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Introduction 

This publication contains the proceedings of the JPL Airborne Earth Science Workshop-a forum held to 
report science research and applications results with spectral images measured by the NASA Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion 
Laboratory from February 25-28,2003. 
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EO-1 HYPERION MEASURES CANOPY DROUGHT STRESS M AMAZbNIA 

Gregoy P. Asner,' DanielNepstad,' Gina Cardin~t,~ 
Pado Moutinho: Thomas Harris,' David Ray' 

1. Introdnction 

Amazon moist tropical forests account for about 
70-80 Pg (70-80 x 10'' g) of the world's terrestrial carbon 
stocks and roughly 4-6 Pg (-10%) of the annual net 
primary productivity (NF'P). Because of the large carbon 
pools and fluxes in this region, much attention bas focused 
on the effects of land use on Amazon forest cover and 
carbon storage, and on the potential feedbacks to regional 
and global climate (Shukla et al. 1990). The role of climate 
in modulating interannual variability of Amazon forest 
phenology and NPP has received little attention until 
recently (Tian et al. 1998, Asner et al. Z W ) ,  yet this 
variation may be significant born both climatological and 
ecological pnspectives. Large uncertainties persist 
regarding spatial and temporal paUems of biosphere- 
atmosphere carbon exchange, and these uncertainties 
impede global analyses of C02 sources and sinks, and thus 
changes in climate forcing (Ciais et al. 1995). C l i t e -  
driven phenology and NPP variability in the Am- also 
has important implications for basin hydrology, river 
biology and biogeochemistry, trace gas fluxes, and spatial 
andtemporal patterns of land-use change. 

El Niflo-Southern Oscillation (ENSO), which is known to. 

precipitntmn variabii m 
Amazon basin. ENSO periods (1983,1987 1991- 

There is now increasing focus on the effects of the 

decrease rainfall in the Amazon basii (Marengo 1992). For 
example, the 1983,1987, and 1991/92 ENSO events varied in 
stren%h, but all resulted in anomalonsly low precipitation 
tbroughout much of the region (Figure 1). Because the factors 
controlling: forest uhenoloev and uroductivitv tbrounhout the 
tropics =-not well knomTindepLndent ob&vatio& are needed to 
evaluate estimates of a biological resuonse to climate variation. b 

whereas annua~ vGations ik rainfall are starting to be .-"pJ 'v I understood in the Amazon Basin, seasonal variations are not well 
I known. There is a pronounced dry season that extends from June 

Figure 2. Cloud cover probability by month for 
Landsat imagery of the Brazilian Amazon 
(Amer 2001). whiter indicates fewer clouds. 

I to November h & o u t  the east& and central Amazon, but 
spatial variation in the strength of this dry season remains poorly 
quantified. Phenological losses of canopy foliage are reduced 
during the dry season tbrough forest deep mot access to soil water 
reserves (Nlepstad et al. 1994). Nonetheless, field measurements 
do show that Amazon forest canopies respond to seasonal dry 
periods, with litterfall increases of 10-35% and decreases of total 
leafarea index (LAI) of up to 30?? (Asner et al. 2000, Nepstad et 
al. 2002). Cloud cover information born more than 54,000 
Landsat images of the Brazilian A m m  yielded a spatial proxy 
for seasonal rainfill patterns in the Amazon, as shown in Figure 2. 

~ ~~ 
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The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and 
precipitation f b m  June through November. 

There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, 
canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spacebome 
studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy 
responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation 
and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water 
availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual 
drought (e.g., Boblman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling 
available from Landsat and AVHRR sensors. 

forest with the first spacebome imaging spectrometer observations of this experimental area Using extensive field 
data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that 
spectroscopic signstureS unique to hyperspectral observations can be used to quantify relative differences in canopy 
stress resulting fiom water availability. 

2. Study Region and Areas 

We repart on a study combining the first landscape-level, managed drought experiment in Ammn tropical 

The experiment was located in Brazil's Tapaj6s 
National Forest, in east-central Ammonia (2.897O S, 54.952W; 
Figure 3). This forest receives 60&3000 mm of rain each year, 
with a mean of 2000 mm; it experiences severe drought during 
El Niflo events (Figure 1). The forest is sitnated on a flat terrace 
of Tertiary sediments capped by the Belterra Clay Formation, 
and is approximately 90 m above the water level of the Tapaj6s 
River, located 10 km to the west. The Oxisol soil (Haplustox) is 
dominated by kaolinite clay m i n d  and is h e  of hardpan or 
iron oxide concretions in the upper 12 m. The water table is 
located at -100 m depth. 

We selected two floristically and structurally similar, 
one-ha (100 x 100 m) plots from an initial survey of 20 hectares 
of forest. We encountered 162 and 203 species represented by 
individuals with diameter at breast height (1.3 m, dbh) of at least 
10 cm (trees) and 5 cm (lianas) in the treatment and control 
plots, respectively. The plots shared 54 tree species in common w 
allowing us to compare responses to the experimental treatment w 

Figure 3. (left) Location of forest drought 
experiment in the central Brazilian Amazon. 
(right) Landsat image of forest drought 
experiment and control area, located within the 
Tapajos National Forest. 

1 at least 2 individuals per plot, therefore 
lin the same species. The plots also had similar 

physiognomy, with the exception of a 600-mz treefall gap on the edge of the contrh plot. The forest sunounding the 
plots had emergent trees up to 55 m in height, with continuous canopy varying in height from 18 to 40 m. The study 
plots were placed in areas where most of the canopy was 0 0  m high to facilitate access to the tree crowns. Above- 
ground biomass of trees =IO cm dbh and lianas =5 cm basal diameter at the beginning of the experiment was 291 
and 305 Mg ha-1 in the treatment and control plots, respectively. 

At their closest points, the plots were 25 m apart. Four wooden towers (13-30 m in height) and 80-1 00 m 
ofcatwalk(8-12mheight)providedaccesstothecanopyineachofthe 1-haplots. Soilshafts(12-mdeep,with2.1 
x 0.8 m openings, n=3 per plot and n=5 as of April 9, ZOOl), with a wooden infrastructure, provided belowground 
access. Sampling grids with 10-m distances between points were established with 10 x 10 points inside of each plot 
and a perimeter of sampling points outside of each plot, for a total of 12 x 12 = 144 points. These grids were used 
for measurements of surface soil water content, leaf area index, canopy openness, and other measures. A 1- to 
1.7-m deep trench was excavated around the treatment plot to reduce the potential for lateral movement of soil water 
from the surrounding forest into the plot, and to provide a conduit for water excluded @om the plot. A similar trench 
was excavated around the control plot to avoid the confounding ofthroughfidl exclusion and trenching effects. As 
with many large-scale ecosystem manipulations, this experiment was prohibitively large and expensive to permit 
replication. 

January through early August, and during the rainy season of 2001, from early January through late May, using 
5,660 panels made of clear, PAR-trmmitting greenhouse plastic mounted on wooden hmes.  The panels were 
removed during the dry season to reduce their influence on the forest floor through shading and heating. The panels 

Throughfall was partially excluded fiom the treatment plot during the rainy season of 2000, h m  late 
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increased forest floor temperature by no more than 0.3"C. While they were in place, the panels were flipped on their 
sides every two to thee days to transfer accumulated litter onto the forest floor. Each 3 x 0.5 m panel drained into a 
plastic-lined, wooden gutter (30 cm wide) that carried the water into the trench, which was also lined with plastic. 
Water flowed by gravity from the perimeter trench into a deeper drainlage ditch (1.7-2.3 m depth), which extended 
220 m away from the plot into a small valley. The panels and gutters covered only -75% of the forest floor, because 
openings we left around tree stems. We did not exclude stemflow from the plot. Estimates of daily rainfall were 
made with two wedge-shaped rain gauges located in the center of an 80-m wide clearing 500 m from the 
experimental plots. Tlrampling of the forest floor was reduced in the experimental plots by directing foot traffic onto 
wooden walkways. Despite this precaution, 17% of the treatment ploit and 15% of the control plot had visible signs 
of foot traffic as of January, 2001 (based on three, randomly-placed, 100-m transects across each plot). Forest floor 
damage in the treatment plot was greater than in the control plot because of the installation of panels and gutters. 
However, the control plot suffered similar forest floor damage because measurements of canopy cover, leaf area 
index, litterfall, and throughfall within the sampling grid required groiund access; elevated drainage gutters provided 
access to the grid in the treatment plot. 

