ,œT ) =

{

œ− œT for œ = a, e, i

cos−1 [cos(œ− œT )] for œ = ω,Ω
(4)

where the principal value, namely [0, π], is used for the arc cosine. The peculiar form of the distance
function for ω and Ω is used because it provides an angular measure of the distance between two
positions on a circle using the “short way round” the circle, because it is differentiable with respect
to œ [except when d(œ,œT ) = π], and because the sign of the derivative indicates whether œ leads
or lags œT based on the short way round.

Analytic expressions for the ˜̇œxx

Analytic expressions are available13 for the maximum rates of change achievable for each of the
orbit elements both over the true anomaly on the osculating orbit and over the thrust direction,
although for the argument of periapsis analytic expressions are only available if the in-plane and out-
of-plane motions are each considered individually. For convenience, a summary of the derivations
is presented here. We commence with Gauss’s form of the variational equations for the orbit:17

dΩ

dt
=
r sin(θ + ω)

h sin i
fh (5)

di

dt
=
r cos(θ + ω)

h
fh (6)

dω

dt
=

1

eh
[−p cos θfr + (p+ r) sin θfθ]−

r sin(θ + ω) cos i

h sin i
fh (7)

da

dt
=
2a2

h

(

e sin θfr +
p

r
fθ
)

(8)

de

dt
=
1

h
{p sin θfr + [(p+ r) cos θ + re] fθ} (9)

dθ

dt
=

h

r2
+
1

eh
[p cos θfr − (p+ r) sin θfθ] (10)

where t is time; θ is true anomaly; p is the semilatus rectum; h is the specific orbital angular
momentum; r is the radius from the central body, related to the osculating elements through the
conic equation r = p/(1+ e cosθ); and fr, fθ, and fh are the components of the thrust acceleration
in the radial, circumferential and angular momentum directions, repsectively. Using the thrust
angles α (measured in the orbit plane off of the circumferential direction, positive away from the
gravitational centre) and β (measured off of the orbit plane and perpendicular to it, positive in the
direction of the angular momentum), the thrust acceleration components are given as:

fr = f cosβ sinα

fθ = f cosβ cosα

fh = f sinβ

The following definition is used for ˜̇œxx,

˜̇œxx =

{

œ̇xx = max
α,β,θ

(œ̇) for œ = a, e, i,Ω

(ω̇xxi + bω̇xxo)/(1 + b) for œ = ω
(11)

where b is a non-negative constant, nominally taken as 0.01, and

ω̇xxi = max
α,θ

(

œ̇|β=0
)

(12)

ω̇xxo = max
θ

(

œ̇|β=π/2
)

(13)
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are the maximum rates of change for ω when purely in-plane thrust is applied, or when purely
out-of-plane thrust is applied, respectively. The previous definition of the Q-law14 did not contain
the second term in the sum shown in Eq. 11, i.e., the previous definition is recovered if b is here set
to zero. Now, using f for the thrust-acceleration magnitude and µ for the gravitational parameter
of the central body, there arises for the semimajor axis:

ȧxx = 2f

√

a3(1 + e)

µ(1− e) (14)

and for the eccentricity:

ėxx =
2pf

h
(15)

and for the inclination:

i̇xx =
pf

h
(

√

1− e2 sin2 ω − e| cosω|
) (16)

and for the longitude of the ascending node:

Ω̇xx =
pf

h sin i
(√
1− e2 cos2 ω − e| sinω|

) (17)

and for the argument of periapsis with purely in-plane thrust:

ω̇xxi =
f

eh

√

p2 cos2 θxx + (p+ rxx)2 sin
2 θxx (18)

where

cos θxx =





1− e2
2e3

+

√

1

4

(

1− e2
e3

)2

+
1

27





1

3

−



−1− e
2

2e3
+

√

1

4

(

1− e2
e3

)2

+
1

27





1

3

− 1
e
(19)

rxx =
p

1 + e cos θxx
(20)

and for the argument of periapsis with purely out-of-plane thrust:

ω̇xxo = Ω̇xx |cos i| (21)

