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ABSTRACT 
Key decisions are made in the early stages of planning and 
management of software developments. The information basis for 
these decisions is often a mix of analogy with past developments, 
and the best judgments of domain experts. Visualization of this 
information can support to such decision making by clarifying the 
status of the information and yielding insights into the 
ramifications of that information vis-à-vis decision alternatives. 

We illustrate this in the context of a risk-based model developed 
and applied at NASA for planning the development of systems 
that use advanced technologies, and for research and technology 
portfolio planning.  

Categories and Subject Descriptors 
C.4 [Performance of Systems] – design studies, modeling 
techniques, reliability, availability, and serviceability 

D.2.1 [Software Engineering]: Requirements/Specifications – 
elicitation methods, tools. 

D.2.9 [Software Engineering]: Management – cost estimation, 
software quality assurance. 

I.2.8 [Artificial Intelligence] Problem Solving, Control 
Methods, and Search – Heuristic methods 

I.5.3 [Pattern Recognition] Clustering – similarity measures. 

K.6.3 [Management of Computing and Information Systems] 
Software Management – software development, software 
selection.  

General Terms 

Management, Design, Economics, Reliability. 

Keywords 
Visualization, Requirements Prioritization, Software Risk, Cost-
Benefit Analysis, Decision Making. 

1. INTRODUCTION 
The mission statement of the ACM Symposium on Software 
Visualization states “Software visualization encompasses the 
development and evaluation of methods for graphically 
representing different aspects of software, including its structure, 
its abstract and concrete execution, and its evolution.” From the 
program from the 2003 conference [7] and related events, such as 
the ICSE Workshop on Software Visualization [18], it is evident 
that much of the work in the area of software visualization is 
focused on concerns of detailed designs and code (e.g., design 
structure, program understanding, algorithm animation, 
debugging).  The complexity of many software systems offers a 
fertile ground for application of, and further challenges for, 
software visualization. 

The purpose of this paper is to suggest there is also scope for 
application of software visualization to the earliest phases of the 
software lifecycle – when requirements are being determined, 
and planning is done for the entire software development to 
follow. This might appear an unlikely area for software 
visualization: much of the reasoning would seem to be inevitably 
qualitative rather than quantitative; details are sketchy at best 
(design concepts rather than detailed designs and code); the 
quantities of information do not appear to warrant sophisticated 
visualization. 

It is clear, however, that the earliest phases of the software 
lifecycle are critical: key decisions are made, including 
determination of the purpose of the software (from which its 
requirements follow), planning the rest of its lifecycle 
(subsequent development,  testing, deployment, maintenance and 
future upgrades), the allocation of resources to those phases (e.g., 
budget, schedule, testing platforms), and the determination of the 
architecture and early phase design. Furthermore, our experience 
suggest that there is a non-trivial amount of information available 
even during the earliest phases of the software lifecycle. This 
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information comes from many sources (many “stakeholders” in 
the parlance of the software community) – the customers of the 
software (or of the system of which the software is but a part); its 
funders, managers, developers, users, etc. Information may take 
the form of guidance extracted from past experience, coupled 
with experts’ best estimates in the face of novel aspects of the 
effort (new applications, new circumstances, new hardware and 
software resources, new development methodologies, etc).  

Decision making during these earliest phases remains a 
predominantly human activity, but one which can and should be 
well-informed by this wealth of information. Visualization can 
play a prominent role by portraying the information in ways that 
make it amenable to scrutiny (so that the information basis for 
the decision making is clear) and amenable to extracting key 
insights and guidance towards such decision making. 

This paper illustrates our work in this area, based on a novel but 
effective approach to employing quantitative reasoning during 
the early phases of system (software and/or hardware) 
developments, and technology planning. We have previously 
published on various aspects of this work. Here we focus on how 
use of (relatively straightforward) visualization mechanisms 
plays a crucial role throughout our work. The remainder of the 
paper is organized as follows: 

Section 2 summarizes our approach to qualitative reasoning for 
early lifecycle decision making. 

Sections 3 – 6 presents the visualizations we have found to be 
helpful, with a brief summary discussion at the end of each 
section. Specifically, section 3 addresses the way users can 
scrutinize individual problem solutions (and simple comparisons 
among them); section 4 looks at the understanding gained from 
computer-assisted search over the space of all possible solutions, 
section 5 looks at ways to explore within that solution space, and 
section 6 explores some applications of this approach to 
technology portfolios (rather than specific technology solutions). 

