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Introduction

Transfer between two coplanar orbits can be accomplished via a single impulse if
the two orbits intersect. Optimization of a single-impulse transfer, however, is not
possible since the transfer orbit is completely constrained by the initial and final orbits.
On the other hand, two-impulse transfers are possible between any two terminal orbits.
While optimal scenarios are not known for the general two-impulse case, there are
various approximate solutions to many special cases. We consider the problem of an in-
plane rotation of the line of apsides, leaving the size and shape of the orbit unaffected.

A Two-Impulse Approximation

A single impulse can be used to rotate the line of apsides of an orbit of
eccentricity e and semi-major axis a through an angle Dw. Such a transfer requires a DV
given by
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where e is the eccentricity, a is the semi-major axis, and m is the gravitational constant.
In Figure 1, an initial and final orbit and their respective lines of apsides are shown. The
impulse occurs either at the intersection of the orbits at apoapse or at the intersection at
periapse, with DV given by Eq. (1).

Figure 1: The two possible locations for a single-impulse rotation of apsides.

However, it has commonly been assumed that multiple impulses allow DV
reduction. More specifically, a rule of thumb in common use is that a two-impulse
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transfer to rotate apsides uses half the total DV of a single impulse transfer for the same
rotation. The basis of this rule of thumb seems to have come from Edelbaum’s
consideration of the problem of minimum impulse transfer for nearly circular orbits.1

From his paper, linearization of the variation of parameter equations about a circular
reference orbit gives the equations of motion, including

† 

dey

du
=

a
m

2lT sinq - lR cosq( )          (2)

where ey is the y component of the eccentricity vector e, u is the time integral of thrust
acceleration, q is the angle of the maneuver point from the X-axis, and lT and lR are the
circumferential and radial components of the direction vector of the maneuver
respectively. Refer to Figure 2 for a graphical representation of Eq. (2).

Figure 2: Eccentricity vector of a circular orbit.

From Eq. (2), it is clear that for nearly circular orbits a circumferential maneuver
at q = 90° is twice as effective as a radial maneuver at periapse. This simple observation
has lead to our current rule of thumb that a two-impulse transfer requires half as much
DV as a single-impulse transfer to rotate apsides:
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Lawden first considered the problem of optimal slewing of the orbital axis for
elliptical orbits in 1962. In agreement with our rule of thumb, he states and assumes,
without discussion, that a two-impulse transfer is more economical than a single impulse
transfer.2 He presents an algorithmic solution to the problem of optimizing the two-
impulse transfer that requires the tedious, iterative satisfaction of six simultaneous
equations. Furthermore, the equations give little insight as to the effect of eccentricity on
the DV. It therefore remains of limited practical usefulness for mission design analysis.
Our rule of thumb, while not optimal and only heuristically applicable to circular orbits, is
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at least an explicit solution. A better understanding of the behavior of the rule at higher
eccentricities will allow an improvement of the approximation and greater applicability to
include elliptical orbits.

Analysis

Our assumption is that a good approximation of the optimal DV needed to rotate
an orbit through an angle Dw along the line of apsides is given by half of Eq. (1). The
accuracy of this approximation, as well as the effects of semi-major axis and eccentricity,
was examined via numeric comparisons with results from the trajectory optimization
program CONSAT. CONSAT, developed at JPL by Carl Sauer, uses patched conic
analysis and finite parameter optimization to optimize interplanetary trajectories. A
slightly inclined (i = 10°), near circular orbit (a = 5000, e = 0.05) of Mars (also W = 0°)
was used as a baseline. Allowing CONSAT to search on the positions of the true
anomaly for the initial and final orbits, the initial baseline orbit was rotated around the
orbit normal by 10°.  This line-of-apsides rotation was then extended up to Dw = 340° for
a = 5000 km and then for a = 7000 km. These constraints were then replicated for 5
other increasingly larger eccentricities. Table 1 presents a summary of the cases
considered and the results of the comparison. Results for e = 0.05, as well as some
other very near circular cases, are not shown.

Table 1: Ratio of Optimal Transfer DV to Estimated DV

In examining Table 1, it is clear that our rule of thumb provides a consistently
conservative approximation to the most optimal DV. The ratios are identical for each
value of a at every value of e indicating that the approximation is independent of semi-
major axis. It was expected from the heuristic argument derived from Edelbaum that the
approximation would be very good for nearly circular orbits. It is quite clear, however,
that the approximation becomes less accurate with increasing eccentricity. For example,
the ratio of optimal transfer DV to estimated DV for a 10° rotation of apsides at a = 7400
and e = 0.15 is 0.993, but as eccentricity increases to e = 0.8 the ratio decreases to
0.794 for the same amount of rotation. It is also clear that across all eccentricities the

Summary of Results for Apsides Rotation at Mars (Gm = 42828 km3/s2)
  (Inclination = 10 deg, longitude of ascending node = 0 deg)
  (Optimal transfer DV values were calculated using CONSAT Ver. 3.14, and estimated DV values

were calculated from the approximation ∆V=e*sin(∆w/2)*SQRT(Gm/a*(1-e^2)).)

