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Abstract 
 

A simulated asteroid Itokawa was constructed from Ostro's latest radar model 
adding craters, rocks and fractal surfacing.  Images were constructed from this model 
with known spacecraft positions and orientations, and asteroid pole and shape as "ground 
truth", using available values for the Hayabusa camera parameters, and following the 
proposed encounter scenario.  The nominal values of these quantities were given realistic 
errors.  The images were analyzed with landmark navigation and target characterization 
software to determine how well ground truth could be reproduced.  Calculated spacecraft 
locations during approach to the surface agreed with the true values to less than a meter. 
 
1.  Introduction 
 

In September, the Japanese Hayabusa spacecraft will arrive at the asteroid 25143 
Itokawa.  Due to Itokawa’s small size (600 meters) and low gravity, the spacecraft will 
not orbit, but will hover near each of three stations; one at a range of ~20 km on a line 
between the asteroid and Earth, one on the same line at ~7 km, and one ~45 o around the  

 
 

                     
 

Figure 1.  Simulated Itokawa image 
 
body, again at ~7 km.  After observing Itokawa for two months, the spacecraft will make  



a test approach in November and then will touch down twice, collecting samples for 
return to Earth. 

 
The clever simplicity of this encounter made an ideal simulation for testing 

landmark navigation and target characterization software (Gaskell, 2001, 2002, 2003).  
84 narrow-angle images were “taken” at each of the two full-phase stations, and 28 at the 
45 o phase station.  At the first two, the spacecraft was allowed to drift 3 and 2 km 
respectively northward and southward.  Thirteen wide-angle images were taken during 
the test approach.  Figure 1 shows a typical narrow-angle frame. These images were 
made from a 1,572,866-vector model based on the most recent radar shape (Ostro, et al. 
2004) with added craters, rocks and fractal surfacing.  The pole at RA=160o, DEC=-89 o, 
and the input spacecraft positions and orientations, provided the “truth”.   

 
The nominal states were then given realistic errors.  The spacecraft location had 

rms errors 0.1% of range in each component, while the errors in the camera pointing were 
0.25 mrad per axis.  The nominal pole was taken to be RA=163 o, DEC=-86 o, different 
from the “true” pole from which the images were constructed.  Finally, the nominal shape 
was taken to be Ostro’s 2001 radar model, which differs significantly from his 2004 
result.  The rotation rate of 712.14445 deg/day remained fixed. 

 
Starting with the images created from “truth” and using the messed up nominals, 

the goal was to see how closely the truth could be recovered.  The fundamental data 
product of this study was the digital topographic landmark map (L-map), constructed 
from imaging data by using stereophotoclinometry (SPC) to find surface slopes, which 
were then integrated to determine topography.  Figure 2 shows such an L-map in the 
context of an Eros shape model, created as part of an ongoing analysis of the NEAR 
imaging data (Gaskell, 2004).  L-map specifications include a local coordinate  
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 2.  Landmark map in Eros shape model 
 
system, the surface heights relative to that coordinate system, with the central pixel 
having zero height, the relative albedo at each map pixel, and the vector from the center 
of the body to the central pixel of the L-map.  Because of their three-dimensional 
structure, landmark maps can be aligned with images, limbs and other maps to find 
landmark location and spacecraft position and orientation.  They can also be combined to 



produce a detailed shape model, or high-resolution topographic map for any portion of 
the surface.  The errors in this approach are at least an order of magnitude smaller than 
either traditional stereography or laser altimetry, and the resolution is considerably 
higher. 
 
 This paper is divided into two parts.  The first part collects the principal 
algorithms used in the study, while the second part gives a blow-by-blow description of 
the study itself.  Section 2 discusses the projection of the imaging data into the coordinate 
frame of an L-map, the illumination of the L-map for correlation with the image 
projection, and the correlation of L-maps with limb data and with other L-maps.  Section 
3 deals with the geometry estimation that uses the correlation data to solve for L-map 
vectors and spacecraft position and orientation.  Section 4 discusses the construction of 
an L-map, using SPC to determine the slope and relative albedo distribution, and the 
subsequent integration of the slopes to produce the final digital elevation map.  Section 5 
deals with the synthesis of shape models and high-resolution topographic maps from the 
set of L-maps.  Section 6 discusses the creation of the simulated Itokawa data while 
section 7 describes the four-week real-time solution for the L-maps and spacecraft 
geometry.  In section 8, the results are applied to navigation during proximity operations.  
 