3. Field Sampling 

The amount of throughfall excluded by the panels was calculated for each exclusion period as the increase 
in soil water content in the control plot minus the increase in soil water content in the treatment plot, plus the 
difference between deep seepage of soil water (below 11 m depth) in ithe control and treatment plots. Deep seepage 
was estimated as evapotranspiration minus rainfall minus the increase in soil water content for a given time interval. 
Evapotranspiration was assumed to be 4 mm per day, based on published estimates for Amazon forest ET during the 
wet season. Drou&t affects forests primarily through its effects on soil moisture. Previous studies have found that 
forests in seasonally-dry Amazonia absorb soil water fkom depths of 8 m and more during periods of severe drought 
(Nepstad et al. 1994). We therefore monitored volumetric soil water content (cm3 water cm-3 soil) to 11 m depth in 
both the treatment andl control plots. 

We measured soil water using Time Domain Reflectometry (TDR) to a soil depth of 30 cm. The pre-dawn 
leaf water potential of mature trees was measured at approximately 2-wk intervals during the dry seasons and at 
longer time intervals during the wet seasons to provide a measure of canopy drought stress. Six tree species 
common to both forest plots were studied, with three individuals per species in each plot, and four leaves sampled 
per individual. Leavels were clipped before sunrise, and stored in plastic bags on ice until water potential was 
measured using a pressure chamber. Measurements were always completed within one hour of clipping. 

grid sampling points using LICOR LAI-2000 Plant Canopy Analyzers. One instrument was placed above the 
canopy on a tower to measure incoming radiation with no canopy influence; the other instrument was used for the 
understory measwemt:nt, made with the same directional orientation as the above-canopy instrument. The 
instruments were inter-calibrated above the canopy at the beginning of each set of measurements. Measurements 
were made under conditions of diffuse skylight. LA1 calculations were made using the inner three quantum sensor 
rings to minimize the loverlap among measurements made in adjacent grid points. 

We measured leaf area index (LAI) before and during the throughfall exclusion treatment at each of the 

4. Spaceborne Imagiog Spectroscopy 

Earth Observing-1 (EO- 1) Hyperion imaging spectrometer d,ata were collected over the experimental sites 
in July and November 200 1, corresponding with the early and late parts of the dry season. Details of the mission are 
available on the EO-1 internet website at: http://eol .gsfc.nasa.gov. The imagery was delivered in L1A calibrated 
radiance format from NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland. Three calibration steps 
were applied to the radiance as suggested by GSFC: (1) a pixel shift was applied to samples 129-256 in the 
shortwave-infkared (S WIR) wavelength region to co-register this portion of the data with the visible and near- 
infrared (NIR) observations; (2) the visible and NIR bands were multiplied by a scale factor of 1.08, and the SWIR 
bands were multiplied by a scale factor of 1.18; and ( 3 )  the wavelength values were increased by 2 nm for all bands. 
These steps were necessary to bring the data set up to the currently available calibration level. The 'Hyperion data 
were then spectrally and spatially subset. The zero-value visible bands 1 4  and SWIR bands 226-242 and the 
overlapping bands 58--78 were removed, resulting in a 200 band subset. 

Appa-ent surface reflectance was estimated from the Hyperion radiance data using the ACORN 
atmospheric correction algorithm (AIG-LLC, Boulder, Colorado). ACORN uses the 1.14 pm water vapor feature to 
compute atmospheric water vapor thickness. The water vapor bands near 1.4 and 1.8 pm were then removed. The 
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resulting reflectance spectra still contained some anomalies; however, no ground calibration was applied since the 
noise was not systematic. 

points collected throughout the area. Owing to the fact that all calibration steps, including atmospheric correction, 
are not perfect, and given our interest in isolating relatively small differences in canopy reflectance between the two 
sites, we employed a comparative analysis of the sites by ratioing spectral signatures. Since the two sites were close 
together spatially, site-based ratioing of the results eliminated the contribution of atmospheric differences to the 
multi-date comparison of sites. 

The two calibrated spectral reflectance cubes were geo-located using differentially-corrected GPS data 

5. Spectroscopic Indices 

Imaging spectroscopy offers a unique set of observations - and thus tools -to analyze the molecular 
absorption and scattering features of materials. Traditional multi-spectral observations, such as from Landsat, 
SPOT, AVHRR and MODIS sensors, provide a subset of the capabilities provided by hyperspectral imagers. 
Although imaging spectroscopy affords the means to analyze full spectral features of materials, many vegetation 
indices have been developed to condense and simplify the analysis of high-dimensional spectral data while also 
attempting to maximize the information content of the indices. The normalized difference vegetation index (NDVI) 
is a prime example. The NDVI is the normalized difference of reflectance at red (-680 nm) and near-infrared 
(-750-850 nm) wavelengths ( = [NIR-RED]/mIR+RED]). The NDVI is sensitive to canopy greenness, fractional 
photosynthetic radiation absorption (PAR) and canopy leaf area. It is available from nearly all multi-spectral 
sensors. However, the NDVI is also known to become insensitive, or to saturate, in canopies with leaf area indices 
(LAI) greater than about three or four (Choudhury 1987, and many others). 

from a variety of spectral channels, often using observations from very narrow wavelength regions of the spectrum. 
Because leaf pigments absorb photons at visible wavelengths (400-690 m), whereas water absorbs in near-IR 
(750-1300 nm) and shortwave-IR (1500-2500 nm) regions, a narrow and contiguous sampling of the spectrum at 
these wavelengths allows the development highly sensitive indices. The following are a few indices that have 
proven useful to understanding the spatial and temporal dynamics of vegetation: 

Novel vegetation indices have been developed using imaging spectrometers. These indices are derived 

Table 1. Five narrowband vegetation indices available for analysis from the EO- 1 Hyperion spaceborne imaging 
spectrometer. 
1 Index Index Name Equation Reference 

NDVI Normalized Difference (RSOO-R680)/(RSOO+R680) Choudhury (1987) 

SR 
Vegetation Index 
Simple Ratio R800/R68O Sellers (1 985) 

NDWI Normalized Difference (RS57-R1241)/(RS57+R1241) Gao (1996) 

PRI Photochemical (R53 1-R570)/(R53 1+R570) Gamon et al. (1992) 

ARI Anthocyanin (1R550) - (UR700) Gitelson et al. (200 1) 

Water Index 

Reflectance Index 

Reflectance Index 

The simple ratio (SR) is one of the oldest vegetation indices. Like the NDVI, it is sensitive to canopy 
greenness, P A R  and leaf area. The normalized difference water index (NDWI) was designed for sensitivity to 
canopy water content (Gao 1996). Two pigment-related indices unique to imaging spectroscopy are the 
photochemical reflectance index (PRI; Gamon et al. 1992) and anthocyanin reflectance index (AN; Gitelson et al. 
200 1). The PRI has been used to study changes in xanthophyll cycle pigments, providing a means to estimate 
photosynthetic light-use efficiency (LUE). Anthocyanins are water soluble pigments that cause the red coloration of 
plant tissues. These red pigments are expressed differentially by species and within species, with observed 
variations resulting fi-om leaf aging, stress and nutrient status. 

indices. We ratioed the sites to look for differences that might be the result of precipitation throughfall exclusion in 
the Amazon forest dry-down experiment. 

We used the EO-1 Hyperion spectrometer observations to calculate these five narrow-band vegetation 
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6. Res& and Dkussion 

Diffemnces in plant available water (PAW) in 
the soils of the drydown and control forest areas were 
pmnounced (Figure 4). In comparison to the control 
area, PAW was 54% and 56% lower in the drydown 
site m July and November, respectively. Decreasing 
PAW followed the well-known monthly pattern of 
decreasing rainfall during the dry season (June- 
December), but the precipitation throughfall exclusion 
greatly enhanced the effect of seasonal drought on the 
drydown forest 81138 (Figure 4). 

The average canopy reflectance spectra from 
EO-1 Hyperion of the drydown and control areas are 
shown in Figure 5. A mom gaph of the visible (500- 
700 nm) spectral range and the spectral bands used to 
create the narrow-baud vegetation indices is also 
provided. Visible reflectances were higher and near-IR 
refl-ces were lower in the early dry-season (July) in 
comparison to the late dry-season (November). These 
differences between imaging dates likely resulted from 
changes in upper-canopy architecture, canopy water 
content, and LAI; however, a precise cause for tbis 
observed change is not clear. It is also possible that 
these g e a d  differences in the visible and near-IR 
spectral regions are due to atmospheric effects. 