D w a = 7400 a = 5000 a = 7400 a = 5000 a = 7400 a = 5000 a = 7400 a = 5000 a = 7400 a = 5000
(degrees) e = 0.15 e = 0.15 e = 0.2 e = 0.2 e = 0.4 e = 0.4 e = 0.6 e = 0.6 e = 0.8 e = 0.8

10 0.993 0.993 0.989 0.961 0.961 0.908 0.908 0.794 0.794
20 0.990 0.990 0.984 0.984 0.952 0.952 0.893 0.893 0.771 0.771
40 0.983 0.983 0.976 0.976 0.935 0.935 0.865 0.865 0.729 0.729
60 0.978 0.978 0.968 0.968 0.919 0.919 0.840 0.840 0.696 0.696
80 0.972 0.972 0.961 0.961 0.905 0.905 0.820 0.820 0.670 0.670

100 0.968 0.968 0.955 0.955 0.894 0.894 0.803 0.803 0.650 0.650
120 0.964 0.964 0.951 0.951 0.885 0.885 0.791 0.791 0.635 0.635
140 0.962 0.962 0.947 0.947 0.878 0.878 0.782 0.782 0.626 0.626
160 0.960 0.960 0.945 0.945 0.874 0.874 0.777 0.777 0.620 0.620
180 0.959 0.959 0.944 0.944 0.873 0.873 0.775 0.775 0.618 0.618
200 0.960 0.960 0.945 0.945 0.874 0.874 0.777 0.777 0.620 0.620
220 0.962 0.962 0.947 0.947 0.878 0.878 0.782 0.782 0.626 0.626
240 0.964 0.964  0.951 0.885 0.885 0.791 0.791 0.635 0.635
260 0.968 0.968  0.955 0.894 0.894 0.803 0.803 0.650 0.650
280 0.972 0.972 0.961 0.961 0.905 0.905 0.820 0.820 0.670 0.670
300 0.978 0.978  0.919 0.919 0.840 0.840 0.696 0.696
320 0.983 0.983  0.976 0.935 0.935 0.865 0.865 0.729 0.729
340 0.990 0.990  0.952 0.952 0.893 0.893 0.771 0.771

Notes:
All blank cells in the tables are instances when CONSAT did not converge.



error increases with the amount of rotation and is maximal at the maximum rotation, w =
180°.

The analysis also shows that in addition to the semi-major axis the direction of
the apsides rotation does not affect the DV needed. In Table 1 it can be seen that for
each case the ratios are symmetric around Dw = 180°. In the most optimal cases the
same transfer orbit is essentially used for rotating in either direction. CONSAT outputs
showed that only the order and direction of the maneuvers need to be reversed in order
to rotate in the opposite direction. In Figure 3, for example, a 120° rotation in the
counterclockwise direction can be accomplished by the DV1 and DV2 impulses along the
solid red transfer orbit as shown. However, to rotate 120° in the opposite direction a
–DV2 maneuver to get onto the dashed green transfer orbit is needed before a –DV1
maneuver to get off the transfer orbit and into the final rotated ellipse.

   Figure 3: 120° rotation of apsides in either direction.

Bounding the Error

The percentage error for the rule of thumb is dependent on the eccentricity and
the amount of rotation in the line of apsides.

Although we do not know an analytic formula for the general two-impulse case,
there is an analytic formula for an optimal 180° rotation. Consider the scenario where the
transfer orbit begins with circularization at the apoapse of the ellipse and 180° later
restores the peripase altitude. The DV required is given by

† 

DV180 = 2 1- 1- e( ) m
a(1+ e)

       (4)

Lawden found for intersecting initial and final orbits that have aligned axes, the optimal
transfer orbit will be tangential to both the initial and final orbits at an apse on each and
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will pass through the farther periapse (which is actually the apoapse in our case).2 Thus
the transfer scenario assumed by Eq. (4) is exactly the optimal 180° rotation scenario.

The ratio of Eq. (4) to the rule of thumb for Dw = 180° given in Eq. (3) is

† 

DV180

DVRoT

=
1- e + 1- e
1+ 1- e

       (54)

The ratio given by Eq. (5) agrees with the values listed in Table 1 for a 180° rotation up
to five decimal places. A quadratic fit using this ratio and a value of 1.000 for no rotation
(Dw = 0° and Dw = 360°) gives an excellent fit through the data points at low
eccentricities. At higher eccentricities, on the other hand, the fit was only tight around
Dw = 180°. To gain a better fit across all eccentricities the restriction that the endpoints
have a value of 1.000 was removed. A polynomial least squares fit through the data was
then used to determine initial ratios at Dw = 0°. It was then observed that (1 – ratioDw=0)/(1
– ratioDw=180) ª 0.5e.  A new quadratic fit, with the endpoints not artificially set to 1.000 but
instead including this additional effect of eccentricity, showed a more consistent fit.
Figures 4 and 5 show the accuracy of the fits. The marked points are data from Table 1
and the unmarked curves are quadratic fits through the center and endpoints.

Figure 4: Optimum DV vs. an Improved Rule of Thumb of Baseline Orbit at e = 0.05, e = 0.15 and
e = 0.2
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Figure 5: Optimum DV vs. an Improved Rule of Thumb of Baseline Orbit at e = 0.4, e = 0.6 and
e = 0.8

Therefore, an improved DV estimate would be given by
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Using the estimation rule of Eq. (5), the DV cost of rotating the line of apsides of
a 6000 km x 4000 km orbit of Mars was also determined. The plot of the DV costs is
shown in Figure 6. It is high by 1 m/s at the low end but is otherwise spot on over the
rest of the curve when compared with the true optimal DV found by CONSAT.
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Figure 6:  Using our new DV formula to estimate the cost of rotating an orbit at Mars.  This is less
than half a meter per second high (i.e., conservative) for the five lowest non-zero points on the

left and much closer than that for the other points.

Conclusion

We have documented here an old and rather arcane bit of astrodynamics
folklore, which gives an easy rule of thumb for the DV needed to rotate an orbit’s line of
apsides in the plane of the orbit.  By comparing this rule of thumb to actual optima we
have found an improved estimation formula, which can be used when more precision is
needed in the design of space missions.
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