Discussion of the Q-law and effectivity

It is clear from the definition of the proximity quotient in Eq. 1 that Q is zero at the target
orbit and positive elsewhere. Thus, our goal in the orbit transfer is to drive Q to zero. Q may
be thought of as a “best-case quadratic time-to-go,” in that it captures the best possible rate of
change for each of the orbit elements over the osculating orbit — the ratio |d(œ,œT )/œ̇xx| is the
time it would take to reach the target value for that œ if this best possible rate of change could
be sustained throughout the transfer. We note that Q is a function only of the five orbit elements,
and not of true anomaly or the thrust angles. The summation in Eq. (1) is available analytically
since analytic expressions have been derived for each of the œ̇xx. Now, the time rate of change of
Q is simply

dQ

dt
=
∑

œ

∂Q

∂œ
œ̇ (22)
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where each of the œ̇ are available explicitly from the variational equations (5)–(9). Thus, unlike Q,
Q̇ depends on the thrust angles. At any point on the transfer, we choose the thrust angles, αn and
βn, which make Q̇ most negative:

Q̇n = min
α,β
Q̇ (23)

Q̇n is always less zero. The angles αn and βn that minimise Q̇ are available analytically. The Q-law
uses these thrust angles, thereby ensuring that Q is being sent towards zero as quickly as possible
at each instant. From the functional form of Q, we see that reducing Q might involve not only
reducing d(œ,œT ), but also increasing œ̇xx. Sacrificial changes in one orbit element can thus be
made [increasing d(œ1,œ1T )], if other elements can then be changed more easily (increasing œ̇2xx).
This sort of balancing between orbit elements is akin to the classic example of a large plane change
for a circular orbit: The propellant-optimal way to accomplish this is to enlarge the orbit, making
the plane change easier, and then to shrink the orbit back to its original size.

One complication that is difficult to address analytically is that of convergence. Although we can
always apply thrust so as to reduce Q, since Q̇n < 0, we have not proved that doing so will always
drive the orbit elements to their target values. For example, if we replace the scaling coefficient of
Eq. 3 with Sa = 1, we see that Q becomes zero not only at the target orbit, but also at a = ∞,
which would prevent some initial orbits from converging to the target orbit (converging instead to
a =∞). However, for the nominal Q of Eq. 1, convergence has been seen over all of the wide range
of orbit transfers studied numerically so far.

While the thrust angles αn and βn ensure the optimal rate of reduction of Q at the current true
anomaly, they do not provide any information about how effective the thrust is, as compared with
other locations on the osculating orbit. Thus, it is natural to define the absolute effectivity of the
thrust at the current true anomaly as

ηa =
Q̇n

Q̇nn
(24)

and the relative effectivity as

ηr =
Q̇n − Q̇nx
Q̇nn − Q̇nx

(25)

where

Q̇nn = min
θ
Q̇n (26)

Q̇nx = max
θ
Q̇n (27)

(28)

In the previous Q-law,14 only the absolute effectivity was used. A mission designer may then chose
to prevent the spacecraft from thrusting if the absolute effectivity is below some cut-off value, ηa cut
and/or if the relative effectivity is below some cut-off value, ηr cut. Broadly speaking, the greater
the cut-off, the greater the expected propellant savings and the longer the expected flight time.
An analytic expression is not available for Q̇nn, and so this value must be computed numerically
— an approximate value is normally sufficient, and so the computational burden is very slight.
The relative effectivity is suited to planar transfers involving circular orbits, since the absolute
effectivity will be close to unity around the whole orbit.

Also introduced in this paper is the idea of switching to a higher absolute effectivity cut-off
when the osculating orbit comes very near the target orbit and the absolute effectivity is low. For
planar, circle-to-circle transfers, this is useful because the spacecraft often arrives near the target
orbit at an unfavourable location on the osculating orbit. For example, the spacecraft may be at
apoapsis, with acquisition of the target orbit requiring a miniscule increase in semimajor axis, but
also a miniscule decrease in eccentricity. The thrust directions to accomplish these changes whilst
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at apoapsis are diametrically opposed, and so the absolute effectivity is very low. Chatter in the
thrust direction will often arise in this situation. A simple method of reaching the target orbit is
to turn off the thrust until the vicinity of periapsis is reached. The switch to a higher effectivity
accomplishes just that. Using a switch to a higher effectivity is a technique which easily fits directly
into the framework of the Q-law and applies to all orbit transfers which might suffer from similar
problems, and so has the advantage of not having to develop special criteria for individual cases.
Q itself serves as a natural quantity for determining when the osculating orbit is close enough to
the target orbit to switch effectivities. For example, when

√
Q is close to the orbit of the target

period, only one or a small number of revolutions are needed to reach the orbit (since, as mentioned
earlier, Q is essentially the best-case quadratic time-to-go).

