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Abstract— NASA’s Mars Exploration Rovers (MER) were
designed to traverse in Viking Lander-I style terrains: mostly
flat, with many small non-obstacle rocks and occasional
obstacles. During actual operations in such terrains, onboard
position estimates derived solely from the onboard Inertial
Measurement Unit (IMU) and wheel encoder-based odometry
achieved well within the design goal of at most 10% error
in the onboard position estimate. However, the MER vehicles
were also driven along slippery slopes tilted as high as 31
degrees. Under those conditions, an additional sensing mode
was employed to maintain a sufficiently accurate onboard
position estimate: Visual Odometry.

The MER Visual Odometry system comprises onboard
software for comparing stereo pairs taken by the pointable
mast-mounted 45 degree FOV Navigation stereo cameras
(NAVCAMs). The system computes an update to the 6-DOF
rover pose (x, y, z, roll, pitch, yaw) by tracking the motion of
autonomously-selected ”interesting” terrain features between
two pairs of stereo images, in both 2D pixel coordinates and
3D world coordinates. A maximum likelihood estimator is
applied to the computed 3D offsets to produce a final motion
estimate.

In this paper we describe the Visual Odometry algorithm
used on the Mars Exploration Rovers, and summarize the
results obtained by running this processing onboard during
the first year of operations on Mars.

Index Terms— MER, Mars Exploration Rover, Visual
Odometry, Motion Estimation, Egomotion

I. BACKGROUND

Keeping track of a vehicle’s location is one of the most
challenging aspects of planetary rover operations. The Mars
Exploration Rovers (MER) are typically commanded only
once per Martian solar day (or “sol”) using a pre-scheduled
sequence of precise metrically specified commands (e.g.,
”drive forward 2.34 meters, turn in place 0.3567 radians
to the right, drive to location X,Y, take color pictures of
the terrain at location X,Y,Z” ), so the maintenance of the
rover’s position estimate onboard is of critical importance.

During each MER mission, the onboard position and
attitude estimates were updated at 8 Hz nearly every
time the wheels or rover arm (Instrument Deployment
Device, or IDD) were actuated. Changes in attitude (roll,
pitch, yaw) were measured using a Litton LN-200 Inertial
Measurement Unit (IMU) that has 3-axis accelerometers
and 3-axis angular rate sensors, and changes in position
were estimated based on encoder readings of how much
the wheels turned (wheel odometry).

After moving a small amount on a slippery surface,
the rovers were often commanded to use camera-based
Visual Odometry to correct any errors in the initial wheel
odometry-based estimate that occur when the wheels lose
traction on large rocks and steep slopes. Our Visual Odom-
etry system computes an update to the 6-DOF rover pose
(x, y, z, roll, pitch, yaw) by tracking the motion of “inter-
esting” terrain features between two pairs of stereo images
in both 2D pixel coordinates and 3D world coordinates. A
maximum likelihood estimator is applied to the computed
3D offsets to produce the final motion estimate. However,
if any of the many internal consistency checks fails, too
few feature points are detected, or the estimation procedure
fails to converge, then no motion estimate update will
be produced and the initial estimate (nominally based on
wheel odometry and the IMU) will be maintained.

NASA’s twin Mars Exploration Rovers Spirit and Oppor-
tunity landed on the surface of Mars in January 2004. As
shown in the blue lines in Figures 1 and 2, human rover
drivers have made extensive use of the Visual Odometry
software during high-tilt operations: driving Opportunity
inside Eagle and Endurance craters, and climbing Spirit
through the Columbia Hills.

In the first year since landing, the rovers have driven
over terrain with as much as 31 degrees of tilt, and
over textures comprised of slippery sandy material, hard-
packed rocky material, and mixtures between the two.
Engineering models of vehicle slip in sandy terrain were
developed during Earth-based testing, and they correlated
remarkably well with some Meridiani terrains. However,
slip behavior was extremely difficult to predict in areas
where the rover was driven over nonhomogeneous terrains
(e.g., when climbing over rock for one part of the drive
and loose soil for another). Early on, the uncertainty in
the amount of slip resulting from drives on high slopes
or loose soils forced the operations team to spend several
days driving toward some targets, even those that were just
a few meters away. But throughout most of the first year of
operations, use of Visual Odometry software has enabled
precision drives (e.g., ending with the target of interest
being immediately reachable by the IDD) over distances
as long as 8 meters, on slopes greater than 20 degrees.