Section 7 offers conclusions and discusses some related work. 

2. AN APPROACH TO QUANTITATIVE 
REASONING SUPPORT FOR EARLY-
LIFECYCLE DECISION MAKING 
Our work takes place in the context of a risk-based approach to 
assist early-lifecycle planning of complex system developments. 
The approach is called “Defect Detection and Prevention” 
(DDP), the name reflecting its origins as a method intended for 
quality assurance planning of hardware systems [5]. It has been 
developed at JPL and NASA and applied to risk management of 
spacecraft and spacecraft technologies (both software and 
hardware) in their early phases of development. An extensive 
description of DDP is given in [9]. Here we summarize its key 
aspects. 

The approach involves developing a model from which two key 
measures can be calculated: benefit, in terms of attainment of 
objectives, and cost, in terms of resources needed to achieve that 
benefit. The model is then used to guide decision-making, e.g., to 
select from among alternative plans of designs or developments.  

The hallmark of DDP is its use of a quantitative risk-centric 
model, in which risks serve as a key intermediary in the cost-
benefit calculations. A DDP model is populated by instances of 
three kinds of concepts: “Objectives” (what it is that the system 
or technology is to achieve), “Risks” (what could occur to 
impede the attainment of the Objectives), and “Mitigations” 
(what could be done to reduce the likelihood and/or impact of 
Risks)1. In the DDP model these instances have quantitative 
attributes: each Objective has a weight, its relative importance; 
each Risk has a likelihood, its probability of occurrence, and 
each Mitigation has a cost, the cost of performing it (usually a 
financial cost, but other resources can also be considered, such as 
schedule, electrical power, mass). Quantitative relationships 
connect these instances: Objectives are related to Risks, and 
Risks are related to Mitigations. Specifically, Objectives are 
related to Risks to indicate how much each Risk, should it occur, 
impacts (i.e., detracts from the attainment of) each Objective. 
Risks are quantitatively related to Mitigations, to indicate how 
much of a Risk-reducing effect a Mitigation, should it be applied, 
has on reducing each Risk (either by decreasing the Risk’s 
likelihood, or by reducing the magnitude of the Risk’s impacts on 
Objectives; the nature of the Mitigation dictates which kind of 
reduction takes place). 

Objectives can be “product” needs on the system (e.g., functional 
behavior, run-time resource needs, timing requirements), and/or 
“process” needs (on the development process itself, e.g., 
development environment, testing facilities, progress reporting 
requirements). First we give an example of a “product” 
Objective, followed by a “process” Objective: 

• In spacecraft applications it is a requirement that software 
be able to operate despite memory errors (e.g., memory 
chips can be damaged by radiation, and a service call to 
replace them is not an option!). Risks to this include 
inability to detect memory errors (a potential mitigation for 
which is use of EDAC), statically linked addresses in the 
code (a potential mitigation for which is to follows 
programming practices that eschew the use of such static 
links), and lack of control of the process that loads software 
into memory (a potential mitigation for which is selection of 
an operating systems that provides such control).  

• Spacecraft are often constrained as to when they can launch 
(e.g., in order that the celestial dynamics permit a rapid and 
fuel-efficient route to their destination), so their software 
must be ready on time. Risk to this may arise when using a 
novel software development approach (e.g., autocoding) for 
which there is little past experience from which to estimate 
feasibility of development schedules. A potential mitigation 
is to plan for additional early reviews specifically to 
scrutinize progress (early enough that remedial actions can 
be taken should problems be discovered). 

DDP applications to NASA spacecraft technologies gather 
information from multiple experts – the scientists whose data 

                                                             
1 On occasion we use alternate terminology such as 

“Requirements” in place of “Objectives”, and “Failure Modes” 
in place of “Risks”. 
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needs establish the scientific requirements for the mission, the 
architects, designers and programmers/engineers who must plan 
and code/fabricate the technologies, the testers and quality 
assurance personnel who help ensure their correct operation, the 
operations team, management, etc. In this setting DDP has been 
used successfully, yielding: improved insights into a variety of 
risks, ability to trade and calibrate risk across discipline 
boundaries, optimized planning of how to address risk, risk-
informed comparison among design alternatives, and risk-guided 
descoping (strategic abandonment of objectives). We attribute 
DDP’s successes to its ability to gather and pool non-trivial 
quantities of information from the multiple experts. Together 
they populate the DDP model of Objectives, Risks and 
Mitigations, and use the completed model to guide their decision 
making. The sections that follow illustrate how we employ 
simple visualization techniques to aid in this. 