Using the Q-law as a feedback algorithm

In this paper, the orbit transfers are computed by numerically integrating the variational equa-
tions 5–9 and the mass-flow-rate equation, where Eq. 8 is replaced by the variational equation for ṗ,
where the thrust angles are determined by the Q-law, and where the decision of whether to apply
thrust or not is based on the Q-law effectivity cut-off. A mission designer specifies the thrust,
the specific impulse, initial values for spacecraft mass and (a, e, i, ω,Ω, θ), and final values for the
orbit elements of interest (except θ, of course). For any element, œ, whose final value is free, the
corresponding weight, Wœ in Eq. 1, is set to zero. The remaining Wœ are set to non-zero values,
nominally unity. A minimum-periapsis-radius constraint is imposed by setting the penalty-function
weight, WP , to be non-zero, nominally unity. The associated parameters k and rpmin in Eq. 2 are
normally set in concert with each other — the size of k determines how steeply the exponential bar-
rier rises at rp = rpmin. The numerical integration is performed using a 5

th-6th–order Runge-Kutta
algorithm, with fixed step size in true longitude.

Due to the use of the classical orbit elements, the Q-law and the variational equaitons have
singularities at zero-inclination and at zero-eccentricity. Thus, initial and target orbits are always
specified to be outside of a small region surrounding the singularities. As a rather coarse approxi-
mation, in the unlikely event that during the numerical integration the inclination (in radians) or
eccentricity try to drop below 10−4, their values are artificially frozen at this value until their rates
of change become positive.

RESULTS

Transfers between two pairs of initial and final orbits are studied using the refined Q-law, and
compared to results presented in Ref. [14] (i.e. where the previous version of the Q-law was used).
(The term orbit transfer is here sometimes used to refer to a particular trajectory joining an initial
and final orbit, and sometimes to refer simply to the pair of orbits to be joined by some as-yet
undetermined trajectory.) Table 1 lists the orbit transfers and their associated thrust characteristics
and central body. In each case, the trade-off between propellant mass and flight time is investigated
by varying the effectivity cut-offs. The effectivity cut-offs are considered individually; that is, when
using absolute effectivity to determine whether to thrust or coast, the value of the relative effectivity
is ignored, and vice versa. Trajectory plots and associated data are also presented. For Earth
µ = 398600.49km3/s2. The standard acceleration due to gravity is taken as 9.80665m/s2.

Unless otherwise noted, nominal values are used for the Q-law parameters: Zero and unity are
used for the Wœ (depending on whether the target value of an element is free or fixed); m,n, r
are taken as 3,4,2, respectively; b is taken as 0.01; and WP is unity when a periapsis constraint is
imposed, zero otherwise. The minimum permitted length of a thrust arc is 10◦ in true longitude
(over-riding ηcut, if need be), to prevent thrust-on-off chatter around η = ηcut. The initial true
anomaly is taken as zero.
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Table 1

Orbit Transfers

Casea Orbit a e i ω Ω Thrust Initial Specific Central
(km) (deg.) (deg.) (deg.) (N) Mass Impulse Body

(kg) (s)

A
Init. 7000 0.01 0.05 0 0
Targ. 42000 0.01 free free free

1 300 3100 Earth

E
Init. 24505.9 0.725 0.06 0 0
Targ. 26500 0.7 116 270 180

2 2000 2000 Earth

aNon-sequential case designations are used to maintain correspondence with
designations in Ref. [14], where five cases were considered.

