
Operational Modification of the Mars Exploration Rovers Flight Software

Martin E. Greco
Mars Exploration Rover Project

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA
Martin.E.Greco@jpl.nasa.gov

Joseph F. Snyder
Mars Exploration Rover Project

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA
Joseph.F.Snyder@jpl.nasa.gov

Abstract - The Mars Exploration Rovers (MER) Flight
Software (FSW) was designed from the outset to be
modified during operations. Two principal methods were
envisioned: modifying (Patch) the existing image, or
entirely replacing (Load) the existing image with a new
version. In fact, both methods have been successfully
used since the Rovers landed in January of 2004. This
paper discusses the content of the uplink products that are
sent to the Rover, the planning of the Patch and Load
activities, the testing of the products and procedures, and
the actual operations themselves. Lessons Learned and
application to future missions are also discussed.

Keywords: Flight software, modification, load, patch,
operations, operational procedure.

1 Introduction
 In the summer of 2003, NASA’s Mars Exploration
Rovers (MER) project, managed by the Jet Propulsion
Laboratory, launched the twin rovers Spirit and
Opportunity on June 10th and July 7th, respectively. After
the conclusion of a six month interplanetary cruise, both
rovers successfully landed on the surface of Mars: January
3rd 2004 for Spirit and January 24th 2004 for Opportunity.
After successful completion of their 90 Sol primary
mission (approximately 92 days), both rovers continue to
operate in extended mission mode as of this writing.

 The MER project was designed and built under a
compressed development schedule. By early 2003 it was
recognized that the flight software necessary to support
Entry Descent and Landing (EDL) and initial Surface
Operations would not be ready prior to launch.
Accordingly, plans were made to perform a major update
of the flight software late in the cruise phase. This update,
a complete replacement of the flight software used since
Launch, was completed in December of 2003,
approximately a month prior to landing on Mars.

 Similarly, during final development of this first flight
software update, a number of improvements and
enhancements specific to Surface Operations were
identified and assigned to a potential further update of the
flight software to be performed after landing and initial
operations. This second flight software update eventually
included changes and fixes resulting from the first few

months of actual operations on the surface. This update,
the first performed on the Martian surface, was a complete
replacement of the flight software used since just prior to
EDL. It was completed in April of 2004, roughly
coinciding with the end of the prime mission.

 In late 2004, the operational team, having now over
600 Sols of combined experience on both rovers, had
collected a set of new and enhanced mobility related
capabilities. These eventually formed the heart of a third
flight software update. Unlike the first two updates, this
update was a “patch” of the flight software loaded at the
end of the prime mission. It was completed in February of
2005.

Figure 1 – Artist Rendition of MER rover.

2 MER Flight Software Images
 The key avionics components related to storing and
executing the MER flight software are resident in the
Rover Electronics Module (REM). The RAD6K card
contains the Central Processing Unit (CPU), 128
Megabytes of volatile Dynamic Random Access Memory
(DRAM), and one 3 Megabyte bank of non-volatile
Electronically Erasable Programmable Read Only Memory
(EEPROM). The Non-Volatile Memory (NVM) card
contains two 4 Megabyte banks of non-volatile EEPROM,
and 256 Megabytes of non-volatile FLASH memory.

 There are two complete flight software images,
referred to as the “A” and “B” images, stored in non-
volatile memory. A flight software image is conceptually a

single binary block containing two independent
components: a boot loader, and the flight software itself.
The boot loader is essentially a small independent set of
instructions that specifies the image order from which to
fetch the flight software, i.e., the operating system and
application code. If the selected flight software fails to
successfully boot and initialize, the boot loader will go on
to its next selection.

 The “A” flight software image is stored partly in the
NVM card Bank A EEPROM and partly in the NVM card
FLASH memory. Similarly, the “B” flight software image
is stored partly in the NVM card Bank B EEPROM and
partly in the NVM card FLASH memory. The two separate
images of the flight software provide redundancy in the
event of several different fault scenarios. There is no
requirement that the two flight software images be
identical. In fact, for most of the surface mission these
images have contained different versions of the MER
flight software.

 Selection of the flight software is determined at boot
time. Following a “cold boot”, which occurs when power is
applied to the main REM electronics, the initial flight
software image is selected via a ground commandable
Critical Relay Control (CRC) - a latching relay. The boot
loader associated with this image is executed, which in
turn fetches the flight software from the first image
specified. If the selected flight software image fails to load
and initialize, the boot loader fetches the flight software
from the second image specified, and so on. In the event
of a warm boot (RAM remains powered) the boot order is
selected by FSW. Figure 2 depicts the configuration of the
“A” and “B” images after applying the R9.1 Patch in
February 2005.