 As in any useful simulation, this study exposed many errors and suggested many 
changes.  Some of what has been learned is discussed in section 9.  This will make things 
run more smoothly when it is done for real starting next month. 
 
2.  L-map to image connection 
 

At the heart of the analysis is the connection between the location of a pixel on an 
L-map and its predicted location in an image.  This connection depends upon the 
location, orientation and height variation of the L-map, the location and orientation of the 
camera (spacecraft), and the rotational dynamics of the body.  A change in any of these 
quantities results in a characteristic change in the image-space projections, leading to 
their estimation in terms of the imaging data.   
 

An L-map is specified by a vector V from the center of a body fixed coordinate 
system to the origin of the L-map coordinate system, by the axes of that coordinate 
system ui (i=1,3), and by heights and albedos at positions (x,y) relative to that system.  
The L-map coordinates of a body-fixed point P on the surface are x=u1•(P-V) and 
y=u2•(P-V) with the height h(x,y)=u3•(P-V) and an albedo a(x,y).  The camera’s position 
vector W and its coordinate system ci (i=1,3), unit vectors in the sample, line and 
boresight directions, respectively, are also specified in body-fixed coordinates. 
 

For a simple narrow angle camera with focal length f, the focal plane image 
location Xi (i=1,2) of the L-map center V is given by 
 
1)  Xi = f(V-W)•ci/(V-W)•c3
 
If Mij=ci•uj, a point (x,y,h) on the L-map has the focal plane projection 



 
2)  Xi = f((V-W)•ci+Mi1x+Mi2y+Mi3h)/((V-W)•c3+M31x+M32y+M33h) 
 

An equally important connection is between the slopes and albedos within an L-
map, the local illumination and camera directions, and the predicted image-space 
brightness.  A change in slope or albedo at any L-map pixel will result in a characteristic 
change in the predicted brightness at the corresponding location in an image.   At the 
point (x,y) of the L-map, the brightness at the corresponding focal plane location in the 
kth image can be parameterized as 
 
3) Ik(x,y,t) = Λk(1+t3(x,y))F(cosi,cose) + Φk 

 
F is an appropriate reflectance function (Hapke,1981; Squyres and Veverka, 1982).  The 
factor (1+t3) is the relative albedo at map coordinates (x,y), normalized so that <t3>=0 
over the map, and i and e are the local angles of incidence and emission, relative to the 
surface normal at (x,y). During its extraction, the imaging data is usually scaled 
(maximally stretched), so the multiplier Λk is included.  Moreover, due to background or 
haze in some images, or perhaps because super-resolution sampling has left a “washed 
out” look, a positive background term Φk can be added.   
 

In terms of the (negative) slopes t1=-dh/dx and t2=-dh/dy, the local arguments of 
the function F are 
 
4a) cosi = (s1t1+s2t2+s3)/√(1+t1

2+t2
2) 

 
4b) cose = (e1t1+e2t2+e3)/√(1+t1

2+t2
2) 

 
where sj= s•uj and ej = e•uj are the L-map components of the sun and spacecraft unit 
vectors respectively.  The reflectance function   
 
5) F(cosi,cose)  =  cosi + 2cosi/(cosi+cose) 
 
is used, since it does a good job rendering high resolution shape models.  No phase 
dependence has been included since it is nearly constant over each L-map, even for wide-
angle images, and any phase functions can be absorbed into Λk . 
 

 
 
 
 

 
 
 

         Figure 3.  Imaging data and re-illuminated L-map 
The top row of Fig. 3 displays data extracted from five NEAR images, projected 

onto the coordinates of the L-map displayed in Fig. 2 according to equation 2).  The 



bottom row shows the corresponding L-map illuminated according to equation 3), with 
the Λk adjusted to match the average brightness in the overlapping regions. 