Both canopies maintained LA1 values in July 
and November, and these LAI values were well into the 
satmation zone for both the NDVI and SR (Figures 6). 
The W of the control area actually increased fiom 
July to November, while it decreased slightly in the 
drydown site. Leaf water of the drydown and control 
canopies was also similar in July and November 
(FM 6). 

within each site at the begbaing and end of the dry 
season, there were substantial diffkzences between the 
two sites on each imaging date. The drydown site had 
an average LAI value that was 8% and 19% lower than 
the control area in July and November, respectively 
(Figure 6). While leaf water w89 nearly the same in the 
drydown and control sites in July, the drydown area 
was nearly 30% lower in leafwater at the end of the 
dry season (November). 

between the drydown and control areas was found in 
the specific leaf area (SLA) values of species common 
to both sites. SLA is the leaf area per unit m s ,  which 
is a good inter-species indicator of leaf thickness. SLA 
d u e s  were nearly twice a high among species m the 
control than in the drydown forest areas (Figure 7). 
This findmg indicated that the vegetation responded to 
persisteat drought by developing leaves of greater 
thiclmess, which reduced transpiration and increased 
leaf longevity. 

Despite the similarity of LA1 and leafwater 

Another important biophysical difference 

300 I 

Figure 4. Monthly plant available soil water (mm) and 
precipitation for the paiod January 2001-2002. EO-1 
Hypaion acquisition dates M shown in black armws. 

Wavebn@h (nm) 
Figure 5.  Hyperspctd reflectance signatures of control and 
drydown sites in the Central Amaurn, q u i d  in July and 
November 2001 by EO-1 Hypaion. Numbcrs show spectral 
bands wed to calmlate the (1) NDVI, (2) SR, (3) PRI, (4) 
ARI, and (5) NDWI. 

Figure 6. Monthly LAI and mid-day leafwater potential 
h m  January 200 1-2002 for the control and d r y d m  
arperimental anas. Pefientage dif€erences in W and leaf 
water at each Hyperion observation date are shown in the 
legend. 



A summary of all major leaf and canopy 
properties for the drydown and control forest areas in 
July and November 200 1 is provided in Table 1. In 
July at the beginning of the dry season, plant available 
soil water and leaf water potential were both high in the 
control area but decreased to moderate levels by the 
end of the dry season in November. During both 
imaging periods, LA1 and leaf thickness (USLA) were 
very high and low, respectively, in the control area. 

In contrast to the control area, the drydown 
forest site had moderate plant available soil water and 
high leaf water in July. Both of these properties 
decreased dramatically to low levels by November. 
Meanwhile, both LA1 and leaf thickness (USLA) 
remained high at the beginning and end of the dry 
season in 200 1 (Table 2). 

These differences between drydown and 
control forest areas, at the start and end of the dry 
season, had differential effects on the hyperspectral 
narrowband indices derived fi-om the EO-1 Hyperion 
imagery (Figure 8). Interestingly, the ratio of NDVI 
and SR values for the drydown and control areas 
remained nearly constant at 1 .O in both July and 
November. This indicated no measurable NDVI or SR 
response of the drought either at the beginning or end 
of the dry season. This result is not surprising, given 
that the NDVI and SR saturate at LA1 values in the 
three to four range. This result suggests that multi- 
spectral sensors, such at Landsat or AVHRR, cannot 
detect changes in canopy “greenness” as provided by 
the NDVI or SR for drought conditions in Amazon 
humid tropical forests. 

In contrast to the traditional NDVI and SR 
indices, the canopy water index (NDWI) was highly 
sensitive to drought conditions (Figure 8). The ratio of 
drydown:control area NDWI was nearly 1.0 (no 
difference) at the beginning of the dry season (July) but 
decreased substantially to about 0.25 by the end of the 

Leaf Water 
LA1 
Leaf Thickness 

dr 
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Very High Vely High 
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:: 

N 130 - 
; 
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z .- 

100 

9 0  

8 0  

._ .. .. ~ . . . .. 
7’ T 

r- 
I - Drydown i 

I - -  Control L-. . . . - -. 

Figure 7. Specific leaf area - a measure of leaf thickness - 
for four species common to the drydown and control forest 
areas. 

Canopy Properties and Changes During Dry Season 

Control Forest I July I November 

Moderate Plant-avail Water I High 

Drydown forest 

Leaf Water High 

High High 
Leaf Thickness High High 

Table 2. Summary of leaf and canopy properties in the 
control and drydown forest areas in July and November 
2001. 

ieason in November. 

.- 
:1 

Figure 8. Ratio of narrowband vegetation indices for drydown vs. control areas, derived from EO-I Hyperion in July 
and November, 2001. 
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This result suggests that the NDWI is sensitive to canopy foliage area and water content at high values 
obtained by tropical forests. This also indicates that the effects of the precipitation throughfall exclusion were best 
observed at the end of the dry season, when the affects of drought are at maximum. These effects ware most evident 
in the plant available soil water, leaf water and leaf thickness data obtained in the field (Table 2). 

critically important determinant of net primary production in ecosystems (Field et al. 1995). Hyperion observations 
indicated about a 20% higher and a 20% lower LUE in the drydown area in July and November, respectively (Figure 
8). It is difficult to ascertain the cause of increased LUE in the drought-stressed forest at the beginning of the dry 
season. It is possible that this site had a flush of new foliage prior to the July image, a potential response to foliage 
loss in the previous dry season. This hypothesis is supported by the concomitant observation of 60% higher 
anthocyanin levels (AIM; Table 1) in the drydown site at the beginning of the dry season. Anthocyanin, or leaf 
redness, is a general indicator of newly-formed foliage prior to the full development of chlorophyll pigments that 
changes the leaf color to green. The much lower LUE in the drydown (vs. control) by the end of the dry season is 
more understandable, as the drought site had much less leaf water at this time of the year. A simultaneous indicator 
of anthocyanin levels ((ART) showed 40% lower values in the drydown as compared to the control area in November. 

Light-use effiiciency (LUE), or the amount of carbon uptake by vegetation per unit energy absorption, is a 

7. Conclusions 

The results presented in this communication indicate that narrowband Vegetation indices available from the 
spaceborne imaging Spectrometer, EO- 1 Hyperion, can be used to moinitor drought impacts on humid tropical 
forests. The first-ever measurements of soil and plant water stress at the landscape scale were combined with the 
fxst-ever spaceborne imaging spectrometer observations to test the se:nsitivity of these hyperspectral indices. We 
found thait: 

a. Drought stress in the central Amazon is most evident in decreased plant available soil water, leaf water 
potential, and specific leaf area. 

b. Narrowband NDVI and SR observations are insensitive to changes in leaf area index and canopy water 
content in humid tropical forests. 

c. Narrowband canopy water observations (NDWI) are highly sensitive the changes in canopy leaf area and 
water content in humid tropical forests. 

d. Narrowband pigment indices related to light-use efficiency and anthocyanin levels indicate the onset of 
stress effects caused by chronic water stress. 

These preliminary findings strongly suggest that only narrowband, hyperspectral observations can be used 
to detect canopy drought stress in humid tropical forests such as in the: central Amazon Basin. Additional 
spaceborne imaging spectrometer observations are critically needed to continue this assessment in other forest types 
and climatic conditions. 
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Retrieval of Marine Water Constituents Using Atmospherically Corrected 
AVIRIS Hyperspectral Data 
Sima Bagheri' and Steef Peters2 

__ 

+, -* 

1. INTRODUCTION 
This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New 

Jersey-New York to retrieve accurate water-leaving radiance spectra and chlorophyll concentration from the 
Airborne Visibile/Infiqared Imaging Spectrometer (AVIRIS) imaging spectrometer data. MODTRAN-4 was applied 
to remove the effects of the atmosphere so as to infer the water-leaving radiance. The study area - HudsoidRaritan of 
New York and New Jersey (Figure 1) is an extremely complex estuarine system where tidal and wind-driven 
currents are modified by freshwater discharges from the Hudson, Raritan, Haclcensack, and Passaic rivers. Over the 
last century, the estuarine water quality has degraded in part due to eutrophication, which has disrupted the pre- 
existing natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing 
oxygen demand, and leading to episodes of hypoxia. As the end result, a thematic map of chlorophyll-a 
concentration was generated using an atmospherically corrected AVI.RIS ratio image. This thematic map serves as 
an indication of phytolplankton concentration. Such maps are important input into the geographic information system 

for use as a 

ATLANTIC 

OCEAN 

w+z 5 

Figure 1. Map of the study area with the locations of sampling stations 

2. MATERIALS AND METHODS 
The research was based on imaging spectrometer data from AVIRIS, field spectroradiometer, and water 

samplings. Based on these measurements optical water quality models are constructed linking the water constituent 
concentrations to (i) the inherent optical properties (IOP), using the specific inherent optical properties (SIOP), and 
(ii) to the subsurface (ir) radiance reflectance (Bagheri and Dekker, 1999, and Bagheri et al., 2000 and 2001. A 
simple optical water quality model was calibrated on measurements (of optical water constituent concentrations and 
inherent optical properties and used to simulate subsurface irradiance reflectance (or water leaving radiance). The 
following is a brief description of the field/laboratory method used to establish the IOPs of the estuary for retrieval 
of water quality concentrations fi-om the AVIRIS data: 

