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What Processes Control CO2 Sinks?

• Carbon dioxide (CO2) is the primary 
anthropogenic driver of climate change 
– The CO2 concentration has increased by 

~25% from ~280 to 370 ppm since the 
beginning of the industrial age

• Only half of the CO2 produced by fossil 
fuel combustion in the past 30 years has 
remained in the atmosphere.  
– Where are the sinks?

• Outstanding Issues:
– Why does the atmospheric buildup vary 

substantially with uniform emission rates? 
– What are the relative roles of CO2 sinks

• Oceans vs land ecosystems 
• North American and Eurasian sinks?

– How will carbon sinks respond to climate 
change?
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The Orbiting Carbon Observatory 
(OCO)

• OCO will measure CO2 from space with the 
precision, resolution, and coverage needed 
to quantify CO2 sources and sinks
– Simultaneous spectroscopic observations of CO2

and O2 used to estimate the column integrated 
CO2 dry air mole fraction, XCO2

– Precision: ~1 ppm (0.3%) on regional scales
– 1:15 PM polar orbit, 16 day repeat cycle

• Team Members
– Principal Investigator:  David Crisp, JPL
– Project Manager: Rod Zieger, JPL
– Instrument provider: Hamilton Sundstrand
– Spacecraft provider: Orbital Sciences Corp.
– International Science Team

• Launch date: TBD
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Carbon Cycle and Ecosystems Roadmap
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OCO Fills a Critical Measurement Gap

OCO will provide precise global measurements of XCO2 over the range of spatial scales to 
reduce CO2 flux uncertainties by up a factor of 100 on regional to continental scales.
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Precise CO2 Measurements Needed to 
Constrain Surface Fluxes
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Space-based XCO2 measurements 
with precisions of  1–2 ppm (0.3–
0.5%) on regional scales will:

• Resolve pole to pole XCO2 gradients 
on regional scales

• Resolve the XCO2 seasonal cycle in 
the Northern Hemisphere

• Improve constraints on CO2 fluxes 
(sources and sinks) compared to the 
current knowledge
– Reduce regional scale flux 

uncertainties from >2000 gC m-2 yr-1

to < 200 gC m-2 yr-1

– Reduce continental scale flux 
uncertainties below 30 gC m-2 yr-1
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Making Precise CO2
Measurements from Space

Clouds/Aerosols, Surface Pressure Clouds/Aerosols, H2O, TemperatureColumn CO2

O2 A-band CO2 1.61µm

CO2 2.06 µm

• High resolution spectra of reflected sunlight in 
near IR CO2 and O2 bands used to retrieve the 
column average CO2 dry air mole fraction, XCO2
– 1.61 µm CO2 bands – Column CO2 with maximum 

sensitivity near the surface
– O2 A-band and 2.06 µm CO2 band

• Surface pressure, albedo, atmospheric 
temperature, water vapor, clouds, aerosols

• Why high spectral resolution?
– Enhances sensitivity, minimizes systematic 

errors
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OCO Spatial Sampling Strategy

• Contiguous sampling not needed
– Chemical Transport Models infer 

sources and sinks from spatial and 
temporal gradients in  XCO2

• Have resolutions of 1o to 5o

– Winds transport CO2 over large 
areas as it is mixed through the 
column

• XCO2 soundings must be collected at 
high spatial resolution
• Maximizes the number of cloud-free 

samples in partly cloudy regions
• Minimizes errors due to spatial 

inhomogeneities within each 
footprint 

The OCO spatial sampling strategy 
has been designed to provide precise, 
bias-free estimates of XCO2 on regional 
scales at monthly intervals
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OCO Observing Modes

• OCO cycles between Nadir, Glint, and 
Target modes on monthly intervals to 
cross-calibrate observations
– Nadir mode

• Footprint area < 3 km2 to isolate 
cloud-free scenes and minimize 
other spatial inhomogeneities

– Glint Mode
• Ground track near specular point 

(glint spot)
• Provides improved Signal/Noise 

over oceans
– Target Mode

• Tracks a stationary surface target 
for up to 9 minutes

• Large numbers of observations 

Nadir
Glint

Target

over surface calibration sites
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Sampling Strategy