 
In addition to its appearance on the image of a body, the three-dimensional 

structure of an L-map allows it to be identified on the limb.  Fig. 4 shows the same  
L-map as it appears on the limb of a NEAR image reconstructed from the Eros shape 
model.  The focal plane location of the map center, which is not necessarily on the limb, 
is still determined by equation 2).  The predicted limb points are those parts of the  
L-map surface to which the line of sight is tangent, and which are not either hiding or 
hidden by any other part of the body. 

 
 
 
 
 

 
 
 
 
 
 
       Figure 4.  Appearance of the L-map on a limb. 
 
 A final constraint on the L-map lies not with its correlation with imaging data, but 
with other L-maps.  The common topography of the overlapping maps can be aligned in 
three-dimensions to solve for the central vector V of one L-map relative to the other.  

 
 
3.  Geometry estimation 
 

The geometry problem consists of determining the body fixed L-map vectors V, 
the body’s pole, and the spacecraft location W and orientation c.  The L-map topography 
problem is treated as a separate estimation.  The geometry solution is found by 
minimizing the quantity  

 
6) H = ΣK(Yi – Xi)2+ HE
 
with respect to variations in V, W, c, or the pole.  Yi (i=1,2) are the measured focal plane 
locations of the L-map centers and where the predicted locations Xi (i=1,2) come from 
equation 1).  The sum is over all L-maps and all images, with each term weighted by a 
different “spring constant” K, the inverse square measurement uncertainty. The HE 
represent external a priori terms which constrain the estimation according to external 
measurements.  The solution proceeds iteratively, solving in turn for all the L-map 
vectors V, and then for the spacecraft positions and orientations W and c.  Formal 
uncertainties from each solution help determine the weights K of the next. 
 



 The solution for an L-map vector V + δV is found by minimizing  
 

7) H = ΣK(Yi – Xi– δV•∇VXi)2 + ΣKm (Vm + ∆m – V - δV)2 

 

where Xi is evaluated at the nominal vector V, and ∇VXi are the partials of Xi with 
respect to the components of V.  The first sum is over all images containing the 
landmark, while the second, coming from HE , is over all overlapping L-maps.  ∆m  is the 
difference between the two central L-map vectors from the correlation discussed at the 
end of Section 2.  The minimum of H in equation 7) occurs when 

 
8) ΣK∇VXi (Yi – Xi– ∇VXi •δV) + ΣKm (Vm + ∆m – V - δV) = 0

 
which can be written as  
 
9) M•δV= r  
 
with M = ΣK∇VXi⊗∇VXi

 + ΣKmI and r = ΣK∇VXi(Yi – Xi) + ΣKm(Vm + ∆m – V).  The 
3x3 matrix M is inverted to solve equation 9) for the corrections δV = M-1•r.  The 
diagonal elements of M-1 are the squares of the formal uncertainties in V. 

 
The solutions for spacecraft position W + δW and orientation ci + εijkcjδαk are 

found by minimizing 
 

10) H = ΣK(Yi - Xi - δW•∇WXi - δα•∇αXi)2 + Kn(Wn - W - δW)2 

 

     + Kn(εijk cni•cj - δαk)2 + ΣKp(Wp + ∆p - W - δW)2 

 
The sum in the first term is over all landmarks occurring in the image, with the K 
determined from the formal uncertainties of the previous estimation.  The second two 
terms reflect nominal positions, orientations and, through the Kn, the corresponding 
uncertainties.  These come, for example, from external radiometric, optical navigation 
and star-tracker measurements.  The final term is a sum over those images correlated with 
the image in question, those that are close enough in time so that the position difference 
∆p can be predicted by the trajectory dynamics.  This term ties images together in the 
same way that the last term in equation 7) ties L-maps together.  The minimization of H 
in equation 10) results in a set of six equations for the six corrections δW and δα. 