A) Upwelling and downwelling radiances/irradiances (E,, and Ed) were measured using the OL754 field 
spectroradiometers. The goal was to parameterize the bio-optical model relating the CDOM, TSM and algal 
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pigment concentrations, to the light absorption and scattering and to the water leaving radiance, through direct and 
laboratory based optical measurements. In short, the link between remotely sensed upwelling radiance and 
underwater inherent optical properties is made through subsurface irradiance reflectance R(0-). 

B) To estimate optically-important water quality parameters coincident with the R(0-)measurements, samples 
(0.2 to 0.5 m depth) were taken for laboratory analysis. Standard procedures (Rijkeboer et al., 1998) were used to 
determine concentrations of total chlorophyll-a (TCHL) defined as the sum of chlorophyll-a and phaeopigment (to 
index phytoplankton abundance) and total suspended matter (TSM). TCHL and TSM were determined according to 
the Dutch standard methods NEN 6520 (1981) and NEN 6484 (1982) respectively. TCHL varied between 22 mg m- 

and 46 mg m-3 indicating that sampling did not coincide with any major phytoplankton bloom. Likewise, TSM (7- 
11 g m-3) was not remarkably high nor low for this time of year. Phytoplankton species were also identified and 
enumerated in the samples for inclusion in the library spectra of the estuary. 

C) The two IOPs measured directly were spectral absorption (a) and spectral beam attenuation (c), using an 
Ocean Optics-2000. (Note: Use of this device for measuring IOPs is experimental and has not been referenced in the 
published literature.) 

Spectral scattering (b) was then deduced via subtraction of a from c (b=c-a). 
A simple optical water quality model based on the work of Gordon (1975) was calibrated for measurements of 

optical water constituent concentrations and inherent optical properties and used to simulate subsurface irradiance 
reflectance (or water leaving radiance). 

(1) R(0-) = r (bb/(a+bb)> 

Where 
a is the total absorption coefficient, bb is the backscatter coefficient 
r is a factor based on the geometry of incoming light and volume scattering in the water. 

The water constituents are expressed in their specific (per unit measurement) absorption and backscattering 
coefficients: 

a = aw+a*TSMTSM +a*phCHL+a*CDOMCDOMq40 (2) 
bb = bbw+bTSMTSM 

The asterisks denote that a and bb are specific inherent optical properties (SIOP), Le. per unit concentration denoted 
by the subscript. 

The inversion of such a model (using semi-analytical algorithms) can be used to characterize the estuarine 
waters in terms of chlorophyll concentration, colored dissolved organic matter and total suspended matter from the 
observed spectra. Validation of the concentration estimates by optical means and the AVIRIS atmospheric 
correction is based on in situ measurements of spectra and concentrations. 

3. SIMULATION MODELING AND RETRIEVAL TECHNIQUE 
The AVIRIS images the earth's surface in 224 spectral bands approximately 10 nm wide covering 400-2500nm. 

AVIRIS records the integrated effects of the solar source, the atmosphere and the targeted surface. To compensate 
for the atmospheric effects, an atmospheric and air-water interface correction algorithm based on MODTRAN-4 was 
utilized. MODTRAN is a radiative transfer model developed by US Air Force Geophysical Laboratory which 
describes the radiative transfer process in the entire system from the solar source to the remote sensor via the 
hydrosols. A quantitative treatment of radiative transfer and atmospheric correction is the only way to achieve 
accurate (multfiyperspectral) water leaving radiance measurements from satellite and airborne observations and to 
obtain accurate estimates of concentrations of optical water constituents. The input atmospheric parameters used in 
MODTRAN-4 were as follows: 

Horizontal visibility = 20 km 
Solar zenith angle=55 
Modtran 16 streams mode 

Midlattitude summer atmosphere urban (5km) aerosol model 
Solar azimuth angle=83 
0 3  scaling factor = 2.0 

The above parameters were applied to the spectra where in situ measurements were collected during the course 
of the project (1999-2001). MODTRAN was able to bring the envelope of AVIRIS spectra reasonably close to 
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simulated spectra but the. results dictated the reconstructiou of the. '%ne'' values of the band ratio image (7025575) 
based on chlorophyll field observation and measured S O P  ( F i i  2). Results of Modtran are summarized as 
follows: 

1) There is considerable spectral noise 
2) There cze significant deviations in bands 675 and 702 nm 
3) There are unexplained large differences in the blue and NIR 
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Figure 2. Measured SIOP were input into the forward Gordon model to simulate spectra at the Keypon Harbor (Sts) 
and Traid Bridge (St4) locations for comparison with AVIRIS specua 

A semi-analytical CHL algorithm was applied to obtain a reasonable estimate of the spatial distribution of 
CHL concentration (Figure 3). Atmospherically corrected ratio image of the AVWS was generated as a thematic 
map to represent the spatial d i s t n i o n  of  CHL concentration as indication of phytoplankton concentration 
(Figure 4). The following is a summary of the procedures applied 

I )  A CHL algorithm was fitted on simulated spectra 
2) The ratio image (70Y675 nm); based on atmospherically corrected AVIRIS bands) was scaled between 

reasonable values based on a priori knowledge of possible CHL concentrations sampled at Keyport 
Harbor (Sts) and Traid Bridge (St4) sampling locations 

3) The CHI. algorithm was applied to the scaled ratio image to obtain the spatial distribution of CHL 
concentration 

The simulation modeling demonstrates the value of AVIRIS observations. The result of the analysis as shown 
in Figure 3 can be summarized as follows: 

I )  Spectra below 500 nm are uncorrectable and unreliable. 
2) The envelope of the spectra is quit irregular, indicating that then remains a substantial amount of sunglint 

within the AVIRIS data. 
3) The irregularity of the spectra is such that the balance between 670 and 700 nm observations seems to be 

affected, making CHL determinations based on ratios difficult. 
4) The general shape of the envelope and the range of values seem to be realistic for 500 and 750 nm. 

Although normally the spectral maximum is observed around 550 MI, but in this case it is shifted to the 
right. 

13 



. _  
b. 

-l3M=16 TCHL-18 
-lsM-1sTcHL-u 
-Taw16 TCHLIU 

0.1 

0.00 - 

0.08 - 
0.07 - - 0.06 - 

A 

-$:;I 
0.03 - 
0.02 - 

0.01 - 
0 ,  
400 460 500 360 800 650 700 76( 

Wavehngth (nm) 

Figure 3. The AVIRIS spectnrm after atmospheric correction was scaled down with 20%. (Note: The scaling 
difference may be due to m a y  reasons, primarily due to the time difference between the measurements) 
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4. COMCLUSHON 
In our approach 1[OP of water constituents were used to model1 the reflectance. A reasonable fit was found 

between modeled and measured R(0-) using the optical model and RT code. 
We conclude that the AVIRIS spectral data provides the opportunity to distinguish the atmospheric effect from 

the marine water effect to set the estimated turbidity for CHL concentration retrieval. Development of a robust 
algorithm for simultaneous retrieval of atmospheric aerosol optical properties, CHL, CDOM and TSM is a very 
challenging task. Nevertheless, such an algorithm is needed to make progress in this area. The model for the coupled 
atmosphere-marine water provides the link between the spectra measured by the AVIRIS spectrometers and the in 
situ measurements of spectral irradiances in the water. 
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Hyperspectral Land Remote Sensor Constellation for Energy Exploration 

Specifcations for a Complete, Routine? and Operational Hyperspectral Geological Survey of the 
United States and Miscellaneous Regions at 1:24,000 aspart of the USGS National Map 
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Introduction 
The physical and economic well being of the United States of America depends upon a stable and aordable supply 
of abundant energy. Energy security for the United State of America will continue to depend primarily on fossil and 
nuclear fuels for the next few decades at a minimum. Efficient and successful exploration for new sources of energy 
requires precise and consistent geological surveys. Despite years of global exploration activity, much of the world 
and indeed even the United States has not been geologically surveyed at a scale appropriate for energy exploration, 
environmental hazard analysis, environmental protection or land use planning. 