Fig. 1. Plot of Spirit’s traverse history using Visual Odometry in the Columbia Hills from sols 178 – 418. Units are in meters from the landing site
origin, as measured onboard the rovers. Red lines indicate directly commanded “blind” drives, green lines indicate autonomous hazard detection, and
blue lines indicate visual odometry.

Fig. 2. Plot of Opportunity’s traverse history using Visual Odometry. On the left, the drive in and around Eagle crater from sols 1 – 70. On the right,
the drive in and around Endurance crater from sols 133 – 312. Units are in meters from the landing site origin, as measured onboard the rovers. Red
lines indicate directly commanded “blind” drives, green lines indicate autonomous hazard detection, and blue lines indicate visual odometry.

II. ALGORITHM

Our approach to position estimation is to find features in
a stereo image pair and track them from one frame to the
next. This approach, known as Visual Odometry or ego-
motion estimation, was originally developed by Matthies
[6]. Following his work, some minor variations and mod-
ifications helped improve its robustness and accuracy [8].
Related work using stereo images for localization can be
found in [4], [7], and using a single omnidirectional camera
in [1]. The key idea of the present method is to determine
the change in position and attitude for two or more pairs of
stereo images using maximum likelihood estimation. The
basic steps of this method are described as follows.

Feature Detection First, features that can be easily
matched between stereo pairs and tracked across a single
motion step are selected. An interest operator tuned for
corner detection (e.g. Forstner or Harris) is applied to one
of the image pairs, and pixels with the highest interest
values are selected. To reduce the computational cost, a
grid with cells smaller than the minimum distance between

features is superimposed on the left image. In each grid
cell, only the one feature with strongest corner response is
selected as a viable candidate. A fixed number of features
having the highest interest operator responses is selected,
subject to a minimum distance constraint to ensure that
features are selected evenly across the image.

Feature-based Stereo Matching Each selected feature’s
3D position is computed by stereo matching. Because the
stereo cameras are well calibrated, the stereo matching
is done strictly along the epipolar line with only a few
pixels of offset buffer above and below it. We use Pseudo-
normalized correlation to determine the best match. In
order to obtain subpixel accuracy, a biquadratic polynomial
is fit to a 3x3 neighborhood of correlation scores, and the
peak of this polynomial is chosen as the correlation peak.

The 3D positions of these selected features are deter-
mined by intersecting rays projected through the camera
models. Under perfect conditions, the rays of the same
feature from the left and right images should intersect at
a point in space. However, due to image noise, camera



model uncertainty and matching error, they do not always
intersect. The shortest distance “gap” between the two rays
indicates the goodness of the stereo match: features with
large gaps are eliminated from further processing.

Next we compute the covariance assosiated with
each feature. Assume the stereo cameras are located at���������	��
���������
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������������
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both images. Because of noise, � � and � � do not always
intersect precisely at a point. But as long as the rays
converge in front of the lens and are not exactly parallel,
there will always be a shortest line segment connecting
these two rays. Letting � � and � � be the endpoints of
that line segment, we have the following constraints on the
distance from each camera to that feature (where � � �! � � � � ! � � �"� ! � � � � ! ):� � � ���$# � � � � (1)� � � ���%# � � � � (2)
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where 0 � ���6&7��� is the stereo baseline, and � � and� � are functions of feature locations in both images whose
partial derivatives are:�98� �
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Further note that the covariance of � is
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where � 8 is the Jacobian matrix or the first partial deriva-
tive of � with respect to the 2D feature locations in the left
and right images, and G I and G J are 2x2 matrices whose
elements are the curvatures of the biquadratic polynomial
along the vertical, horizontal and diagonal directions, which
can be obtained directly from subpixel interpolation.

The quality of a 3D feature is a function of its relative
location, the gap between the two stereo rays and the sharp-
ness of the correlation peak. This covariance computation
fully reflects these three factors.

Fig. 3. Feature tracking occurs between every pair of images. In this
view, several images from Spirit’s Sol 178 drive have been positioned
using Visual Odometry updates, and the features that were tracked have
been overlaid.

Feature Tracking After the rover moves a certain dis-
tance, a second pair of stereo images is acquired. The
features selected from the previous image can be projected
into the second pair using the prior knowledge of the ap-
proximate motion provided by the onboard wheel odometry
(see Figure 3). Then a correlation-based search reestab-
lishes the 2D positions precisely in the second image pair.
Stereo matching is then performed on these tracked features
on the second pair to determine their new 3D positions.
Because the 3D positions of those tracked features are
already known from the previous step, the stereo matching
search range can be greatly reduced. Features whose initial
and final 3D positions differ by too large an amount are
filtered out.