 
A change in the rotation of the body alters the components of the vectors in the 

body-fixed frame in a time-dependent fashion.  It does not affect the scalars W•c in 
equation 1) since both vectors are associated with a single image and are transformed in 
the same way.  The products V•c will change, however, both because the components of 
V and the c change, and because the new geometry yields a new solution for the L-map 
vectors.  The corrections to the rotational parameters g and the L-map vectors V are 
determined by minimizing 

 



11) H = ΣK(Yi – Xi– δg•∇gXi– δV•∇VXi)2  

 
summed over all images and all landmarks.  The resulting equations are 
 
12) A•δg + Σ Ck

T•δVk = r0 and Ck•δg  +  Bk•δVk  =   rk
 
where k labels the L-maps and 

 
A = ΣK∇gXi ⊗∇gXi  (sum over all images and L-maps) 
Bk = ΣK∇VkXi ⊗∇VkXi  (sum over all images with L-map k) 

13) Ck = ΣK∇VkXi ⊗∇gXi  (sum over all images with L-map k)
r0  = ΣK(Yi – Xi)∇gXi  (sum over all images and L-maps) 
rk  = ΣK(Yi – Xi)∇VkXi (sum over all images with L-map k) 
 

In practice, the δV are eliminated from equations 12) to give 
 
14) (A – Σ Ck

TBk
-1Ck)•δg = r0 – Σ Ck

TBk
-1rk

 
which is solved for the rotational correction δg.  The spacecraft positions W and 
orientations c are then expressed in the new body-fixed frame and equation 9) is used to 
find the new L-map vectors V. 
 
4.  Topography estimation 
 

Each L-map is typically about a hundred pixels square.  At each of these pixels 
(x,y), the values of ti are solved for, fitting the extracted brightness data Ek(x,y) to 
equation 3) by minimizing the weighted sum squared residual  

  
15) H = ΣK (Ek(x,y) - Ik(x,y,t) - δt•∇tIk(x,y,t))2             
 
where the sum is over the images.  Λ and Φ are determined from a global fit over the L-
map at the nominal values of t. 
 

The minimization of H is accomplished by setting its partials with respect to δt 
equal to zero.  This yields a set of three coupled linear equations of the form Mδt = w, 
where the information matrix M is quadratic in the partials of I, and w is made up of 
products of the partials and the residuals.  The inverse of the information matrix, M-1, is 
the covariance matrix.  Its diagonal elements measure the formal uncertainties σ2 in the 
corresponding variables.  To M is added a diagonal a priori information matrix D to keep 
the solution from diverging.  In particular, if the albedo component D33 is large, albedo 
variations will be tightly constrained.  This is often done initially, to allow time for the 
topography solution to settle down. 

Notice that the slopes determined in this way do not implicitly satisfy the “curl-
free” condition ∂1t2-∂2t1=0, which follows from ∂1∂2h-∂2∂1h=0.  However, the nominal 
values of t1 and t2 used in the estimation are found from the height solutions described 



below and are manifestly curl-free, so as the iteration proceeds, the condition is 
eventually satisfied. 
 

The height at each location (x,y) is determined from the neighboring heights, and 
a possible constraining height hc from the shape model, differential stereography, limb or 
overlapping map data, according to: 
 
16) h(x,y) = [h(x+s,y)+s(t1(x,y)+t1(x+s,y))/2+h(x-s,y)-s(t1(x,y)+t1(x-s,y))/2 

 +h(x,y+s)+s(t2(x,y)+t2(x,y+s))/2+h(x,y-s)-s(t2(x,y)+t2(x,y-s))/2           
 +wchc(x,y)+]/(wc+4), 

 
where s is the map pixel spacing and wc is a small constraining weight.  This equation is 
applied repeatedly to map points chosen at random until a converged solution is reached.   
If any height does not exist, its term is not included in the average.  Fig. 5a shows the 
landmark map displayed in Fig. 2.  Fig. 5b shows the locations of the constraining 
heights.  The connected points come from limb projections in 26 images, while the 
isolated points come from sparsely sampled heights in overlapping maps, such as the one 
shown in Fig. 5c. 
 