Need for a Precise U.S. Geological of the USGS Natio Ma d Gatewa to the Earth 
Energv exploration requirw a precise, consistent and accessible U.S. Geological Survey at 1:24,000. For example, 
although the basic unit of geological analysis, the formation (a significant layer or body of rock), is defined as bemg 
mapable at a scale of 124,000, less than a tenth of the more than 55,000 1:24,000 scale USGS topographic 
quadrangles have ever been mapped geologically and these maps are inconsistent at best. This is especially ironic 
given that almost all other U.S. Geological Survey location data are available in the form of high-quality 1:24,000 
scale quadrangles (Figure 1). 

Energy exploration takes place on a scale of tens of meters, not kilometers and depends on precise moderate 
resolution spatial information to make certain that exploration roads are constructed safely and responsibly and so 
that seismic crews can negotiate proposed seismic lines with a minimum of environmental imm. Simiilv. 

the few existing I :24,000 US. Geological Survey 
geological quadrangle maps. Subsequent figures 
show this outline map superimposed upon Landsat, 
ASTER and AVlRlS imagery for comparison. 

-, 
seismic shot points are surveyed to meter-scale 
precision and exploration wells costing upwards of $10 
million each must be located precisely relative to 
geologic structure, land ownership, elevation and 
location. This is especially true in the case of 
directional drilling and detailed three-dimensional 
seismic surveys. Hard and soft rock mining operations 
require similar precision for sampling and successful 
recovery of ore and fossil fuels as well as the safety of 
the miners. 

Land Remote Sensor Comans . on forthe 1:24.000 US. 
Geological Survey 
As part of the specification development process for a 
land remote sensing system for the 1:24,000 geological 
survey necessary for more efficient energy and mineral 
exploration, we compared the effectiveness of 
historical, current and proposed multispectral and 
hyperspectral imaging instruments capable of remotely 
sensing the visible, near-infnwd, shortwave imhred, 
and thermal-hiked regions of the elemomagnetic 
spectrum (Table 1). This spectral versatility is 
necessary to differentiate and to identi@ the geological 
formations to be surveyed in a semi-automated manner 
(Dwyer et al., 1995). 
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We chose a test site in an area known to produce petroleum, coal, oil shale and uranium. These were the same test 
site considerations identified by Bailey et al. (1984) in their comparison of the Landsat Multispectral scanner (MSS) 
and Thematic Mapper (T.M.) instruments flown on Landsats 1 through 5. Their results will not be repeated here 
although we have chosen the same primary test site on the western edge of Dinosaur National Monument to 
facilitate comparison of historical, current and proposed land remote sensing systems for geological surveys. We 
begin with an evaluation of the suitability of the Landsat satellites for geological surveys at 1:24,000 before 
considering two alternatives (ASTER and ALVHYPERION) as prototypes for the next-generation of geological 
survey satellites. We then propose specifications for a new series of next generation land remote sensing satellites 
for the USGS named AmeriSat. 

Table 1. Current satellites capable of remotely sensing the complete VIS/NIR/SWIR/MIR/TIR 
spectrum necessary for geological surveys. 

Constellation 

I 

Summarv of Current Satellites Capable of Remotely Sensing VisibleNIWS WIWMIR/TIR Electromagnetic 
Radiation (Satellites Good for Geologic Surveys) 
Natural materials exhibit a very broad “rainbow” of  lor". Only a very narrow slice of this rainbow is visible to 
human beings. A series of civilian (USGSNASA) satellites has been designed to view an increasingly complete 
spectrum in steadily narrower slices of the “rainbow” known as bands and in steadily increasing spatial detail. 
Table 1 summarizes current satellites that are capable of remotely sensing throughout the visible (VIS), near infrared 
(NIR), short wave infrared (SWIR), Middle Infrared (MIR), and Thermal Infrared (TIR) part of the electromagnetic 
spectrum. These satellites are capable of seeing all of the parts of the electromagnetic spectrum necessary to 
differentiate geologic formations in the case of multispectral (less than 100 bands) satellites and even to identify the 
types of minerals in the geologic formations in the case of hyperspectral (generally greater than 100 bands spaced 
closely enough to create spectra from images) satellites. 

These space-borne imaging instruments (or air-borne prototypes of very recent and proposed space-borne systems) 
were compared with each other as well as historical systems to gauge their effectiveness with regard to improving 
the efficiency of resource exploration and management at 1:24,000. As one might expect, this comparison 
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demonstrated that improved spectral resolution (finer slices of the rainbow) and improved spatial resolution (the 
ability to see smaller objects) resulted in progressively more usem imagery for energy exploration. 
Landsat MSS Series 
The first series of geological survey satellites, the Landsat multispectral scanner (MSS) sateUites were crude but 
pmvided regional imagery of some we in anergy exploration (4 bands at 80 meter resolution). These satellites could 
miss whole football fields and yet they provided the first views of the earth from space for most geologists, 
researchers and the public. Research with these images did contribute greatly to the development of plate tectonic 
theory and suggested improvements for tktm satellites for resource exploratiou. Examples of MSS imagey over 
the Dinosaur Quarry Quadrqle  test site used bere are available in Bailey and Anderson (1982) and Bailey et al., 
(1982,1984). 

Landsat TM Series 
The second series, the Landsat thematic mapper (TM) satellites, provided much more complete coverage of the 
spectrum and moderately usefnl spatial detail (5 and 1 bands at 30 and 120 meters respectively) (Figures 2 and 3). 
While this series could have been quite usefd to regional resource exploration (e.g., Beck et al., 1995) 

Figure 2. SimpWed outline map derived from one of the few 
existing 1:24,wO US. Geologiil Survey geo&il 
qusdrangle maps superimposed upon a Landset-7 ETM+ 
visible image. The image qualily is good but not sufkient 
for energy exploration. 

Landsat ETM+ Series 
Although the Landsat system is absolutely 
ctucial with regard to maintaining the continuity 
of our record of global change and to support 
regional early warning systems with regard to 
food supplies, the rate of deforestation, outbreaks 
of plant disesses, drought, and land use change, 
its technology is more than two decades old and 
the 5 band. 30 meter multiswctral data it 
P ces are '1 for 
practical eeolonical survey sat the 1 :24,M)o scale. 

ASTER on TERRA 
The advanced spacehrne thermal emission and 
reflection radiometer (ASTER) is a 
JapaneseiU.S. instrument on a Japanese satellite 
that has many improvements over the U.S. 
Landsat ETM+ series of satellites but has several 
htures that l i t  its use for energy exploration. 
While ASTER has a greamr number of bands 
with grester radiometric sensitivity than Landsat, 
ASTER'S bands do not have the same spatial 
resolntion throuPhout the visible and inliared 

ASTER'S (as well as Lanakat's) spatial resolution is too comse to be of exkmive use in petroleum exploration 
(Figyes 2, 3, and 4). This is because most geological surveys are the starting point for subsurface sekmic 
intqmtation and the choice of locations for exploration wells. Petroleum geologists typically record the geologic 
formation at each shot point (small wells filled with lots of dymmite) along a seismic survey line in areas of good 
geologic exposure (wbere you can see the rocks at the snrface). These shot points or VIBROSEIS statiom (places 
where heavy trucks shake the ground) are typically spaced every 25 meters along a seismic line to create the 
artificial seismic waves later recorded by mimphones. 

The seismic wave arrival time patterns are interpreted with the aid of surface geology to tell geophysicists the type 
of rock and the expected speed of the seismic waves. They then use this time and speed information to calculate the 
depth of the various rock units and their structure beneath the gronnd surface with the help of powerfhl computers. 
Meanwhile, the geologists also collect samples to determine the likelihood of a source of petroleum, the likelihood 
of a porous and permeable reservoir, the likelihood of a seal to trap the petdeum b e n d  the &ce, and m m e  

I :  I .  
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the angle of the layers (ii any) at the surface to provide a mries of known starting pints for subsurface 
interpr&tion. Taese- data points are then used to 
locste the contacts between geologic units with a 
spatial precision of approximately 5 to 15 meters 
at a scale of 1:24,000. 