Case A

Case A is essentially a simple coplanar, circle-to-circle orbit transfer from low Earth orbit to
geostationary orbit. No periapsis constraint is imposed during the transfer, as the natural dynamics
do not decrease the periapsis altitude. A somewhat-high thrust-to-mass ratio is used so that some
detail can still be discerned when the trajectories are plotted. When relative effectivity is used
as the cut-off criterion, thrust-direction chatter is avoided near the target orbit by switching to
absolute effectivity as a cut-off criterion, with a cut-off value of ηa cut = 0.8 when

√
Q is less than

half the period of the target orbit and when ηa ≤ 0.7.
The trade-off between propellant mass and flight time is shown in Fig. 1. The set of points arising

from the use of the absolute effectivity cut-off shows a large gap in stepping ηa cut from 0.967 to
0.968. The gap arises because on the very first revolution, the minimum absolute effectivity is
between 0.967 and 0.968, and the minimum over each of many subsequent revolutions increases.
Thus, only at ηa cut ≥ 0.968 is a coast arc introduced on the first revolution. Because a small coast
arc is introduced near apoapsis on the first revolution, the minimum absolute effectivity over the
second revolution now drops below 0.968, which means that another coast arc is introduced, and so
on, with the subsequent revolutions. Thus, when the threshold ηa cut = 0.968 is passed, many coast
arcs are introduced, resulting in a jump in flight time and a reduction in propellant mass. When
relative effectivity is used, no large gaps arise in the set of points corresponding to different cut-off
values, since with a non-zero cut-off, coast arcs generally introduced on every revolution (around
the location where it is least effective to reduce Q). For the relative effectivity case, the unexpected
slight increase in propellant mass occurs because of a slight overshoot in semimajor axis. Such
overshoots, can be mitigated by adjusting the weights in the Q function.18 Some characteristics of
the Q-law transfers for the various effectivity cut-offs annotated in Fig. 1 are tabulated in Table 2.

As expected, the ηr cut = 0 case (which is equivalent to the ηa cut = 0) yields the shortest flight
time for the Q-law, as thrust is applied continuously. The trajectory, shown in Fig. 2, is roughly
a circular spiral. According to Edelbaum’s averaging analysis,2 the optimal ∆V for the minimum-
time transfer between two coplanar circular orbits is the difference in circular orbit speeds (from
which the minimum time can be computed). The Q-law with ηr cut = 0 approaches the Edelbaum
performance very closely (see Table 2).

At large ηr cut values, the transfer trajectory takes a rather different form, opting to roughly
emulate a Hohmann transfer by performing multiple short burns around periapsis or around apoap-
sis. Of course, the number of revolutions and the flight time are greater than for the minimum
time case of ηr cut = 0. For intermediate values of ηr cut (and, correspondingly, of flight time and
propellant mass), the trajectory geometries look like a blending of the geometries of the extreme
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cases of small and large ηr cut values. Figs. 3, 4 and 5 show the trajectories for ηr cut values of 0.167,
0.435 and 0.861, repectively. Table 2 shows that the ∆V requirement for the Q-law transfers closely
approaches that of the of the Hohmann transfer as longer and longer flight times are used.

An instructive way of comparing the transfers corresponding to different ηr cut values is to
plot their osculating apoapsis radius, ra, versus their osculating periapsis radius, rp, as shown in
Fig. 6. The continuous-thrust case of ηr cut = 0 is immediately seen to remain close to circular
throughout the transfer. In contrast, the long flight-time, propellant-saving cases of ηr cut = 0.861
and ηr cut = 0.933 maintain a low rp, making it very effective to add energy (by thrusting near
periapsis), until ra becomes supersynchronous, whereupon the orbit is circularised. As ηr cut is
reduced, shortening the flight times, rp rises more and more quickly in the energy-boosting phase
of the transfer, as shown for the ηr cut values of 0.435 and 0.167. Amongst the very high ηr cut values,
little difference exists between the paths taken on the ra-rp plot (as exemplified by the curves for
ηr cut values of 0.861 and 0.933).

The overshoot in apoapsis radius seen in Fig. 6 is due to the fact that eccentricity is most
effectively changed at apoapsis, especially the larger the apoapsis radius. The precise size of the
overshoot will depend on the particular values chosen for the weights and other constants appearing
in the expression for the proximity quotient, Q.18 Thus, the amount of overshoot, as well as the
exact flight-time and propellant performance, can be tweaked by adjusting the values of the weights
and constants in Q.