              
  

     Figure 5. a) Landmark map.  b)  Constraining points.  c)  Overlapping map 

5. Shape and topography models. 
 

           As the number of landmarks increases, a nearly rigid network of fixed surface 
points constrains the solutions for c, W, and V.  Moreover, since each landmark map 
contains about 10,000 pixels, each at a well-defined location relative to the central vector 
V, the surface is described by a vast amount of data.  The current Eros model, for 
example, has more than 4900 landmarks, giving over 49 million surface points.  
 
           The first step in the construction of the shape is the choice of a set of direction 
vectors for an initial rough model.  In order to avoid the pole singularities of a spherical 
coordinate system, grid points on the faces of a cube are chosen as in Fig. 6.  These 
direction vectors maintain their implicit connectivity as the initial defining solid is 
deformed, so that a separate listing of vertex connections is not necessary. 
 



 

Figure 6.  Initial direction vectors. 

65x65 grids are typically used, providing about 25,000 direction vectors.  The 
surface vectors are then projected onto this set.  Once this initial model is found, a new 
set of direction vectors is constructed by stretching the cube into a rectangular solid with 
edges a, b, and c, and shifting the center by an offset vector O.  These parameters are 
chosen in order to equalize the surface areas of the shape model corresponding to each of 
the six faces.  The resulting distribution is shown in Fig. 7a.  The intersections of the grid 
lines within each face are then deformed in order to most nearly equalize the surface area 
projections of the cells on that face.  The revised distribution is illustrated in Fig. 7b.   

 

    

Figure 7.  Distributions after a) face area equalization, b) cell area equalization. 

By construction, this model is single-valued in radius as a function of direction.  
This is not in general the case for real surfaces, and in particular for the surface of Eros.  
This preliminary model is used as a reference surface for the construction of the final 
model.   
 

         

  Figure 8.  Vector and normal at a point in a subdivided cell. 
 



The final model is constructed by subdividing each cell, and by constructing a 
vector and normal for each new vertex point by bilinear interpolation as in Fig. 8.  
Typically, each cell is divided into an 8x8 grid, providing a final set of about 1.57 million 
vectors.  If np pierces a map, the distance along np from p to the intersection is called its 
height h.   The weighted average of the heights of all such map intersections hp = <h> is 
the height associated with the reference surface point p.  The surface vector Vp associated 
with p could be determined directly from hp by  
 
17) Vp = vp + nphp.   
 
It seems to be cleaner, however, to find the map normals n at each intersection point and 
then to associate their weighted average ηp =  <n> with the point p.  Notice that the local 
normal ηp is not the same as the normal to the reference surface np.  If p and q are two 
neighboring surface points then  (ηp+ηq)•(Vp-Vq)=0 so the height at p can be found in 
terms of the nearest neighbor heights hq and a possible constraining height hpc at p by 
 
18) hp= (wchpc+Σ(ηp+ηq)•(vq-vp+nqhq)/(ηp+ηq)•np)/(wc+4). 
 
The sum in Equation 18) is over nearest neighbors, hpc is fixed at the weighted average 
height <h> described above and wc is a small constraining weight.    As in Equation 16), 
this is applied repeatedly to the reference surface points chosen at random until a 
converged solution is reached.   If any height does not exist, its term is not included in the 
average.   After the integration is complete, the heights are substituted into Equation 17) 
to find the surface vectors. 
 

The corner vectors defining a cell on one of the faces of the final shape model, 
v(i,j), v(i+1,j), v(i,j+1) and v(i+1,j+1),  define an approximate prism.  The area vector of 
the cell is 
 
19) dA=(v(i+1,j+1)-v(i,j))x(v(i+1,j)-v(i,j+1))/2.   
 
If v is the average of the four corner vectors, and R is its magnitude, then the differential 
solid angle is 
 
20) dΩ = v • dA/R3.  
This allows for very rapid calculations of physical properties of the model such as surface 
area, volume, moment of inertia tensor, and gravity harmonics.  Notice that dΩ can be 
negative for some cells, indicating that a radius vector pierces the surface multiple times. 