Given the 25 meter spacing of seismic survey 
points and the need to locate geologic contacts 
with a precision of 5 to 15 meters at 1:24,000, the 
ideal satellite f m  geological surveys would have a 
spatial resolution of at lemt 15 meters (a four-fold 
increase in data density over 30 meter data) or 
finer. This repUirement for 15 meter spatial 
precision means that the 30 and 60 meter spatial 
resolution of the short wave infrared and thermal 
bands of the ASTER instrument are too come for 
geological surveys o f  use to day-to-day p l e u m  
exploration. Despite these limitatons, some 
ASTER data will undoubtedly be used for 
regional exploration projects given the lack of 
more suitable alternatives. 

The public domain ASTER data m? interesting 
scientifically because of their ability to 
differentiate (but usually not ident&) more rock 
types than Landsat-7. The ASTER data will have 
enormous educational and m a r c h  value for 
many decades into the fntnre. 

ALIonEO-1 
The Advanced Land Imager (ALI) on the Earth 
Observing (EO-1) satefite represents a new 
generation of techology designed to provide 
scientific continnity with the Landsat TIvl and 
ETM+ series of satellites. It promises to be more 
useful for regional geological surveys than 
Landsat ETM+ given the addition of four more 30 
meter visible and near infrared bands and a 10 
meter panchromatic band to assist with geometric 
regismtion. The most valuable feahue of ALI is 
that all of the multispectral b a d  have the same 
spotiol resolution This is the ideal case for the 
statistical extraction of the maximum amount of 
speeital information. ALI does lack the thermal 
bands carried by the Landsat TM, Landsat ETM+ 
and ASTER satellites. Although the thermal band 
is of great value scientiiically, it is rarely used in 
petroleum exploration. 

Multiple thermal bands do have the ability to 
differentiate rock types however and at least one 
t h e d  band at the same resolution as the VIS, 
SWIR and MIR bands would be useful. ALI data 
for the Utah test site only recently became 
available. ALI is better than Landsat ETM+ and A 
regional geologic reconnaissance but its 30 meter 

Figure 3. Simplified outline map derived from one ofthe few 
existing 1:24,WO U.S. Geological Survey geological 
quadrangle maps superimposad upon a Landsat-7 ETM+ 
principal components image. The image quality and 
differentiatlon of many of the geologic formations are fair to 
good but not sufficient for emrgy exploration. Several 
formations were missed by this 30 meter image. 

Figure 4. Simplified outline map derived from one of the few 
existing 1:24,000 U.S. Geological Survey geological 
quadrangle maps superimpod upon an ASTER principal 
components image. The image quality is poor because not 
ail of ASTER'S bands have the same spatial resolution. Its 
differentiation of the geolcgic formations is fair to good but 
far from sufficient for energy exploration. Many formations 
were missed by this 15/30 meter image. 

STER in terms of signal-to-uoise ratio. It will be very useful for 
resolution is too coarse for 1:24,000 scale geological surveys. 
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Similarly, ALl's discrete speciral coverage (limited number of wide& spaced ban&) prevents the use of USGS 
developed automated mineral ident@cation and mapping .so@are (http://speclab.cr.us~.~v) to create the "first 
draft?' of each w e  before field checking and refinement. 

As will be shown below, hyperspectral 15 meter spatial reso&ion satellite image data, while not ideal for very 
detailed geological mapping, are a powefi tool that will usually be adequate for rapid geological surveys at the 
1:24,OOO scale (Fignre 5). This spatial resolution represents a @ compromise between our needs for 
eumomic/environmental security as well as defensdintelligenw security. 

HvDerion on EO-1 and its AVIRIS '"roxv" 
Hyperion is a hyperspectral sensor that records a continuous series of 220 very narmw bands from the visible 
throughout the short wave infirared part of the electromagnetic spectrum (wavelength8 of 0.4-2.5 microns). This is 
an exhemely important feature for rapid semi-antomated geological surveys for energy at 1:24,OOO scale @wyer et 
al., 1995). This is because the USGS has developed software that compares the amount of "light" reflected from the 
earth's surface in each one of these bands to laboratory measurements of a wide variety of mine& (as well as 
plants). Each minual has a unique signature that can be used to identi& it from space (Clark, 1999; Clark and 
Rouscb, 1984; Clark et al., 1993; Gaffey et al., 1993; Salisbuty, 1993; S w a p  et al., 2000). 

The USOS software looks at each pixel in the image and its spectrum of "light" (Clark and Sway%, 1995; Dwyer et 
al., 1995). It then compares this spectrum of ''light" with USGS digital libraries of mineral spectra to identi& the 
minerals in each pixel before mapping them. These computer generated first drafts of geologic maps can then be 
field checked by geologists who examine the nature of the contacts between the geologic formations before 
completing the maps. 

While actually identifying the minerals in each formation from the satellite is the optimum case, the large amount oj 
spechal information recorded by hyperspectral instruments can be distilled stat ist idly to differentiale rock types on 
the ground with eztraordinary ef€ectiveness far beyond that of the human eye. Them distilled statistical imagGs cat 
be created within a few minutes on a modem laptop computer. The geologist then simply traverse8 each soaatangle 
and assigns an identity to each of the geologic 
f o d o m  imaged without having to follow every 
contact on foot. 

HyperiOn data for the test site have only recently 
h m e  available. Therefore this study began with 
AVIRIS data as a proxy for Hyperion. A simple 
comparison of Hyperion vs. AVIRIS has been 
added to the end of tbis study accordingly. The 
conclusion is that AVIRIS was a reasonable proxy 
for Hyperion but that future hyperspectral 
satellites should be designed to imitate AVIRIS as 
much as possible given its higher spatial 
resolutim and higher signal-to-noise ratio. An 
example of one of these statistically distilled 
hyperspectral images fiom AVIRIS recorded from 
an ER-2 aircraft (a forward principal componem 
analysis) over the Utah test site is shown in Figure 
5. The continuous spectrsl coverage and 20 meter 
spatial resolution of this early proxy for Hyperion 
demonstrates extraordinary improvement in the 
ability to differentiate (and identify) geologic 
formations. 

Experience with the 15 meter Panchromatic band 
on Landsat-7 (most if its bands have 30 meter 
resolution) indicates that 15 meter resolution is 
neem to confidently dimentiate sampling 

have the &me spatial resolution. Its dfferentiation of the 
geologic formations is good to exceiient. Nearly all of the 
geologic formations were found by this 20 meter spatial 
resolution image. The precision with which these formations 
and their boundaries are located is a litlle too coarse for 
Detmleum exoloration. 

existing 1:24,OOO U.S. Geological Survey geoltghl 
quadrangle maps superim- upon an AVlRlS 
hyperspectral principal components image. The image 
qualii is good to excellent because all of tha AVlRlS bands 
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sites at the 1:24,000 scale. As noted above in our discussion of 
energy exploration activities, 15 meters is probably the coarsest 
practical spatial resolution To demonstrate this, we scanned one 
of the few (paper) 1:24,000 geological quadrangles available 
and, subsampled it to 15 meter spatial resolution before 
geometrically warping it to match our test satellite and aircraft 
imagery (Figure 6). As the reader can see, some of the detail has 
been lost but most of the key feafsues are still visible. 

The example shown in Figure 7 indicates that the current 
experimental Hyperion instrument must be upgraded to 15 meter 
spatial resolution for geological surveys useful to energy 
exploration. Our experieuce with 15 meter panchromatic data at 
1:24,000 indicates that this is adequate and represents a four-fold 
(2 squared) increase in data density. All of these demonstration 
data were imported into an Arcview geographic information 
system to carefully verify the conclusions stated above (Figures 
1-5). 

Lithologic Identification vs, Discrimination - Utah “Whole I 

Rock” suectral maDDifLp with Hvoerion and AVIRI S. 
Hyperspeceal data allow the identification as well as exceptional 1 
discrimination of even similar lithologies for geologic mapping , 
for energy exploration. 

Figure 7 (left). Ahnosphetically corrected 
Hyperion spectral angle map (SAM) of the 
same area showlng pixels similar to the 
whole rock spectrum shown in Figure 8. 

Figure 8. Advanced Land Imager (ALI) 
forward principal companents of nine 
multispectral bands. The image 
differentiates most of the formations mapped 
by the USGS but does not allow for the direct 
spectral identification of li#lology. Future 
systems would also benefit from higher 
spatial resolution on the order of 15 meters. 