Table 2

Selected orbit transfer solutions for Case A

Solved Flight time ∆V Propellant Revsa

by (days) (km/s) Mass (kg)

Q-law, ηr cut = 0 14.600 4.5257 41.4953 90.38
Q-law, ηr cut = 0.167 25.687 4.6522 42.5692 131.85
Q-law, ηr cut = 0.435 37.514 4.4651 40.9793 191.39
Q-law, ηr cut = 0.861 100.573 3.9826 36.8354 501.87
Q-law, ηr cut = 0.933 150.701 3.9113 36.2178 747.41
Q-law, ηa cut = 0.968 152.389 3.9524 36.5739 666.02

Edelbaum 14.4199 4.4654 40.9820 −

Hohmann 0.22086 3.7680 34.9717 0.5
aRevolutions in true anomaly.

Case E

Case E is a transfer from a geostationary transfer orbit to a retrograde, Molniya-type orbit.
The required plane change is about 116◦. Target values are set for all five orbit elements. The
periapsis-radius penalty function is used with WP = 1, k = 100, and rpmin =6578km. A study of
the trade-off between propellant mass and flight time is conducted by varying ηa cut.

When the old definition of Q is used (Ref. [14]), two families of solutions arise. In Fig. 7,
which shows the trade-off between propellant mass and flight time, these families are labelled L
and M. Family L is much poorer in performance than family M, since it not only consumes more
propellant, but also does not include the minimum flight time case. The appearance of the two
families is caused by the singularity in the ω̇ variational equation at zero inclination, and by the
inability of the old Q-law to take advantage of it explicitly. The old Q-law simply stumbles onto
the better-performing solutions due to fortuitous values of ηa cut which happen to cause thrust to
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off (ηa cut) and in the other instance only the relative effectivity cut-off (ηr cut). The
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Figure 2 Case A Q-law transfer using a relative effectivity cut-off of ηr cut = 0.
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Figure 3 Case A Q-law transfer using a relative effectivity cut-off of ηr cut = 0.167.
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Figure 4 Case A Q-law transfer using a relative effectivity cut-off of ηr cut = 0.435.
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Figure 5 Case A Q-law transfer using a relative effectivity cut-off of ηr cut = 0.861.

11



1 2 3 4 5 6

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

Osculating periapsis radius (km)

O
sc

ul
at

in
g 

ap
oa

ps
is

 r
ad

iu
s 

(k
m

)

Initial orbit
Final orbit
Locus of circular orbits
η

r
cut=0

η
r
cut=0.167

η
r
cut=0.435

η
r
cut=0.861

η
r
cut=0.933

Figure 6 Case A Q-law transfers: Osculating values of apoapsis and periapsis radii
for the five transfers corresponding to relative effectivity cut-off values (ηr cut) of 0,
0.167, 0.435, 0.861, and 0.933.
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appear in just the right directions and at just the right locations on the osculating orbit, so that
most of the large, required change in ω is obtained within the first few revolutions of the transfer.

The present, refined definition of Q takes into account the fact that it is easier to change ω
when i is close to 0 or 180 degrees. Thus, for the present transfer, in a balanced way and at the
very beginning of the transfer, the Q-law will drive down i so as to change ω. The success of this
strategy is evident in Fig. 7, where the propellant requirement for the refined Q-law (labelled as
family N) lies below that of the old Q-law for all flight times. Additionally, the trade-off between
propellant mass and flight time is “well-behaved” in that it is relatively smooth and continuous.

Data for the ηa cut values annotated in Fig. 7 are shown in Table 3. In addition, the time history
of the orbit elements and of the consumed propellant mass are shown for each of these transfers in
Fig. 8. A common characteristic of the transfers is the initial growth in ra and the performance of
the bulk of the inclination change at high values of ra. In the longer flight time cases, ra is built-up
more slowly (over more revolutions), and therefore more efficiently in terms of propellant. Another
common characteristic is that ω and Ω show large changes very early in the transfer. Because of the
ease of changing these angular quantities early in the transfer when i is small, some of the changes
take the angles to values that are approximately within multiples of 360◦ of the target values. For
example, for ω, whose target value is 270◦, the initial jumps in the value of ω are to values near
270◦, −90◦, and −450◦.
The thrust angles as functions of the number of revolutions in true anomaly are shown in Figs.