NadirIssues:
• Maximize solar power
• Minimize impact of polarization 

uncertainties on measurements
Approach:  
• Fly the spacecraft such that the Z 

axis is always pointing toward the 
solar azimuth

– Maintains β ~ 0o on solar panels
– Ensures slit is always aligned 

with major axis of polarization 
ellipse

• Modify instrument to make it a 
near-perfect polarization analyzer 

• Incorporate a treatment of 
polarization in the OCO retrieval 
algorithm

Glint
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OCO Will Fly in the A-Train

TES – T, P, H2O, O3, CH4, CO
MLS – O3, H2O, CO
HIRDLS – T, O3, H2O, CO2, CH4
OMI – O3, aerosol climatology

aerosols,  
polarization

CloudSat – 3-D cloud climatology
CALIPSO – 3-D aerosol climatology

AIRS – T, P, H2O, 
CO2, CH4

MODIS – cloud, 
aerosols, albedo

OCO - - CO2
O2 A-band
ps, clouds, 
aerosols

Coordinated Observations

OCO files at the head of the A-Train, 15 minutes ahead of the Aqua platform
• 1:15 PM equator crossing time yields same ground track as AQUA
• Near noon orbit yields high SNR CO2 and O2 measurements in reflected sunlight
• CO2 concentrations are near their diurnally-averaged values near noon
• Maximizes opportunities of coordinated science and calibration activities
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Mission Architecture

Single Instrument (Hamilton Sundstrand)
• Incorporates 3 bore-sighted, high 

resolution, grating spectrometers
– O2 0.765 µm A-band, R=17,000
– CO2 1.61 µm band, R=20,000
– CO2 2.06 µm band  R=20,000

Dedicated Bus (Orbital LEOStar-2) 
• Heritage: OrbView 4, GALEX, SORCE

Dedicated Launch Vehicle (Orbital Taurus)
• October 2007 Launch from Vandenburg

Mission Operations
• Mission Operations (Orbital MOC)
• High latitude station for downlink station
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Retrieval Algorithms

• Physics-based retrieval algorithms 
used to derive precise estimates of XCO2

– Line-by-line multiple scattering 
models to achieve high accuracy

• Spectral Mapping Methods
• Linearized Discrete Ordinate Methods

– Reliable retrieval models

• Optimal estimation theory

– Comprehensive instrument models
• Retrieval algorithms are 

computationally intensive
– Parallel computing architectures
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Validation Program Ensures 
Accuracy and Minimizes Biases

CMDL

• Ground-based in-situ measurements
– NOAA CMDL Flask/Tower Network
– International Partners

• Aircraft measurements of CO2 profile
• Wofsy (US), Ciais (CNRS Aerocarb)

• Uplooking FTS measurements of XCO2
– 3 funded by OCO
– 4 upgraded NDSC instruments

• Laboratory spectroscopy
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Global XCO2 FTS Network

Selected

Ny Ålesund, Norway 79°N
Bremen, Germany 53°N
Park Falls, Wisconsin 46°N
Billings, Oklahoma 37°N
Darwin, Australia 12°S
Lauder, New Zealand 45°S

Kiruna, Sweden 68°N
Poker Flat, Alaska  65°N
Harvard Forest 43°N
Mauna Loa 19°N
Paramaribo, Surinam 6ºN
Nauru 0°S
Wollongong, Australia 34°S
Arrival Hts, Antarctica 78°S

Pending



Page 1616 of  12, OCO January 2005

OCO Validation Concept Demonstrated with
Aircraft Overflights of Park Falls Tower 
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OCO Mission Highlights

• Selected through a rigorous competitive process
– Top rated mission among 33 competing mission concepts

• Addresses NASA’s highest priority carbon cycle 
measurement requirement
– Global, space-based measurements of atmospheric carbon dioxide

• OCO validates essential technologies
– Long-lived, low-cost passive system for greenhouse gas and 

pollution monitoring
• Most sensitive near surface, where sources and sinks are 

located
• Can be deployed from MEO, GEO, or even L1

– Spinoff: First global space-base measurements of surface pressure
• Could dramatically improve weather forecasts over oceans and 

other sparsely sampled regions
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Summary of the OCO Mission

• OCO will 
measure 
CO2 and 
O2 globally 
from space

• Sophisticated 
retrieval algorithms 
will be used to 
estimate the column 
averaged CO2 dry 
air mole fraction with 
accuracies of 0.3 % 
on regional scale. 

• OCO data will be 
used in tracer 
transport models 
describe sources 
and sinks

• The OCO 
Validation 
program ensures 
accuracy and 
reduces biasesFlux Tower

AircraftFTIR

Flask Samples
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