In summary, the space mission demands involve a combination of 

• Cross-disciplinary concerns (e.g., spacecraft involves 
navigation, propulsion, telecommunications).  These 
concerns are cross-coupled and interact in multiple ways 
(e.g., electromagnetic interference, heat transfer).   

• Severe constraints on the systems being developed and on 
the development process itself. Time and budget pressures 
constrain development; operational resources constrain the 
resulting system (e.g., mass, volume, power).   

• Mission-critical issues. Spacecraft are critical systems that 
must operate correctly the first time in only partially 
understood environments, with no chance for repair. 

• Unknowns: past experience provides only a partial guide 
when new mission concepts are to be enhanced and enabled 
by new technologies of which past experience is lacking. 

Because of these challenging aspects of space missions, usually 
no one person has expertise that spans all the disciplines, or can 
simultaneously juggle all the factors involved in large and 
complex designs. Furthermore, much of the design skill is “tacit 
knowledge” in the heads of spacecraft experts, so it cannot be 

encoded in an automated tool. Therefore, key decision making 
can be enhanced by a computer-aided, human-informed process. 
We will illustrate how (relatively straightforward forms of) 
visualization play in important role in communicating 
information to the decision makers. 

Note that while our work is within this context of space 
missions, the above concerns – cross disciplinary, resource 
constraints, critical and novel – are common to many domains, so 
we believe the applicability is broad. 

3. SCRUTINIZING THE RISK STATUS OF 
INDIVIDUAL SOLUTIONS  
A DDP model typically consists of dozens of instances of each of 
the three concepts (Objectives, Risks and Mitigations), and 
hundreds of linkages among them (Impact links between 
Objectives and Risks, and Effect links between Risks and 
Mitigations). Figure 1 shows the “topology” of the information in 
one such DDP model: the 50 small blue circles in the top row 
denote the Objectives, the 31 small red circles in the middle row 
denote the Risks, and the 58 small green circles in the bottom 
row denote the Mitigations. The red lines in the upper half 
indicate the Impact links; the variously colored lines in the lower 
half indicate the Effect links.  

This quantity of information, its convoluted nature, and its 
origins in the different discipline areas of spacecraft 
development, combine to make decision-making challenging. 
Especially problematic is the selection of Mitigations. In almost 
all applications the total cost of all the identified Mitigations far 
exceeds the resources available, necessitating the careful 
selection of which of them to perform. We find that while 
spacecraft experts’ intuitive selections (guided by their skill and 
past experience) are generally good, there is often some 
problematic area that use of the DDP model reveals. This is 
manifested as “unbalanced” treatment of risks: excessive 
resources are expended to reduce some risks to tiny levels, while 
other significant risks remain relatively unaddressed. DDP 
reveals this to the experts through a combination of calculation 
and visualization: the DDP software computes, for each Risk, the 

Figure 1. Topology of a typical DDP model 
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sum total impact is has on the Objectives, taking into account the 
weights of those objectives and the beneficial effects of the 
currently selected Mitigations (recall that Mitigations reduce 
either the likelihood or impact of the Risks to which they are 
connected by Effect links).  Figure 2 shows DDP’s bar chart 
visualization of Risks’ status: each bar represents a Risk (the 
number beneath a bar references a tree-structured listing of the 
Risks, not shown here). The height of the bar indicates the sum 
total impact the risk causes – the height of the green portion 
indicates its sum total impact were no Mitigations to be selected, 
while the height of the red portion indicates its sum total impact 
taking into account the effects of the current selection of 
Mitigations. The DDP tool allows users to change the selection 
of Mitigations, following which it automatically recomputes 
Risks’ status, and redraws the bar chart. For typically sized DDP 
models, recomputation and redrawing takes less than a second 
(on a 1GHz laptop). This makes is easy for users to try “what if” 
scenarios of alternate Mitigation selections. 