  A similar procedure of averaging slopes and then integrating, this time referred to 
a local cartesian coordinate system, is used to combine L-maps into large, high resolution 
topographic maps of regions of interest.  Fig. 9, for example, shows two orthogonal 
illuminations of a 1025x1025 pixel map of the center of Shoemaker Regio on Eros. 

 



 
      Figure9.  High-resolution topography in Shoemaker Regio of Eros. 

 
 
6. Initialization of the simulation 
 

 The simulation began with the construction of a model Itokawa, starting with 
Steve Ostro’s latest radar model (Ostro, 2004), and adding craters, rocks and fractal 
surfacing (Gaskell, 2005).  Ostro’s Itokawa pole and rotation rate RA=160o, DEC=-89 o, 
ω=712.14445 deg/day were used to define the body-fixed coordinate system.  Imaging 
times and spacecraft positions and orientations were chosen, and images were created 
using the Itokawa model and realistic camera parameters.   

 An older Ostro model for Itokawa provided the nominal shape for the study.  It 
was tiled with 215 overlapping L-maps, 99x99 pixel maps at 1.0 meter resolution.  Two 
 

 
 

 
 
 
 
 
 

    Figure 10.  Nominal Itokawa shape and initial L-map tiling 
 
files are associated with each L-map.  First, the landmark file (.LMK) contains the 
nominal landmark vector, unit vectors defining its orientation, spaces for its location in 
images, both on the body and as limbs, and spaces to define its overlaps with other maps.  
Landmark files provide inputs to the geometry estimation of equation 6) in section 3, 
which then updates the landmark vector.  Second, the map file (.MAP) also contains the 
central vector and orientation, but its remaining contents are the digital topography and 
albedo maps determined from the topography estimation of section 4, and for which this 
initial file provides the nominal topography.  Creating these files beforehand saves 
valuable processing time during the encounter and, while they do not participate in the 
geometry estimation until images are added, they do provide one way in which to prevent 



the origin of the coordinate system from drifting too far from the center of the body 
during initial processing. 
 

The rotation rate for the nominal model remained the same, but the pole was 
taken to be RA=163 o, DEC=-86 o.  The same observation times were used, but the 
nominal spacecraft positions and orientations were randomly altered, the former by 0.1% 
of range in each component and the latter by 0.25 mrad about each axis.  For each image, 
a picture summary (.SUM) and nominals (.NOM) file were created.  The first contains 
information about the camera parameters, the spacecraft’s nominal position and 
orientation, and spaces for landmark locations in the image both on the body and on the 
limb.  Together, the ensemble of landmark and summary files contain the information 
that would ordinarily be found in an OPNAV picture sequence file.  The nominals file 
contains the nominal position and pointing information, and relative spacecraft locations 
coming, from trajectory dynamics, along with uncertainties on all of these quantities.  
The summary and nominals files are the inputs to the geometry estimation of section 3, 
which updates the spacecraft location and orientation in the summary file.  
 
 
7. Narrow-angle processing 
 

The analysis was started with the first set of 28 images from the 20 km station.  
Initial registration of the images was accomplished by manually aligning the projected 
imaging data in a display such as Fig. 3 or Fig. 13a below for a number of landmarks, and 
then carrying out the geometry solution of Section 3.  The 99x99 pixel map size was 
chosen since, with a one pixel blank space between display blocks, feature locations in 
each block should be the same, modulo 100.  If the pointing for an image is particularly 
bad, the initial registration can be carried out by aligning a projection of the image with 
the current global model, as in Fig. 11. 

 
 
 
 
 
 
 
 
 
Figure 11.  Registration by comparing image with current global model. 
 
Processing of the first images took three days, and topography was found for 178 

of the 215 original maps, shown below in Fig. 12.  The poles were not covered, because 
pole-ward excursions of the spacecraft were not included in the image set.  The alignment 
wasmore difficult than expected, for reasons which would not become clear for several 
weeks. 