The 160 bands result in a relatively complete spectrum for every 
pixel in the image above. Spectra measured in the field or in the 
laboratory from field samples (Figure 8) can theu be compared to 
each pixel in the image across all of the bands to see if they are 
similar to a user defined similarity index such as a user defined 
spearal angle threshold Pixels passing the similarity test are then 
shown as white pixels on an output image. The following image 
is a map of occurrences of pixels relatively similar to the field 
spectrum shown below. 

Examples of similarly processed AVIRIS hyperspectral data for 
(nearly) the same area are shown below (Figure 9). The reader 
wil l  see that the “whole rock’’ spectra (as opposed to spectra h m  
spectral libraries of individual minerals) help make. up for the 
relatively low signal-to-noise ratio and larger pixel size in 
Hyperion relative to AVIRIS. 

Nonetheless, the higher spatial resolution and higher signal-to- 
noise ratio of AVIRIS allow the precise mapping of strata with 
outcrop widths on the order of a single pixel with amazing 
coutinnity as in the spectral angle mapper result in Figure 9. 
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Figure 8. "Whole Rc 
sandstone from a di 
Dakota Formation characterized by hoodoo 
weathering and a good kaolinite doublet in the 
SWIR. 

c Pixels passing the similarity test are then shown as white pixels on an 
output image. Figure (9 is a map of occurrences of AVIRIS pixels similar 
to the sample refereince spectrum in Figure 8. The results are more 
precise than those of Hyperion, presumably due to its higher signal-to- 
noise ratio and smaller pixel size. Future hyperspectral satellites should 

?. ,'. ...- attempt to simulate AVIRIS to the extent possible. 
finer than 15 meters would be useful for energy exploration. 

Spatial resolutions 

As a fhrther guarantee of defensehntelligence security, all 15 meter 
hyperspectral imager)[ purchased from commercial suppliers by the 'U.S. 
government should be in the care of the USGS. This will provide U.S. 
government key control of the data stream and allow selective black outs 
of sensitive areas while meeting the genuine need for affordable, hdgh- 
quality satellite imagery for energy exploration and US.  econoimic- 
environmental security. 

. .  ... 

Conclusion - AmeriSaj 

meet this need. 

The 1:24,000 scale United States geological survey needs to be 

in the 2 lSt century. A new series of land remote sensing satellites meeting 

satellites as AmeriSat. Most of the satellite technology necessary to 
complete the 1:24,000 U.S. geological survey already exists. Satellite systems capable of accelerating the survey to 
completion in less than two decades must meet the following requirements: 

completed in order to1 ensure the economic security of the United States 

the following specifications must be constructed, launched and used to 
We refer to this constellation of U.S. geological survey 

AVlRlS spectral angle map (SAM) 

1. 
2. 
3. 
4. 
5.  
6. 

Continuity with the Landsat series (ALI with stereo and a thermal band). 
15 meter hyperspectral coverage of the 0.4 to 2.5 micron wavelength region. 
A minimum swath width of 30 km to minimize seams within quadrangles. 
Free automated data delivery via FTP, or at cost of media (relative to the cost of the satellites). 
Off-nadir pointing capability for emergency response. 
A constellation of four identical satellites, with a fifth on orbit spare satellite in constant reserve. There are 
55,000 quadrangles to cover and the earth is frequently cloudy. This constellation and its ground systems will 
be approximately 70 percent of the cost of the AmeriSat system. 
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7. 

8. 

A partnership with academia, industry and the public from the beginning. The USGS does not have enough 
people to get the job done. This partnership should be budgeted at 10% as well. 
USGS quality control of all geological quadrangle maps to guarantee consistency and availability in GeoTiff 
(loss-less raster) and ArcView shape files (as separations similar to those in USGS DLGs). This will also 
probably cost around 10% of the total project. 

Features 

Spectral Range 

A summary of AmeriSat’s general specifications is listed in Table 2. 

Specifications 

0.4-2.5 microns 

Cost 
We estimate that the project will cost approximately $250M/year for the next 20 years. Satellite hardware and 
ground station construction costs will probably consume 70% of these knds during years 1 4  and again during 
years 10-14, assuming a 6-8 year lifespan for each satellite. Funding will be focused on applications during non- 
construction years. 
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INTRODUCTION 
Soil erosion by water runoff is a matter of great concern in both bare and agricultural lands. This 
process may lead to significant effects, such as water lost to the soil profile, decline in soil 
fertility and productivity, and increased peak stream flow, as well as associated floods. The main 
cause of the runoff from rain and overhead irrigation water is the structural crust that develops 
over bare soils during rainfall or irrigation events that significantly reduces the soils' infiltration 
rate. The hydraulic conductivity of this crust is a few orders of magnitude lower than that of the 
underlying soil (e.g., McIntyre, 1958; Morin and Benyamini, 1977). Whenever the hydraulic 
conductivity of the crust is lower than the rainfall intensity, ponding, runoff and soil erosion will 
occur. 

Most of the available methods for assessing the physical crust status use disturbed soil samples 
that do not represent exact field conditions (Keren and Singer, 1989, 1991) or use simulation 
techniques that cainnot mirror exact field conditions (Agassi and Bradford, 1999). Consequently, 
mapping and predicting soil structural crust processes are of great interest and importance to soil 
scientists and farmers. Apparently, crust potential mapping is not a straightforward problem, and 
to the best of OW knowledge, this technique has never been conducted. 

Recent studies by Goldshalager et al. (2001,2002) and Ben-Dor et al. (20031, showed significant 
relationship existed between selected wavelengths readings and infiltration rates, when measured 
under controlled laboratory conditions. Further, they were able to create a spectral library that 
contains spectra of three soils from Israel, in varying rain energies and crust position, and to 
Show that a different correlation existed for each soil. 

Because significant spectral changes occur within the soil surface as a result of raindrop impact 
(see Goldshalager et al., 2002), it is assumed that the hyperspectral technology will enable 
capturing of spatial variation within a rain-affected field and will provide a real-time spatial 
overview of soil crust related properties (such as soil erosion and infiltration). The purpose of 
this study is to examine the feasibility of hyperspectral technology together with careful 
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laboratory and field measurements in order to identify soil properties that are related to the 
structural crust formation and status over agricultural soils in Israel. 

MATERIALS AND METHODS 
The area selected for this study is located in the Negev area of southern Israel in the fields of the 
Experimental Farm Station of Gilat. The soils in this area are Loamy Loess and defined as Loess 
by the local Israeli definition system (Dan and Raz, 1970) and calcic haploxeralf according to the 
USDA definition (Soil Survey Staff, 1975). The mechanical composition is 28% clay, 47% silt 
and 25% sand and the mineralogy of the soil, estimated by XRD is: -14% montmorillonite, 
-50% kaolinite, -27% illite and -17% calcite. The area is relatively dry, having annual 
precipitation of about 200 mm concentrated mostly during December through April. 

The Flight Campaign 
The airborne sensor selected for this study is the Airborne Image Spectrometer for Applications 
(AISA) (Makisara et al., 1993). The AISA is a programmed computable push broom airborne 
imaging spectrometer with wavelength range between 400 and 900 nm. The size of the CCD 
detector array is 384 by 286 pixels and the spectral bandwidth is >1.5 nm (max. 186 channels) 
which can be summed up to 9.6 nm. The swath width is 384 pixels and the IFOV is 1 mrad, 
enabling a pixel size of 1 meter from 1000 meter altitude where the FOV is 22". The integration 
(exposure) time is 4 ms, and the pixel data is digitized to 12 bits. On March 24, 2001, the AISA 
sensor was mounted onboard a twin engine piper Aztec aircraft and flown over the study area in 
altitude of 3000 meter (providing about 3 meter pixel size and 1.2 km swath) with 30 spectral 
bands (421-888 nm) characterized by Full Width Half Max (FWHM) ranging from 1.55 to 1.71 
nm. The signal-to-noise ratio of the sensor over a 50% albedo target provides reasonable values 
ranging around a value of 90 (maximum 125 minimum 20). The raw data was radiometerically 
converted into radiance using laboratory calibration file provided by the SpecImO company 
which were collected prior to the flight. The radiance data were corrected into reflectance units 
using an ACORN code (Atmospheric CoRrection Now, ACORN, 2001) polished by ground 
reflectance spectra of 4 soil samples that were taken during the overpass on the ground. 