 

Figure 2. Bar chart of Risks’ status 

The bar chart shows that some of the Risks remain at relatively 
high levels, while some others have been reduced to relatively 
low levels (note that the vertical scale is logarithmic, so the 
disparities are quite pronounced). DDP can also sort the risks in 
order of their current status, making these disparities more 
evident, as seen in Figure 3. 

 

Figure 3. Bar chart of Risks’ status, sorted 

 DDP can highlight the change in Risks’ status between alternate 
selections of Mitigations. Figure 4 shows the changes relative to 
Figure 3 when an additional Mitigation is selected, effecting 
(reducing) several of the risks: the yellow portions indicate 
where Risk levels have decreased. 

 

Figure 4. Change (decrease) in Risks' status 

If the change between alternate Mitigation selections involves 
both selections and deselections of Mitigations, then typically 
some Risks will have increased, while others decreased. Figure 5 
shows an example of such, as changes relative to Figure 3: the 
yellow portions indicate where Risk levels have decreased; the 
black portions indicate where Risk levels have increased. 

 

Figure 5. Decreases (yellow) and increases (black) in Risks 

Additional features of DDP’s bar chart displays include 
“thumbnail” views of a large number of risks, the ability to color-
code risks based on user-defined categorizations, grouping of 
risks into categories, and filtering to hide from view certain risks. 
Two of these are seen in Figure 6, whose data is taken from a 
larger study in which there are almost 70 risks. Of these, the 30 
or so highest risks are visible as usual, while the thumbnail at 
the bottom of the chart shows the entire bar chart in miniature, 
with the currently visible portion highlighted in the black-
bordered rectangle. This rectangle serves as a mouse-sensitive 
slider bar, allowing the user to change the portion in view. The 
risks have been color-coded (red, purple, light blue and dark 
blue) to indicate which of four user-defined categories each 
belongs. Modest dynamic features are also provided (e.g., the 
name of an item is displayed as the mouse cursor passes over the 
item) to assist users. 

 

Figure 6. Thumbnail and color coding on Risk bar chart 

We have shown here some instances of bar charts displaying the 
status of Risks from our Objectives-Risks-Mitigations model.  
We also use bar charts to display the status of the Objectives 
themselves – specifically, the extent to which Risks are 
detracting from their attainment, and the status of Mitigations – 
specifically, the extent to which individual Mitigations contribute 
(or, if not currently selected, could contribute) to risk reduction. 
Overall we find bar charts to be a suitable mechanism to present 
quantitative information on an item-by-item basis, and to present 
comparisons between pairs of alternative solutions. This allows 
decision makers to understand the makeup of a given solution. 
For example, they can easily recognize unbalanced treatment of 
Risks, compare the Risk “profiles” of alternate solutions, identify 
Objectives highly threatened by the current Risks, etc.  

Discussion: In practice we usually deal with dozens of such 
items. A few of our studies have involved several hundreds of 
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items; at these numbers bar charts still seem to be appropriate, 
but the responsiveness of our implementation begins to degrade. 

4. UNDERSTANDING THE SOLUTION 
SPACE 
Finding a desirable selection of Mitigations can be challenging, 
because of the number of Mitigations from which to select, and 
the convoluted nature of the way that Mitigations connect to 
Risks, and Risks connect to Objectives (recall Figure 1). If there 
are n mitigations, then there are in principle 2n possible 
selections from among them. To solve this we implemented 
simulated annealing [16] within DDP, and use it to locate near-
optimal solutions. We have also explored other forms of heuristic 
search: genetic algorithms and machine learning – for a 
discussion of these, see [6].  

We use visualization to convey the results of such searches, as 
seen in Figure 7. This plots the result of an amalgam of searches, 
revealing the overall cost-benefit tradespace. Each of the 
approximately 300,000 individual points in the black “cloud” 
corresponds to a distinct selection of Mitigations. The DDP 
model has been used to calculate the cost and benefit of each 
such selection, and draw a small black point corresponding to the 
solution: cost determines horizontal position; benefit vertical 
position. The upper-left frontier of the cloud is thus the 
“optimal” boundary, also referred to as the “Pareto front” [20]. 
Note that while the simulated annealing search is designed to 
concentrate towards this optimal boundary, we plot a point for 
every selection investigated by the search, not just the “near-
optimal” points on that boundary. 