Figure 2 – Example MER FSW Image Configuration

3 Overview of MER FSW Modification
 There are two methods of modifying a MER flight
software image, Patch or Full Load. A Patch is a selective
replacement of portions of an existing flight software
image. A Full Load is the complete replacement of an

existing flight software image including the boot loader.
The choice between a Patch and a Full Load is generally
dictated by the volume of the products that must be
uplinked to the rover. The volume for a Full Load is about
8 Megabytes, and varies for a Patch, increasing with the
number and complexity of the software changes. For the
Patch performed in February of 2005 the volume was
approximately 2 Megabytes.

 The generation of the uplink products begins when
the flight software development team releases a new
version of the flight software. Releasing a new version of
flight software includes generation of a new flight software
image. As part of this process, the flight software
development team can optionally produce a set of Full
Load products or a set of Patch products. Full Load
products are generated by splitting the new flight software
image into a set sequential data files and producing a set of
associated control files. The control files provide the
ordering instruction for constructing the new flight
software image directly from the data files. The control
files also contain checksum and identification data used to
uniquely identify and validate the reconstructed flight
software image.

 Patch products are generated by comparing the new
flight software image to a flight software image containing
an earlier version of the flight software. Differences are
identified and a set of sequential data files are generated
containing the changed portions of the earlier flight
software image. In addition, a set of control files are
produced which contain the instructions and locations for
applying the changes contained in the data files to the
earlier flight software image. The control files also contain
checksum and identification data used to uniquely identify
and validate the patched flight software image.

 The MER flight software modification procedure
consists of two main parts: 1) A set of one or more “Uplink
Days” reserved for radiation of the Patch or Full Load
products to the rover, and 2) a “Build Day” reserved for
the building (creation), validation, and saving to non-
volatile memory of the new flight software image. Uplink
Days are planned to minimize all other activities running
in parallel to the actual receipt of the modification
products. This allows optimal use of the available uplink
bandwidth and reduces the likelihood of unforeseen side
effects. Similarly, the Build Day is planned such that no
other activities are running in parallel.

 All onboard activities related to the flight software
modification are planned to tolerate and recover from all
credible anomalies. Power consumption, Telecom link
margin predictions, and procedure timing all assume a
worst case scenario. Margin is included to allow for re-
radiation of missing or corrupted products, ground

evaluation and confirmation of all critical steps, and
execution of contingency commands in the event of off-
nominal events.

4 Activity Planning and Command
Generation

 The flight software Full Load and Patch activities
required early planning and allocation of resources. Deep
Space Network (DSN) station coverage must be negotiated
in advance, requiring the layout of a straw-man plan. This
plan includes the estimated size of the uplink products as
well as the estimated duration of the Build Day. For Build
Days a 70-meter antenna is desired for higher downlink
rates and for added margin in case of an anomaly.

 The MER rovers possess two telecom systems, an X-
Band system and a UHF system. For the Full Load
performed prior to landing, only the cruise X-Band system
was available for uplink. For the Full Load and Patch
performed during surface operations, the uplink could
have been achieved via UHF relay via the Odyssey orbiter.
However, the necessary extra overhead on the uplink files,
the brief pass durations (approximately 15 minutes), and
the low uplink rate to the orbiting asset of approximately
1000 bits-per-second (bps) more than offset the higher
relay uplink rates. Because of this, X-Band uplink was
used exclusively.

 During surface operations the rovers have two
available X-Band antennas, a monopole Low Gain
Antenna (LGA) and an articulated High Gain Antenna
(HGA). The HGA was selected because it supports higher
uplink rates.

Figure 3 – Spirit’s HGA.

 Selection of the HGA (see Figure 3) involves
additional constraints. Using the HGA for long passes
requires that the rovers be oriented such that there will be
no mechanical occlusions (from the Pan-Cam Mast
Assembly (PMA) or from the rovers’ deck), no contact
with any of the HGA hard-stops, and no possibility of
performing a “flop”. A “flop” is a 180 degree rotation of
the azimuth drive and a reflection in elevation which takes
about one minute, resulting in a loss of communications
[1]. Another constraint that must be considered is potential
shadowing of the HGA by the PMA. This reduces the
temperature margins on the warm-up times for the HGA
motors and gears. If the associated temperature limits are
violated it could result in a premature stall of the HGA
motors and a complete loss of the communications pass.