Robust Motion Estimation If the initial motion is ac-
curate, the difference between two estimated 3D positions
should be within the error ellipse. However, when the initial
motion is off, the difference between the two estimated
positions reflects the error of the initial motion and it can
be used to determine the change of rover position.

The motion estimation is done in two steps. First, a less
accurate motion is estimated by Least-squares estimation.
The error residual is
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and the cost expression is
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There is a closed form solution for this least squares
estimation [6]. The advantage of this least squares method
is that it is simple, fast and robust. Its disadvantage is that it
is less accurate because it only takes the quality (the volume
of the error ellipsoid) of the observations as a weight factor.

Because it is an inexpensive operation, we embed it
within a RANSAC process to do outlier removal:

1) A small set of features (e.g. 6) is randomly selected
and the motion is then estimated using the least
squares estimation method.

2) All features from previous step are projected to the
current image frame by the newly estimated motion.
If the gap between a reprojected feature and its
correspondent is less than a threshold (e.g. 0.5), the
score of this iteration will be incremented once for
each viable feature.

3) Steps 1 and 2 repeat for a fixed number of iterations
and the motion with the highest score is selected. All
features that pass this iteration will be used in the
following more accurate estimation — the maximum
likelihood motion estimation.

The maximum likelihood motion estimation takes into
account the 3D position difference and associated error
models when estimating position. Let Ppj and Pcj be the
observed feature positions prior to and after the current
robot motion. Then we have��� � � � ��� � #�	)# ��� (15)

where R and T are the rotation and translation of the
robot and � � is the combined error in the observed positions
of � th features. In this estimation, 3 axis rotations ��� and
translation

	
are directly determined by minimizing the
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where � � is the inverse covariance matrix of ��� . The
minimization of this nonlinear problem is done by lin-
earization and an iterative process [6]. Two nice properties
of the maximum-likelihood estimation make the algorithm
powerful. First, it estimates the 3 axis rotations � � directly
so that it eliminates the error caused by rotation matrix es-
timation done by the least-squares estimation. Secondly, it

fully incorporates error models (the shape of the ellipsoid)
into the estimation, which greatly improves the accuracy
of the final motion estimate.

As of the February 2005 version of MER flight software,
optional constraints can also be placed on the final motion
estimate to provide additional sanity checking. The mag-
nitude of the 3D update vector, its X and Y Site Frame
components, the magnitude of the Roll, Pitch and Yaw
updates, and the angular deviation from a purely downslope
vector can all be restricted. Any update violating the active
set of constraints is treated as a failure to converge; the
number of acceptable failures is another optional constraint.

III. GROUND-BASED VALIDATION

This visual odometry software has been tested on nu-
merous rover platforms. The latest test was conducted on
JPL’s FIDO rover at the JPL Arroyo [3]. The FIDO rover
has two pairs of hazard avoidance stereo cameras mounted
on the front and rear of the rover body about 50 cm above
the ground. The image resolution is 640 by 480, horizontal
and vertical field of views (FOV) are 112 degrees horizontal
by 84 degrees vertical and the baseline is about 12 cm.
The test site was a rugged dry riverbed where the FIDO
rover experienced a lot of slip, tilt, and roll during the test.
The rover traversed approximately 8 meters, taking images
about every 20 cm.

In order to evaluate Visual Odometry performance, high
precision ground-truth data (position and attitude) was also
collected using a Leica totalstation. By tracking a prism on
the top of a rotating fixture, the rover’s position and attitude
were measured with high precision ( � 3 mm in position
and � 0.1 degree in attitude). The absolute position errors
at the end of this run are 2.0, 5.3 and 10.1 cm in the X, Y,
and Z directions respectively. The rotation error was less
than 1.0 degrees.

Tests were also run on the MER Surface System Testbed
Lite rover in an indoor sandbox test area. Ground truth
was acquired using a total station (surveyor’s theodolite) to
measure the vehicle’s 6-DOF motion estimate by tracking
3 points at each step. During these tests Visual Odometry
processing took place using images from the 120-degree
FOV HAZCAM sensors (but on Mars only the 45-degree
FOV NAVCAMs are commanded). Several tests were run
in which Visual Odometry was found to be on par with
wheel odometry (within the design spec) on simple terrain,
and better than plain wheel odometry in complex terrain.