For this paper we have annotated the plot with the ellipses to 
indicate distinct regions on the Pareto front (the points within the 
interior are all inferior to more optimal solutions, of course). If 
the budget is too low, the best selections fall within the region 
where small amounts of additional funding can lead to radical 
improvements (better attainment of Objectives). Conversely, if 
the budget is too high, selections fall within the region where a 
“law of diminishing returns” comes into play. The ideal is to be 
somewhere in the “sweet spot” region. If the budget is too small 
to allow this, such a plot can motivate either a request for a 
budget increase, or serious consideration of descoping (reducing 
expectations) to be more in line with the budget that is available. 

 

Figure 7. Cost-benefit tradespace chart 

Sometimes the cost-benefit tradespace has a much more granular 
structure, representing different regimes of solutions at different 
expenditure levels – see Figure 8 for an example taken from 
another one of our studies.  

 

Figure 8. Cost-benefit tradespace chart, another example 

Discussion: Overall we find this kind of plot cogently reveals the 
overall cost-benefit tradespace, information that supports 
managerial decision making (e.g., can we afford this 
development? is the funding level appropriate to the problem?).  

In practice the main issue we face is the time it takes to compute 
the cost and benefit values that determine each point’s location – 
on our typically sized models, this takes several hours to 
adequately explore the search space using simulated annealing, 
resulting in hundreds of thousands of points. We store the 
solutions in a file, from which it is possible to redisplay these 
plots in a few seconds. 

5. EXPLORING THE SOLUTION SPACE 
The nature of early lifecycle design is a plethora of options. We 
find this to be the case when we scrutinize the results of our use 
of heuristic search to reveal the cost-benefit tradespace. Even 
when the users narrow their attention to a relatively small area in 
the tradespace there can be thousands of alternative solutions. 
This is illustrated with reference to the cost-benefit tradespace 
shown in Figure 7. Suppose we focus on a neighborhood of 
interest within the “sweet spot” characterized by solutions 
costing no more than $1,000,000, and by attaining at least 95% 
of the maximum benefit attainable within that region – see 
Figure 9.  

Cost upper 
bound of 
$1,000,000

Within 5% of 
max benefit 
attainable for 
$1,000,000

$1,000,000

$1,000,000

 

Figure 9. Neighborhood of interest 
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Within the dataset that gave rise to this picture, there are over 
3,000 solutions (i.e., distinct selections of Mitigations). Many of 
these will be similar – from one to the next, they may differ by 
only one or two low-cost, low-benefit Mitigations. However there 
may be some radically different solutions present within that 
same region. We have experimented with several techniques to 
explore such regions. Again, we use a mix of computational 
power to automate the exploration, and appropriate use of 
visualization to reveal interesting implications. We summarize 
our experiments in the following subsections. 

5.1 Determining Key Decisions 
A desirable thing to know is which decisions are key (i.e., make 
a significant difference to the outcome). In our context, an 
individual decision is represented as selection of a Mitigation, or 
the avoidance of the selection of a Mitigation – also a decision. 
Recall that each of Mitigation represents a design or 
development option, so these decisions translate into design or 
development choices. 

Methods for identifying key decisions have been the focus of one 
of this paper’s authors (Menzies) for several years – for a 
description of this approach see [17]. In collaboration we have 
studied their use within our risk-centric framework [11]. Briefly, 
the study involved several iterations between the DDP tool, and 
the treatment learning tool, each of which revealed some 
additional key decisions. In each iteration, the DDP tool was run 
thousands of times to evaluate its risk model using random 
selections of Mitigations. These thousands of results were then 
passed to the treatment learning tool, along with an indication of 
the preferences among those solutions (in our case, the 
preference favors solutions that have a high benefit/cost ratio). 
The treatment learning tool identified several key Mitigation 
selections and avoidances (Mitigations to not select) that help 
steer towards the neighborhood of interest. These selections and 
avoidances were then imposed as constraints on the next 
iteration, meaning that the DDP tool’s random explorations leave 
those key Mitigations selected (or not) appropriately, randomly 
selecting from among the remainder. Each iteration thus exposed 
further key Mitigations. In our study, the process terminated 
when decisions about one-third of the Mitigations had been 
identified, the result of which was convergence on a small area 
within the cost-benefit tradespace. The remaining two-thirds of 
the Mitigations turned out to be such small contributors to 
variation that the treatment learning approach could not discern 
any particularly key remaining decisions among them.  