 
 



 
 
 
 
 
 
 
 
 
 

     Figure 12.  Image of 178 L-maps. 
 

 During the next week, 140 additional images were added from the two high phase 
stations.  The existing landmark maps greatly speeded up the image registration.  There 
are two ways to do this registration.  First, a prominent landmark can be found in the set 
of all new images and correlated with extracted imaging data as in Fig. 13a).  Second, all 
landmarks in a single image can be correlated with extracted imaging data, leading to an 
immediate solution for pointing and spacecraft location as in Fig. 13b). 
 
 
 
 
 
 
 
 
 

 
  Figure 13.  Alignment of a) a single landmark and b) a single image 

 
The first and third lines of these displays are data extracted from the image(s).  The 
second and fourth are illuminated L-map(s). 
 

The first method was chosen.  Many of the landmark maps were still distorted, so 
each landmark had to be reprocessed to include all relevant images.  The maps now  
 
 
 
 
 
 
 
 
 
    Figure 14.  a) Image of L-maps, b) global model, c) model after pole re-orientation 



covered most of the body, because poleward excursions of the spacecraft allowed those 
regions to be mapped.  A new global model was constructed from the maps.  The first 
pole solution was found at RA = 161.6 o, DEC = -88.06 o, considerably closer to the true 
value than was the nominal.  With the new pole, it was necessary to re-fit the maps in a 
nine-hour batch run.  The resulting global model looked slightly different, in part because 
the solution was converging, but also because the body was oriented differently due to 
the updated pole.  
 
 At this point, about two weeks into the simulation, a major problem was found 
that accounted for the landmark distortions mentioned above.  The differences between 
the calculated and exact spacecraft locations were over a hundred meters.  At first, it was 
thought that the aliasing between pointing and spacecraft location was dominating the a 
priori.  A few days later, it was found that an embarrassing error in accounting for light 
time corrections had left the nominal locations off by an average of 170 meters.  The tight 
20 m a priori had prevented the solution from converging to the correct values.   
 

Once the nominals were corrected, things settled down.  During the third – fifth 
iterations, taking another three days, the pole went from 162.20 o, -88.78 o, an error of 
0.23 degrees, to 161.46 o ± 1.12, -88.97 o ± 0.04, an error of 0.38 degrees, to 160.27 o ± 
1.34, -89.00 o ± 0.04, an error of 0.005 degrees. 

 
 

 
 
 
 
 
 

  Figure 15.  Successive global models after iterations 3, 4 and 5. 
 

 During the next four days, several hundred 0.5 meter resolution maps were added, 
bring the total to 494, and the 28 terminator station images were included.  The global 
model became more detailed and the pole remained virtually fixed.  No high-resolution  
 
 
 
 
 
 
 
 
 
 

  Figure 16.  Converged global model. 
 



maps were added near the poles due to unfavorable viewing geometry.  The rms residuals 
in pointing were dominated by the tight a priori, as were the range residuals.  The cross 
line-of-sight errors decreased to 3.5 m at the 20 km station and to 1.3 m at the 7 km 
station. 

 
This point marked four weeks to the day since the simulation began.  Despite 

major blunders and on-the-fly software rewrites, a database of nearly 500 landmarks has 
been created for use in proximity optical navigation.  Moreover, the global model can be 
used to estimate the gravitational field near the surface in preparation for touchdown, and 
large, high-resolution maps synthesized from the L-maps can be used to characterize 
possible landing sites. 
 
 
8. Proximity navigation 
 
 Seven wide-angle frames were constructed, representing views that might be 
taken during approach.  They had ranges from 1000 m to 400 m, in 100 meter steps, and 
phases of 45 degrees to 15 degrees in 5 degree steps.  The nominal locations had rms 
errors of 1.0% of range per component, but the camera pointing maintained the same 0.25 
mrad random errors.  The seven images were registered against the landmark set in less 
than ten minutes, solving for pointing and s/c location.  Below is a typical alignment 
display from the 600 meter image.  As in Fig. 13, odd lines are extracted imaging data 
and even lines are illuminated landmark maps.  Although the L-maps do not have the 
same resolution as the actual images, the correlation algorithm had no trouble aligning 
them. 
 