 Detailed power predictions were generated for the
duration of the Full Load and Patch activities to verify that
the rovers will be maintained in an energy neutral state.
Figure 4 shows an example of the predicted power profile
for the Opportunity Patch activities. During the surface
Full Load activities it was discovered that HGA shadowing
on the solar arrays was not accounted for by the power
predictions. Fortunately, the power loss incurred by the
shadowing was less than the allocated margin and the
rovers remained in a power positive state.

 Detailed thermal predictions to verify the rovers
would not overheat were not necessary due to the dates the
Full Load and Patch activities were executed. Winter was
approaching during the Full Load and winter was ending
during the Patch.

Figure 4 - JPL Mapgen Power Modeling.

 The actual on-board steps of the Full Load and Patch
activities were performed by a combination of real-time
and sequenced commands. A sequence is a specialized file
containing one or more commands that execute serially.
MER sequences allow for conditional commanding. This
capability allows ground-in-the-loop interactions to be kept
to a minimum. The key reason to minimize ground-in-the-

loop interactions is that each of these interactions absorbs
a significant portion of the total available time for
operations. The total available time for operations is a
function of the solar energy available, initial battery state
for charge, and expected power dissipation. During the
Martian winter the available energy is especially limited.
Ground-in-the-loop interactions are costly due to the time
lag between events occurring on Mars and on Earth. For a
rover on Mars, the one-way light time is roughly between
3 and 23 minutes, with an average of 10 minutes.
Therefore each “event � telemetry � decision �
command � event” cycle takes at least 30 minutes for the
average one-way light time.

 The following is a snippet from the key Build Day
sequence that demonstrates how conditional commanding
allows events to proceed without ground-in-the-loop
interactions between each step.

Sample Sequence
1. CMD Load_Validate Prom1
2. IF Last Command � Success
3. THEN Terminate Sequence
4. CMD Load_Validate Prom2

 In the example the sequence first issues a command
to validate the “A” flight software image. A load
validation verifies that the image has not been corrupted.
If the commanded load validate fails, (i.e. the image is
corrupted) the rest of the sequence will not execute.
Otherwise, if the commanded load validate succeeds, the
sequence continues by issuing the next command – in this
case a command to validate the “B” flight software image.

 When planning the flight software Full Load and
Patch activities it is necessary to deal with multiple time
systems, including Mars Local Solar Time (LST),
Coordinated Universal Time (UTC); and Pacific Standard
Time (PDT). Since there is at least one ground-in-the-loop
interaction built into the activities, a synchronized timeline
that can be updated as actual events occur and will
propagate the remaining events is critical. Care must also
be taken to ensure that the activities do not contain any
overly tight timing requirements. Thus, wherever possible,
extra time, up to several minutes, was inserted between all
key events. This is particularly applicable to events that
change the rover telecom configuration, as this requires a
corresponding reconfiguration of the DSN. For the Build
Day activities there are approximately six different DSN
configurations with only one or two having a predefined
absolute time.

 Once the nominal activities were finalized, all
credible anomalies that could occur at each step of the
activity were investigated and contingency plans were
generated to deal with them. Some of the specific

anomalies prepared for include: 1) Failure of the
commands to create the new flight software image or copy
it to non-volatile memory, 2) Loss of communications due
to HGA errors, 3) Loss of communications due to
anomalies unrelated to the HGA, 4) Unexpected power
profiles, and 5) Loss of communications or data due to
DSN issues.

 Other anomalies not specific to the flight software
modification activities are handled as they would at any
other time by the Flight Operations Team.

5 Testing
 Testing of the uplink products and the Full Load and
Patch procedures followed the JPL philosophy of Test as
you fly and fly as you test. All files, sequences, and
immediate commands that will or, in the case of an
anomaly, might be radiated to or executed on the rovers
must first be tested. The MER project possesses three
hardware rich Testbeds: 1) The Flight Software Testbed
(FSWTB), where most of the development level testing
occurred; 2) The Cruise Entry Descent and Landing
Testbed (CETB), where, as the name implies, almost all of
the Cruise and EDL tests were performed; and 3) the
Surface System Testbed (SSTB), for mobility testing. In
addition to these high fidelity test resources, the MER
project has several lower fidelity (i.e., no hardware in the
loop) Flight-Like Test Sets (FLTS), where simple
commands, sequences, or other uplink files can be verified.
For example, the uplink files for Spirit were tested using
the Testbeds, but the corresponding files destined for
Opportunity were tested using an FLTS. All of the tests of
the Build Day activities, especially those involving
communication passes, the creation of the new flight
software image, and the copy of the image to non-volatile
memory, were performed on the CETB due to its high
fidelity.