10 and 11 for ηa cut = 0, and in Figs. 12 and 13 for ηa cut = 0.652. The latter figures also serve as
guides to predict the true anomalies where thrust arcs will occur at other non-zero values of ηa cut.
For larger values, the thrust arcs will shrink in size, but will remain centred roughly at the same
true anomalies and will retain similar thrust directions. For smaller values, the thrust arcs will
expand in size, but again the location and direction of thrust will remain similar.

Table 3

Selected Q-law orbit transfer solutions for Case E

ηa cut Flight time ∆V Propellant Revsa

(days) (km/s) Mass (kg)

0 81.61 8.738 719.012 114.38
0.652 149.79 6.143 537.808 214.01
0.909 296.77 5.495 488.695 429.98
0.966 501.45 5.394 480.896 724.49
aRevolutions in true anomaly.

CONCLUSIONS

Based on Gauss’s form of the variational equations, and exploiting analytic expressions for the
optimal thrust direction and location on the osculating orbit for changing each of the orbit elements
except true anomaly, earlier work by the author presented a candidate Lyapunov function, the
proximity quotient, Q, for performing low-thrust orbit transfers using Lyapunov feedback control.
In the present work, Q has been modified slightly so as to permit the feedback control law (the
Q-law) to capitalise on the ease of changing the argument of periapsis when inclinations are near 0
or 180 degrees. A relative effectivity cut-off for the thrust has also been introduced to simplify the
examination of the trade-off between propellant mass and thrust, particularly for coplanar, circle-to-
circle transfers. The improvements to the Q-law have been demonstrated by applying the refined
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Figure 7 Case E Q-law transfer: Trade-off between propellant mass and flight time,
assessed by varying and considering only the absolute effectivity cut-off, ηa cut. Families
L and M are obtained using the old definition for Q (as in Ref. 14), and Family N is
obtained using the present refined definition for Q.

algorithm to a coplanar, circle-to-circle transfer and to a complex transfer from a geostationary
transfer orbit to a retrograde, Molniya-type orbit, where the five orbit elements apart from true
anomaly had target values. Being a feedback control algorithm, the Q-law is relatively simple to
implement, runs very quickly, and permits a degree of disturbance rejection. Also, by virtue of the
Lyapunov function chosen, Q, reasonable performance is obtained for a wide variety of transfers,
meaning that a reasonable functional form has been found and that the optimisation of parameters
within this functional form may lead to solutions that are very close to those found with traditional,
direct and indirect trajectory optimisation techniques.
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Figure 10 Case E Q-law transfer, ηa cut = 0: Evolution of the thrust angle α as a
function of revolutions in true anomaly.
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Figure 11 Case E Q-law transfer, ηa cut = 0: Evolution of the thrust angle β as a
function of revolutions in true anomaly.
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Figure 12 Case E Q-law transfer, ηa cut = 0.652: Evolution of the thrust angle α as a
function of revolutions in true anomaly. Gaps in the plot correspond to coast periods
(where no thrust is applied).

19



0 5 10 15 20 25 30 35
−90
−60
−30

0
30
60
90

β 
(d

eg
.)

40 45 50 55 60 65 70
−90
−60
−30

0
30
60
90

β 
(d

eg
.)

75 80 85 90 95 100 105
−90
−60
−30

0
30
60
90

β 
(d

eg
.)

110 115 120 125 130 135 140
−90
−60
−30

0
30
60
90

β 
(d

eg
.)

145 150 155 160 165 170 175 180
−90
−60
−30

0
30
60
90

β 
(d

eg
.)

180 185 190 195 200 205 210 215
−90
−60
−30

0
30
60
90

β 
(d

eg
.)

True Anom (revs)

Figure 13 Case E Q-law transfer, ηa cut = 0.652: Evolution of the thrust angle β as a
function of revolutions in true anomaly. Gaps in the plot correspond to coast periods
(where no thrust is applied).
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17. Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, 1st ed. 4th printing,
AIAA, New York, 1987, pp.488–489.

18. Lee, S., von Allmen, P., Fink, W., Petropoulos, A.E., and Terrile, R., “Design and Optimization of Low-
Thrust Trajectories,” accepted for presentation at the IEEE Aerospace Conference, Big Sky, Montana,
05-12 Mar. 2005.

21