Figure 4 shows the position estimation error that resulted
from the most slip-inducing test run: a 2.45 meter rock-
laden course driven in 35 cm steps. The straight line and
light blue background represent the design goal of at most
10% error allowed in the position estimate. The dark curve
represents the error that accrued onboard when the position
was estimated using only the IMU and wheel odometry;
after 1.4 meters of driving, the accumulated error had
already gone beyond the desired 10% curve. Finally, the



Fig. 5. Views of Opportunity’s 19 meter drive from Sol 188 through Sol 191. The inside path shows the correct, Visual Odometry updated location.
The outside path shows how its path would have been estimated from the IMU and wheel encoders alone.

Fig. 4. Visual Odometry Error measured during a 2.45 meter drive using
HAZCAMs on the MER Surface System Testbed Lite rover. The rover
was driven over several large non-obstacle rocks, each less than 20 cm
tall, in 35 cm steps. The vehicle was held in place during the final step, so
the wheel odometry error for that step is artififically large, yet the Visual
Odometry error remains small.

light curve at the bottom represents the error remaining
after Visual Odometry processing has completed. Even
after 2.45 meters of driving over rough obstacles with as
much as 85% slip, the Visual Odoometry error remained
small, less than 1% of the total traverse distance.

IV. COMMANDING VISUAL ODOMETRY ON MARS

Visual Odometry processing was performed on both
MER rovers using mast-mounted NAVCAM imagery. NAV-
CAMs have a 45-degree field of view and sit 1.5 meters
above the ground plane [5], so all Visual Odometry drives
were split into several small steps to ensure at least 60%
overlap between adjacent images. During each step the
rover was typically commanded to drive no more than 75cm
in a straight line or curved arc, and when turning in place
was commanded to change heading by no more than 18
degrees per step.

Although Visual Odometry processing could have been
beneficial during all rover motion, each step required two
to three minutes of computation time on MER’s 20 MHz
RAD6000 CPU, and thus it was only commanded during
relatively short drives (typically less than 15 meters) that
occurred either on steep slopes (typically more than 10
degrees), or in situations where a wheel was being dragged
(digging a trench, or conserving drive motor lifetime on
Spirit’s right front wheel). The onboard IMU exhibited a
very small drift rate (usually less than 3 degrees per hour
of operation) and therefore maintained attitude knowledge
very well: so during the first year of operations from
January 2004 through January 2005, Visual Odometry was
typically used to update rover position only.

There were some instances in which Visual Odometry
did not converge to a solution. These are primarily at-
tributable to either too large a motion (e.g. commanding
a 40 degree turn in place which resulted in too little image
overlap) or to a lack of features in the imaged terrain (but
see False Positives below). It has successfully measured
slips as high as 125% on sol 206 when Spirit tried to drive
up a more than 25 degree slope.

Several benefits were realized by the use of Visual
Odometry. Science observations requiring precision point-
ing were often scheduled in the middle of drives, and
Visual Odometry helped to ensure accurate data collection.
The accuracy of driving in new or mixed-soil terrains was
improved by re-pointing to the drive goal or recomputing
the distance remaining to the goal after each step along
the way. And sometimes vehicle safety was maintained by
having the rover terminate a planned drive early, when it
realized via Visual Odometry that it was making insuffi-
cient progress toward its goal, or away from an obstacle.

A. Meridiani Planum: Opportunity Rover

The terrain at Meridiani Planum is a challenging one
for Visual Odometry. It is often difficult or impossible
to find a patch of nearby terrain that has enough texture
for Visual Odometry processing to successfully find and
track features, because so much of the terrain is covered



by a thick layer of extremely fine particles. Fortunately,
areas that have this smooth, featureless appearance tend
to be very flat, and in those areas the IMU and encoder-
based position estimation has performed well enough that
Visual Odometry was not needed. Terrain that exhibits
higher slope (and consequently more position uncertainty)
almost always has a distinctive appearance (e.g., bedrock
outcrop), or is near enough to interesting features that
Visual Odometry can be employed successfully.