We use visualization to convey the overall consequences of this, 
as seen in Error! Reference source not found..  

The convergence towards the compact (red colored) zone of high 
benefit solutions is strikingly apparent. Note that this study made 
use of a different DDP to that used in the other cost benefit 
tradespace figures. The net result is knowledge of how to get to a 
desired area in the search space by having identified the subset 
of the key decisions and how to make them. The visualization 
serves to convince the viewers of the efficacy of that key decision 
set. 

 

 

Figure 10. Convergence as iterations identify key decisions 

5.2 Understanding Individual Decisions’ 
Contributions 
We have also experimented with a purely visualization-based 
approach to understanding the contribution of individual 
decisions [8].  

Given the set of points of that constitute a cost-benefit 
tradespace, for a Mitigation of interest, we color each point one 
color (black, say) if that point corresponds to a solution not 
involving use of that Mitigation, and another color (yellow, say) 
if it does involve use of that Mitigation. An example is in Figure 
11. 

 

Figure 11. Contribution of an individual mitigation 

The broad swathe of yellow points that dominate a large fraction 
of the Pareto front indicate that the chosen mitigation is key to 
nearly all optimal solutions above a certain cost level. 

Repeating this for each Mitigation we can gather a snapshot of 
their contributions, seen in Figure 12. (The four groupings 
correspond to the four major user-defined categories into which 
these 58 Mitigations were organized.) 
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Figure 12. Snapshots of Mitigations' contributions 

We have since learned of a visualization tool [21] which uses a 
combination of techniques, of which color is just one, to show 
multiple dimensions at once of the attributes of a design. Our 
approach is a subset of its capabilities. We are currently 
investigating its use on our datasets, and the preliminary results 
so far are very promising. 

5.3 Identifying Interesting Alternatives 
We have also exploring means to distill information from the 
many solutions that lie within a neighborhood of interest. Our 
approach to this has been based on a definition of a metric of 
“similarity” between two solutions (i.e., selections of 
Mitigations). This metric is user-defined in terms other than 
overall cost and/or benefit of a solution (since all the solutions 
are within a small neighborhood of similar costs and similar 
benefits). One useful metric might be based on the cost profile – 
how the costs fall into major categories (e.g., in a hardware-
centric study we did, there were categories of design, fabrication, 
assembly and test;  two solutions that had the same overall cost 
but allocated that cost very differently between those categories 
would be very dissimilar). 

Using such metrics we have explored the use of two techniques: 
(1) Search for “maximally dispersed” solutions within the 
neighborhood of interest. The idea of this is to yield a small 
number of interestingly distinct solutions [10]. (2) Search for 
clusters of similar solutions. The idea of this is to yield a small 
number of interestingly distinct clusters, within each of which all 
the solutions are relatively similar to one another [15]. For both 
of these, we again turn to visualization to present the results. 

The visualization of a modest number of dispersed solutions is 
seen in Figure 13. The union of Mitigations involved in one or 
more of those solutions form the rows. The grid at the left is used 
to indicate the distinct solutions, one per column. A black 
(white) cell indicates that the Mitigation of that row is included 
(not included) in the solution of that column. Mitigations that are 
common to all solutions have been filtered out of this table (they 
are listed separately, not shown here), so what remains is a 
portrayal of the differences among solutions. In this case the 
Mitigations are sorted in descending order of their cost. From 
this it is easy to see that 8 out of 10 of the solutions include the 

use of a $200,000 Mitigation, while 2 of them avoid its use. This 
is a significant difference given that the sum total cost of each 
solution is capped at $1 million. 

 

Figure 13. Visualization of 10 dispersed solutions 

 

 

Figure 14. Visualization of clusters of solutions 

The visualization of clusters is similar, seen in Error! Reference 
source not found.. Rows correspond to Mitigations, while in this 
portrayal columns correspond to clusters. Since a cluster itself 
comprises multiple solutions, a given Mitigation may be involved 
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in none, some or all of the solutions in a cluster. This is indicated 
by shading the square –  white means not involved in any of the 
solutions within that cluster; black means involved in all the 
solutions within that cluster, and intermediate shades of grey 
denote intermediate levels of involvement.  