 
 

     Figure 17.  Auto-registration display for a wide-angle image 
 



For the seven images, the rms spacecraft location residual was 2.9 m in the line-
of-sight direction and 0.76 m in the cross line-of sight direction.  The pointing errors 
were still dominated by the a priori.  By waiting 15 minutes more to find the landmark 
maps on the limbs of the seven images, the rms line-of-sight error is reduced to 2.4 m.  

 
 The results above do not include image-to-image correlations in the form of 
expected inertial space differences in spacecraft location for neighboring pictures, the 
fourth term in equation 10).  Ultimately, these differences will be determined by fitting 
the nominal spacecraft locations to the dynamical model, such as the gravitational field.  
In this case, a simple linear fit as a function of time was used, with the appropriate formal 
rate uncertainties, and a time cutoff of ±4000 seconds.  Thus for each of the seven narrow 
angle sequences, an image was correlated with the two before and the two after.  For both 
the 20 km and 7 km stations, the pointing errors were about 60 µrad in clock and cone, 
and 150 µrad in twist.  The radial errors were 10.3 meters at 20 km and 4.1 meters at 7 
km.  The cross line-of-sight errors at the two distances were 1.16 meters and 0.66 meters 
respectively.  These are actual errors, differences between the determined values and 
those used to construct the images.  In all cases, they were within 30% of the formal 
uncertainties, which gives us confidence in the latter values.  The formal uncertainty in 
landmark location was 21 cm per degree of freedom, while the rms post-fit residual was 
27 cm. 
 
 An additional six wide-angle images were added, so that the time spacing of the 
approach sequence was 30 minutes, as in the narrow angle sequences.  The image-to-
image correlation brought the rms error down from 2.9 meters and 0.76 meters line of 
sight and cross line of sight respectively, to 1.66 m and 0.62 m without limbs and 1.46 m 
and 0.60 m with limbs.  Notice that the solution can no longer be done individually for 
each image, since it is the sequence is processed as a whole. 
 
 The radial error was somewhat larger than expected from theoretical analysis of 
the uncertainties.  It turned out that the origin of the “true” model was shifted by about a 
meter from the center of figure.  When that correction was made, the errors dropped to 
1.18 meters and 0.37 meters.  Another possibility was that the ensemble of maps had not 
yet converged.  Another iteration was performed to re-compute map locations and 
topography, using narrow angle data only.  The wide-angle rms errors dropped to 0.84 
meters along the line of sight and 0.30 meters across the line of sight.  The narrow-angle 
errors were correspondingly reduced. 
 
9. Lessons learned 
 
 Since this simulation was completed, much time has been spent going over ways 
to improve the procedures.  For example, the camera pointing and spacecraft position in 
the pixel and line directions are degenerate when the spacecraft is far from the body, or 
close to it and nadir pointed.  In fact, the determination of these components of spacecraft 
position is directly tied to the pointing as determined from the star tracker.   For this 
reason, it is planned to place a very tight a priori on the cross line-of-sight spacecraft 
location at the 20 km and 7 km stations, and very loose ones on the corresponding camera 



pointing.  The Hayabusa project’s range and twist uncertainties will be used, however, 
since the latter information is fundamental to estimating the pole.   
 
 Another post-simulation revelation came when the planetary constants file was 
being created for Itokawa.  Inconsistencies in the results revealed that the wrong pole was 
used in the simulation.  Since Ostro’s pole was in the celestial coordinate frame, and the 
Spice procedures assume an Earth equatorial frame, the simulation’s pole was off by 23 
degrees.  This in no way invalidates the results of the study, which verify that optical-
only landmark navigation can provide sub-meter proximity positioning in real time. 
 
 The next step in the evolution of this technique will be to install the software that 
estimates position and orientation from a set of known L-maps onboard a spacecraft.  The 
L-maps themselves will be estimated on the ground, and then uploaded to allow for 
autonomous approach and landing navigation.  This capability is currently under 
development. 
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