 The Full Load and Patch activities were tested with
respect to the following requirements:

� All files, sequences and immediate commands
designated for transmission or potential
transmission were used in their flight-like form;
this ensures that the flight software properly
accepts and processes the files or commands.

o The uplink products were presented at
the expected uplink rate.

o Uplink durations were verified.
� All X-Band and UHF communications passes

were executed at the appropriate times and for the
actual durations.

� Nominal sequences and immediate commands
were executed in flight-like order with the
appropriate timing.

� Contingency sequences and immediate commands
were executed in as credible a flight-like manner
as possible.

6 Surface Operations Description
 As described earlier, the actual flight software
modification activities are divided into two main parts: 1)
one or more “Uplink Days”, and 2) a “Build Day”. Figure
5 shows the high level timeline for the two Uplink Days
and one Build Day used for the flight software Patch on
Opportunity in February, 2005.

LST 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Rover Awake

DTE
DFE
UHF

LST 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Rover Awake

DTE
DFE
UHF

LST 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Rover Awake

DTE
DFE
UHF

LST 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2 12.4 12.6 13
Rover Awake

DTE
DFE
UHF

Sol 377 - Uplink Day 2

Sol 376 - Uplink Day 1

Sol 378 - Build Day

File Uplink File Uplink
Verification

File Uplink File Uplink
Verification

Contingency
File Uplink

Image Build and
Save

Verification of
Successful Load

Operational Team
Go-No-Go Decision Rover Shutdown

Rover Boots On
New FSW

Solar Array Wakeup Optional Early
Shutdown

Figure 5 – High Level Timeline of Approximate Times of
Opportunity Patch Activities.

 Uplink Days are quiet days for the rover; there is no
mobility or Instrument Deployment Device (IDD) activity
allowed and only minimal remote science activities are
scheduled in order to preserve power margin and to
minimize possible side effects.

 The first Uplink Day begins with the handover from
the previous Sol’s master sequence1 to this Sol’s master
sequence. Its first action is to confirm the handover by
issuing a “beep”; that is, is a modulation of the X-Band’s
sub-carrier to generate a single tone for five minutes. This
is a convenient method often used on the MER project to
confirm the occurrence of an event without expending the

1 A master sequence is a special sequence that is in control
of activating all other sequences that will execute that Sol;
it is also in charge of the awake and sleep cycle of the
rover.

energy necessary for a full communications pass. After the
beep is complete, any pre-planned engineering and/or
science sequences are activated. The rover then begins a
long Direct from Earth (DFE) receive-only X-Band
communications pass. The pass is used to uplink as many
Full Load or Patch files as possible. Although DFE allows
long (3.5 to 4.5 hour) passes because of low energy
consumption (not using the transmitter saves 50 Watts),
there is no verification that the uplinks were successful
until the UHF communication pass at the end of the Sol.

 After the DFE pass ends there is another opportunity
to activate any pre-planned engineering and/or science
sequences. The next major event is the end of Sol UHF
communication pass. Just before this pass, an uplink
verification sequence is activated. This sequence generates
directory listings and several other types of data needed to
verify all planned activities during the Uplink Day were
successful. After the pass, the rover shuts down for the
night. This cycle is repeated for each Uplink Day.

 The Build Day begins with a short 30-45 minute
contingency DFE pass, available in the event that any of
the previous uplink products need to be re-radiated. There
is no ordering requirement, so any missing file can be
uplinked during this pass. Once the contingency DFE
window completes, the rover begins a Direct to Earth
(DTE) two-way X-Band communications pass.

 Shortly after DTE pass begins, the Build Day Master
sequence activates the conditional sequence that will
perform the actual flight software modification. Because
this activity is proceeding in parallel with the DTE pass,
the Flight Operations Team is able to monitor and verify
events in near real-time. The sequence will perform the
following principal steps. The conditionality constructs
are used after each step; if successful, the sequence
proceeds, otherwise it ends.