Discussion: Our approaches to exploring the solution space are 
founded on a combination of computation and visualization. 
Computation is used to reduce the number of items (key 
decisions, dispersed solutions or solution clusters). Visualization 
is used to inform decision-makers of the ramifications of those 
decisions and to scrutinize the makeup of a modest number (e.g., 
10) of solutions. 

This combination of computation and visualization appears to us 
a fruitful area worthy of further investigation. As mentioned in 
the previous section, search-based generation of the cost-benefit 
tradespace is a time-consuming activity, so we would be 
particularly interested in approaches that could begin to yield 
insights as the search is progressing, rather than have to wait 
until it has concluded to begin to scrutinize its implications. 

6. INVESTIGATIONS OF RESEARCH AND 
TECHNOLOGY PORTFOLIOS 
In addition to applications of DDP to assist the infusion of 
individual technologies, in some cases there have been DDP 
applications that have focused on entire portfolios of 
technologies, the aim being to make a selection of a set of 
technologies to pursue. The first of these was conducted by JPLer 
David Tralli, who used DDP to assist activity selection across an 
entire program of NASA Earth Science Missions [22].  

We have since used this same approach in a pilot study of the 
connections between the needs of software IV&V practitioners, 
and a related software assurance research program containing 
multiple research efforts [12].  

The purpose was to gauge how well the research program 
matched practitioner needs. In our pilot study of this approach, 
based on partial set of data, we again used DDP’s topology 
visualization (as was seen in Figure 1) to present the data – the 
result is seen in Figure 15. 

 

Figure 15. Topology of Needs-Areas-Researchers 

The top row represents 9 IV&V practitioners. They were asked 
to express their needs in terms of the 198 leaf nodes in the 
“software” area of the ACM Computing Classification System 
[1]. These 198 leaf nodes form the middle row, and red lines 
connect practitioners with their expressed needs. The bottom row 
represents 19 researchers who were asked to express their 
research in terms of the same 198 leaf nodes in the “software” 

area. The green lines connect researchers to the areas they work 
in. 

We have annotated the DDP-generated chart with 5 ellipses, 
each exemplifying a different phenomenon: 

1. Very good overlap between areas of need shared by 
multiple and those same areas included in multiple 
researchers’  activities. 

2. An area of potentially over-addressed needs. Only one 
practitioner has expressed needs in these areas, yet 
multiple researchers have activities in these areas. 

3. Unaddressed needs shared by several practitioners. 
4. Unaddressed needs of a single practitioner. 
5. Good overlap – areas shared by several practitioners 

and covered by several researchers. 
Furthermore, our data included quantitative estimates of how the 
practitioners’ needs were distributed across the areas they 
identified (some areas were more important to than others), and 
quantitative estimates of how the researchers’ activities were 
distributed across those same areas (some areas were more the 
focus of the research than others). This quantitative data allowed 
us to utilize DDP’s risk calculations, but in this model instead of 
“Objectives” impacted by “Risks” effected by “Mitigations”, we 
had “Practitioners” with needs for improvements in “Areas of 
Computer Science” which in turn were areas to which 
“Researchers” would (if successful) contribute.  

To show the quantitative aspects, we couple the topology 
visualization with the bar chart visualization. This is seen in 
Figure 16.  

 

Figure 16. Topology coupled with bar chart 

 

Figure 17. Fulfillment of needs from several research efforts  

The red bars indicate sum total need in each of the areas (the 
higher the bar, the more need; again, bar heights are with respect 
to a log scale, so the differences are quite pronounced). 
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The extent to which researchers’ activities contribute to the 
practitioners needs can be calculated and displayed, as seen in 
Error! Reference source not found..  This figure shows the 
status when the left three research activities are selected 
(identifiable by their connecting lines colored green). DDP has 
calculated their combined effect at meeting practitioners’ needs. 
The bar chart colors of red and green indicate, respectively, 
unfulfilled need, and need fulfilled by the currently selected 
researchers.  