The path predicted by wheel odometry alone can be quite
different from the path actually taken. Figure 5 shows two
views of the trajectory taken by Opportunity during Sols
188-191. The rover was driven uphill and across slope over
a total actual distance of 19 meters, but wheel odometry
underestimated the distance by 1.6 meters and failed to
take the slip-induced elevation change into account. The
outside path indicates the course as estimated solely by
the wheel odometry subsystem, the inside path shows the
Visual Odometry-corrected course plot that was actually
generated onboard. The final positions differ by nearly 5
meters.

The earliest benefit from Visual Odometry came inside
the 20 meter-diameter Eagle Crater, Opportunity’s landing
site. Much of the driving inside Eagle Crater was metic-
ulously planned by human drivers, predicting slip using
tables generated by the mechanical team from Earth-based
tests of a rover driving in sand. But while those tables
were found to work well for predicting purely upslope and
crossslope slips on pure sand, no model was available for
driving on pure bedrock outcrop, mixtures of bedrock and
loose sand, or at angles other than 0, 45 and 90 degrees
from the gradient. In those circumstances Visual Odometry
was sometimes used to drive to the proper target, or ensure
that high resolution Panoramic camera (PANCAM) images
of science targets taken after a drive would be pointed right
on target (see the left-hand side of Figure 2).

But by far the most extensive use of Visual Odometry
was made inside the 130 meter diameter Endurance Crater,
where Opporunity lived from Sol 133 to Sol 312 (see
the right-hand side of Figure 2). Except for a 12 meter
approach and return at the lowest point (and hence lowest
tilt) on Sols 201 and 203 and a 17 meter drive on sol
249, Visual Odometry was employed virtually continuously
throughout. Had Visual Odometry not been available on-
board, many more Sols would have been needed to ap-
proach targets, and fewer targets would have been achieved.
In addition to improving target approach efficiency, Visual
Odometry also proved crucial to maintaining vehicle safety.

From Sols 249 to 265 Opportunity kept finding itself
near a 1 meter wide rock obstacle called Wopmay (see
Figures 6 and 7). Although Wopmay was originally con-
sidered a primary science target, it also proved to be one of
the most difficult obstacles to avoid. Wopmay was located
downhill from a 17-20 degree downslope area comprised
of loose sand and buried rocks. Several attempts to drive

Fig. 6. Wopmay, a 1 meter wide obstacle inside Endurance Crater

Fig. 7. Opportunity’s 15 sol trajectory, first driving toward and then
trying to get around or away from Wopmay. In the left plot, the “jumps”
that point up to the right are the result of Visual Odometry processing
adjusting the vehicle’s position downslope. Visual Odometry only corrects
the rover’s position at the end of each short step (less than 1 meter).
The right plot shows the same course with the Visual Odometry jumps
removed.

around it were thwarted not only by higher-than-usual slip,
but also by the unseen rocks buried just beneath the surface.
Fortunately, the human-commanded sequences took into
account the possibility that the rover might slip, and so
Opportunity halted its planned drives prematurely (and
correctly) when it realized that it was moving too close
to Wopmay.

Visual Odometry enabled more precise approaches even
to difficult targets. On Sol 304, a drive of over 8 meters
was planned on an outcrop whose slope varied from 20
to 24 degrees. Because the drive plan took a wide range
of potential slips into account, Opportunity was able to
drive just far enough across slope, then turn and drive just
far enough upslope, to perfectly position the desired target



Fig. 8. Opportunity’s planned 8.7 meter drive along a 20-24 degree
slope.

within the IDD work volume in a single sol. Figure 8
illustrates the planned drive, and Figure 9 shows the
final image from the body-mounted front Hazard cameras
(HAZCAMs) showing the target perfectly located between
the front wheels.

Visual Odometry results are summarized in Table I. As
of March 2005, Opportunity has thrived for 394 sols. Visual
Odometry was used more on Opportunity than Spirit,
because Opportunity spent more of its first year on slippery
surfaces. It has converged to a solution 95% (828/875) of
the time it has been used.

Fig. 9. After Opportunity’s 8.7 meter slope drive, the goal is perfectly
inside the IDD work volume.

B. Gusev Crater: Spirit Rover

The terrain at Gusev crater is well suited for Visual
Odometry processing. The rock abundances there matched

predicted distributions [2], resulting in a generally feature-
rich landscape with detailed textures comprised of rocks of
different sizes and brightnesses. When planning for drives
using Visual Odometry, rover drivers typically only had to
bear in mind the restriction that adjacent frames should
have at least 60% image overlap, though they sometimes
also had to avoid pointing the cameras at (the relatively
infrequently occurring) sand dunes. As a result, Spirit’s
Visual Odometry software has performed admirably.