1. Verify that the current flight software images
stored in non-volatile memory are not corrupted.

2. Build the new flight software image in DRAM.
For a Full Load this is done directly from the
uplinked data files. For a Patch, one of the
existing flight software images is first copied
into DRAM, and then modified.

3. Save the new flight software image to the
designated location in non-volatile memory.

 As this sequence executes, the Flight Operations
Team verifies the activity. If all is nominal, the new flight
software image has been saved as either the A or B image.
At this point, upon final confirmation from the Operations
Team, the rover is ready to start using the new flight
software.

 If necessary, the appropriate CRCs are then set to
ensure that upon the next cold boot the new flight software
version will be executed. Finally, a shutdown is
commanded to force a cold boot. The rover shuts down,
and then wakes up 15 minutes later. The Build Day master
sequence then initiates another DTE communications pass.
During this pass the Flight Operations Team verifies that
the new version of flight software has been successfully
booted and is executing as expected. Following this
verification, all that remains are cleanup activities,
including deletion of the original uplink products saved in
FLASH, and any necessary configuration related to using
the new flight software. At this point, the rover is released
for resumption of nominal surface operations.

7 Lessons Learned
The single biggest improvement to the MER flight
software modification process would be to reduce the
amount of time necessary to stand down from nominal
surface operations. Currently, the most time consuming
activity is uplinking the Full Load or Patch files. There are
several options available to optimize this activity:

1. Use the maximum file size allowed by the uplink
protocol, thus reducing the overall overhead per
file.

2. Relax the rules for using UHF uplink, thus
reducing or eliminating all UHF overhead.

3. Compress all Full Load or Patch files before
converting them to uplink products.

 For future rover missions, DFE for uplink products
will likely be unavailable or impractical. All significant
uplinks will be via relay assets. It is expected that future
relay assets will have higher communication bandwidth,
both between Earth and Mars, and between Mars orbit and
the surface. With these increased capacities, it is
envisioned that a Full Load could be completed in less
than two Sols.

 The next area of improvement is in automation of the
on-board modification activities. Rather than rely on
sequencing, Full Loads and Patches should be full fledged
high level behaviors, intrinsic to the flight software.
Improved visibility into the process should be included,
with specialized high priority telemetry dedicated to the
behavior. This has a number of important advantages,
including enforced operational consistency, standardized
prediction and testing, and improved performance and
timing margins. This will be especially important for
future rover missions where the surface lifetime
requirements exceed one Martian year, and the need
and/or desire to change flight software will be greater than
ever.

 The last area of improvement is in testability. As
discussed earlier, planning and testing the uplink products
and procedures are resource intensive. A large portion of
test time was consumed by attempting to replicate the
rover state at the time a particular command was to
execute. Improving testbed state initialization and
removing the reliance on sequencing would release more
time for contingency planning and testing. Currently, most
contingency testing occurs as a side effect of nominal
testing. That is, because of the difficulty in executing a
completely nominal test, many unplanned test anomalies
occur. Even though the root cause of these anomalies are
almost always due to improper test conditions, their
symptoms often are the same as credible flight-like
anomalies. Furthermore, recovering from them typically
requires the use of flight-like contingency procedures. An
interesting observation is that many countless hours were
spent in the Testbeds to achieve one flawless nominal test.
But on the actual rovers, the Full Load and Patch activities
to date have all executed perfectly.

8 Conclusions
 The MER project was developed under a highly
compressed schedule, making in-flight update of the flight
software a certainty well before launch. To date, two full
replacements and one major modification of the executing
flight software have been successfully accomplished.
Updating the MER flight software remains a challenging
and complex set of activities, including planning,
development, test, and operational implementation.
Alternative approaches to improve uplink efficiency,
expand on-board autonomy, and simplify testing should be
explored on future rover missions to reduce this
complexity and its accompanying risk.

9 Acknowledgements
 The following people have been essential to the
successful flight software modifications performed to date.
Tracy Neilson, Rover Behavior Specialist, for conceiving
and testing all surface and cruise contingency plans;
Edwin Odell, Flight Software Lead Integration Engineer,
for initial contingency planning; Al Herrera, for activity
power modeling; Tony Vanelli for invaluable Guidance
Navigation and Control and HGA knowledge; and Hanry
Hartounian for boot testing and CRC telemetry
predictions.

References
[1] Mars Exploration Rover Functional Design Description
Volume 26: High Gain Antenna Gimbal (HGAG), Julie
Townsend, Diana Darus, and Joel Krajewski, 2003 Jan 23,
Internal JPL Document.