Discussion: This topology visualization appears very well-suited 
to revealing these phenomena in this particular model, 
particularly when coupled with the bar chart display. This is in 
contrast to the model that gave rise to topology shown in Figure 
1, where there were so many connections it was hard to discern 
any significant patterns. Most of our applications to individual 
technologies yield equally inscrutable topologies. There may be 
something different about the nature of portfolio planning that 
makes this approach more amenable – at present we have not yet 
performed enough such portfolios studies to know.  

7. CONCLUSIONS AND RELATED WORK 
The purpose of this paper has been to suggest that there is scope 
for the application of software visualization to the earliest phases 
of the development lifecycle.  

We have illustrated this with examples taken from our studies of 
spacecraft technologies and systems (our studies span software, 
hardware and combinations of both). We have incorporated into 
our risk-centric modeling software visualization capabilities 
specifically for the purpose of informing decision-makers. All 
figures in this paper are generated by this software, and all are 
based on actual models constructed in the course of our work. 

The visualizations themselves are relatively commonplace (bar 
charts, 2-dimensional scatter plots, connection graphs and tabular 
formats). The novelty of this work, if any, lies in its application 
to early phase decision making. Underlying our approach is the 
quantitative model attributable to Steve Cornford [5] (see 
http://ddptool.jpl.nasa.gov). Our use of a combination of 
computation and visualization rests on top of this. We would be 
happy to learn of visualization results that could help our work - 
especially algorithms, etc., that would offer improved 
performance and/or scaling to larger datasets, and other 
visualizations that would yield additional insights of value to 
decision makers. For example, one of our colleagues pointed us 
to the “TreeMap” work [2]; since our information is often 
organized into hierarchies, we have implemented one of the 
“Ordered TreeMap” algorithms and are in the process of 
investigating how best to make use of it within our framework. 

The pioneering work on requirements prioritization reported in 
[14] looked into the challenges of selecting the set of 
requirements to go into the next iteration of development or 
release of a product. The approach is based on gathering for each 
requirement estimates of its cost and benefit. Visualization in the 
form of a 2-dimensional chart presents the cost vs. benefit 
position of individual requirements, thus allowing users to select 
accordingly. Similar approaches are seen in the Win Win project 
[3] which supports multiple stakeholders to identify conflicts 
between their respective evaluations of requirements, and to 

locate feasible solutions that are mutually satisfactory 
combinations of requirements. Again, visualizations in the form 
of 2-dimensional charts are used, provided by the automated aids 
they have built to support this approach [13]. The use of bar and 
pie charts for similar purposes is seen in [19]. Our section 4 
describes closely related work to this, the key difference being 
that we do not feel able to ascribe directly to a requirement its 
cost and benefit – rather, we use our three-layer “Objectives”, 
“Risks” and “Mitigations” model to capture the more intertwined 
dependencies that we find arise in many of our studies. Also we 
deal with larger numbers of items – many dozens, sometimes 
hundreds – for which there is need for additional (still relatively 
straightforward) mechanisms to sort, elide, filter etc. 

Our display of the Pareto front to visualize the cost-benefit 
tradespace is commonplace in the (typically non-software design) 
optimization world [20].  As we start to delve into the makeup of 
the cost-benefit tradespace, however, we may be in less explored 
territory, although we are aware of, e.g., [21] which uses 
visualization techniques to show multiple dimensions at once of 
the attributes of a design.  

The use of heuristic search techniques “as a tool of optimization 
of software engineering problems” is discussed in [4]. That 
article surveys past applications of heuristic search in areas of 
test data generation, module clustering and cost/effort prediction, 
and considers potential applications in additional areas. 
(Interestingly, one of the areas they consider is the 
aforementioned requirements prioritization problem.) Their 
focus, however, is on matching software engineering problems to 
heuristic search methods in order to be able to apply those 
methods. They do not continue to the point where the search 
results must be presented to users, and so are not motivated to 
consider issues of visualization in support of this. 

Finally, we mention some other work ongoing at JPL that, like 
ours, aims to inform decision makers early in the lifecycle: 
STrategic Assessment of Risk and Technology (see 
http://start1.jpl.nasa.gov). Applications to technology portfolio 
selection are given in [23]. Their approach rests on construction 
of decision theory models somewhat more detailed than ours 
(which take correspondingly more time and effort to construct). 
They too utilize fairly straightforward visualizations to present 
the implications of those models to decision-makers. 
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