One unique driving mode that benefited a great deal from
Visual Odometry on Spirit was wheel-dragging. The right
front wheel was found to draw more current while driving
than any of the other wheels starting on Sol 125. This
concern led to the development of a driving strategy to
conserve motor lifetime, during which that wheel would
be dragged while all the others were driven. Although this
was found to enable reasonable progress on relatively flat
terrain, error in the position estimate grew substantially in
this mode. The Visual Odometry capability meant that not
only could progress be made, but also the error added to
the onboard position estimate could be bounded as well.

Relatively little slip was seen during the first six months
of Spirit’s mission. But once the base of the Columbia Hills
was reached, drives up into the hills were found to exhibit
much more unpredictable slip. Thus Visual Odometry has
been used during most of the drives in the Columbia
Hills, especially to ensure that Spirit stays far enough away
from nearby rock obstacles. The average tilt of the rover
during those times that Visual Odometry was commanded
was 14.4 degrees +/- 4.4 degrees, counting 625 samples
spanning an absolute range from 2 - 30 degrees.

Visual Odometry results are summarized in Table I. As
of March 2005, Spirit has thrived for 414 sols. Visual
Odometry was not used on Spirit until it had reached the
Columbia Hills, nearly six months into its mission. It has
converged to a solution 97% (590/609) of the time it has
been used.

C. False Positives

Although we had never seen Visual Odometry converge
to an inaccurate solution during pre-launch testing, on Op-
portunity Sols 137 and 141 several unreasonable position
updates were computed onboard. These are attributable to
an improper parameter setting; at that time, the minimum
separation between features was too small. That meant
that the overall set of detected features was allowed to
cluster tightly around a small planar but feature-rich area.
Increasing that parameter was all that was needed to allow
the software to find additional out-of-plane features and
converge to a reasonable solution.

The only other instance of a false positive solution
was on Sol 235. During that Sol the NAVCAMs were
pointed at two small and widely separated rocks. Although
features were found on those rocks, many more features
were found on the largest shape in the image; the rover’s



TABLE I

RESULTS OF RUNNING VISUAL ODOMETRY ON MARS. EXPRESSIONS SUCH AS � ������� INDICATE MEAN � AND STANDARD DEVIATION
�
.

Spirit Opportunity
Lifetime as of 4 March 2005 414 sols 394 sols

Total Drive Distance 4161 meters 3158 meters
Days Spent Driving 184 sols 172 sols

Days Using Visual Odometry 52 sols 75 sols

Nominal Evaluation Steps 609 pairs 875 pairs
Nominal Initialization Steps 57 pairs 75 pairs

Forced Init by Large Turn 10 pairs 11 pairs
Forced Init by Planned Repointing 5 pairs 9 pairs

Forced Init by Driving Too Far 1 pairs 2 pairs
Total Visodom Image Pairs Processed 682 pairs 972 pairs

Successful (non-initial) Convergences 590 pairs 828 pairs
Iterations Needed (assume Convergence) 6.4 +/- 1.7 iterations 8.4 +/- 5.2 iterations

Features Tracked at each Step 73.4 +/- 29.3 features 87.4 +/- 34.1 features
Non-convergences 19 pairs 47 pairs

Mean Updates per Drive Sol 12.0 +/- 8.5 degrees 12.9 +/- 10.2 pairs
Max Updates per Drive Sol 33 pairs 59 pairs

Mean Rover Tilt During Visodom 14.6 +/- 4.4 degrees 18.0 +/- 4.6 degrees
Absolute Tilt Range During Visodom 2 - 30 degrees 0.8 - 31 degrees

shadow. So even though forward drive progress was made,
the onboard estimator assumed that the shadow (having
more distinct features spread throughout the image) better
reflected actual motion, and therefore produced an incorrect
estimate. This problem would not have arisen had there
been more interesting texture around and under the shadow,
but since then human drivers have had to take the rover
shadow into account whenever planning Visual Odometry
drives.

V. CONCLUSION

Visual Odometry has proven to be a highly effective tool
for ensuring accurate science imaging, achieving difficult
drive approaches, and maintaining vehicle safety while
driving near obstacles on slopes. Although it requires active
pointing by human drivers in feature-poor terrain, the
improved position knowledge enables more autonomous
capability and better science return during planetary op-
erations.
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