Laboratory Study 
Rain Simulator 
Soils were collected from a nearby field, brought to the laboratory, air-dried and then, passed 
through a 4-mm sieve. Two experiments (several months apart) using two batches of soils were 
employed to determine the relationship between the spectroscopy and the infiltration rate of the 
soil in the laboratory. The soils in each experiment were identically packed into 30 x 50-cm 
perforated soil boxes, 4 cm deep, over a layer of 6 cm coarse sand, Four runs (two for each 
experiment) were employed. For each run, the boxes were placed on a soil box carousel, 5 boxes 
per run, at a 5% slope, and were subjected to a simulated rainstorm, using distilled water (Morin 
et al., 1967). In each experiment, at first run, the simulated rainstorm provided a fog type rain (no 
energy), having intensity similar to the infiltration rate of the soil. The storm lasted until the 
measured rate of percolation (in this case also infiltration) reached that of the measured 
simulated rainstorm intensity. Then the rainfall was stopped and the soil boxes were left to rest 
until drainage ceased from all the boxes. One soil box was randomly taken out and 
photographed. At this stage the rainfall energy was changed to -22.3 joule mm-' mm2. The 
carousel was rotated again with four of the remaining soil boxes, which were subjected to 

28 



rainstorm intensity approximately similar to the initial infiltration rates of the soil. At first the 
storm lasted until -3.5 mm of rainfall had been applied (equal to -70-80 joule) during which 
time the infiltration rate was continuously measured. Then one box was randomly removed and 
photographed. This procedure was repeated several times until -89 mm of rainfall was 
accumulated (see Table P for more details). After the rainstorm was stopped, the soil boxes were 
oven-dried for 48 h. at 35°C and then for a week at room temperature. In Table 1 also given are 
the equivalent infilitration rate measured for each rainstorlm event, the accumulated rain amount 
and its corresponding energy are presented. Fifteen to twenty soil samples were taken from each 
box for spectral reflectance measurements in the laboratory without disturbing the soil crust. 
These measurements were carried out, using ASD spectrometer with a portable light source that 
measured a soil sample under a constant halogen illumination and reflectance geometry 
conditions across Ihe VIS-NIR-SWIR region (0.4-2.4 pm). The reflectance o€ the soil samples 
was measured against Halon, and the final spectrum of each measurement was presented relative 
to this reference. An average spectrum for every rain treatment was calculated, using the samples 
taken from each soil box. The spectra were stored and later processed to analyze the spectral- 
infiltration relationship. In several locations around the study areas, samples were collected from 
the surfixe (the upper 1 cm), covering an area of about 5 m2, brought to the laboratory and 
analyzed for CaCC13. 

Table B : Infiltration rate and rain storm energy for each treatment 
used in the crust simulator experiment. 

Field Measurements 
During the overpass, soil samples were collected around the area from several targets to enable 
rectifying the radiometric measurements into relative reflectance. Four controlling soil plots, 
within the agricultural areas field of Cilat farm, were selected to study the crust spectral response 
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from the air. The plots were characterized by a noticeable crust that formed during rainstorm 
events that lasted two months (100 111111). Each plot was divided into two subplots: 1) the “non 
crust’’ plot, composed of bare soil, with the thin crust broken by a gentle plowing of the upper 
soil layer 24 hours before the flight, and 2) “crusted” plot, composed of crust soils (formed by 
natural rain) with noticeable crust occurrences. The last rain event in the area (affecting the 
“crusted” plots) was reported in March 10, 2001 (2 mm) suggesting that the soil maintained a 
basic hygroscopic moisture capacity which was measured to be around 4%. 

Results and Discussion 
Figure 1 provides a gray scale subset image that sampled from the entire flight line image and 
covers the study area. Also overlain in this image are selected controlled plots and the exact 
locations of the soil sampling for the CaC03 determination. The study area is rather flat, 
characterized with vegetation (beans, barely and wheat) side by side to the bare soil plots (with 
and without organic residual). The soil plots are marked on the image (1-4) to draw the attention 
for further discussion. From looking on the image it is noticeable, that albedo variation occurred 
within these selected plots (1 -4) as well as within other areas along the image. One of the basic 
factors that control soil brightness in an arid environment is the CaC03 content. Basically, this 
component can be assessed from hyperspectral technology, simply by using the strong 
absorption feature at 2330 nm (Gaffey, 1986). However, as the AISA sensor does not cover the 
SWIR region, this information cannot be extracted from the current data base and hence cannot 
confirm or reject the above brightness assumption. To check this, we used the 18 soil samples 
(randomly sampled) and their CaC03 content measured in the laboratory. Plotting the CaC03 
content versus the albedo parameter of each ground target (calculated from the area under the 
spectral curve between 489 to 888 nm) shows no correlation between the two (Figure 2). This 
suggests that the albedo tone variation may have emerged from another source and probably 
fiom the physical crust formation. 

Figure 3 presents a ground overview of one of the field plot (Plot-3 in Figure 1) after breaking 
the soil crust with a discus (non-crusted) at 24 hours before the flight, whereas some small- 
crusted areas can be visible at the edge of this plot. The photo also shows a close Nadir view 
from 80 cm. It is evident that by naked eyes, a soil color changes from bright to dark tones is 
visible within the soils based on their crusting position. 

Extracting the spectra of each plot (calculated from an average of about 40 pixels) showed that 
the spectral base line (and hence the soil albedo) is higher in the crusted soils than in the non- 
crusted soils. Figure 4 provided the spectral reflectance of the selected plots, with and without 
the crust layer. The crust plots are higher in about 3-6% (reflectance units) or about 30% (in 
relative values) than the non crusted plots. 
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Figure I :  I C I L  U U J  aica UII a grayscale image (band 14, 576 nm): (a) the position of the 
controlled plots (crusted and non-crusted) and (b) the ground soil sample (for CaC03 content 
analysis) overlain. 
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Figure 2: The relationship between the CaC03 content versus the albedo (the area under the 
spectral curve between 489 to 888 nm) of the samples shown in Figure 3 .  
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Figure 5: Three images showing 
different rain energies: (a) 0, (b) 613 joule m , and (c)1842 joule m2. 

are brighter, whereas in the low (or no) raindrop energy-the soils are darker. The spectra of all 
treatments are given in Figure 6 (a,b). As well seen, a noticeable spectral sequence occurs, going 
from a low raindrop energy (low crusted) to a high raindrop energy (highly crusted) rsin. These 
values are equivalent to high and low inEltration rates respectively, as measured simultaneously 
during the rainstorm event and are given in Table 1. The overall reflectance changes in the 
laboratory were found to be similar to what were found in the image: 3% in the lower energies 
and 8% in the highest energies levels. As seen, the shape of the spectra is constant with rain 
energy (no new spectral features or stope changes occurs when going from one rain energy to 
another) where the only significant spec!xal change is the reflectance offset. It is interesting to 
note that Goldshalager et al., 2001 have found that in the SWIR region, not only albedo changes 
are noticeable, but also changes in the spectral htures positions and intensity occurs. This is 
based mainly on the specific spectral information of OH in clay minerals across the SWIR 
region, which is not active in the current AISA VIS-NIR spectral region. 

tosil after the rain simulator treatments in three 
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Figure 6: The laboratory spectra of the crusted soil after applying different rain energies to the 
soils (a represent the ftrst experiment and b represent the second experiment taken in few months 
aP=O 

Although the VIS region is less informative than the SWIR region, the albedo changes observed 
in the laboratory treatments suggest that quantitative relationship between spectral parametem 
and the crusting phenomenon may be possible. To quauitively assess this relationship, we 
calculated the Normalized Spectral Area (NSA), which is the area under the ratio curve 
(generated by using a crusted soil (test) spectrum against standard non crusted soil spectrum 
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(reference)). The ratio spectra are given Figure 7(a,b) and show that the ratio spectra increased as 
the rain energy increased and the infiltration rate decreased. Plotting the area under the ratio 
curve @SA) against the infiltration rates is given in Figure 8. A significant relationship between 
the two parameters (infiltration rate versus the NSA) was obtained (r2= 0.83). In order to apply 
the NSA model to the field data, the reflectance image data were processed as the laboratory 
spectral data. In this regard, we selected a polygon from a selected “non-crusted” sub plot of 
plot-3 (see Figure 1) and used it as a reference in which every pixel in question may be 
calculated for its NSA. In order to apply the calibration equation obtained in the laboratory for 
the entire area, all non-soil pixels were masked out and then the model was applied on a (soil) 
pixel by pixel basis. The result is an image given in Figure 9 with a color ramp representing the 
“Infiltration Rate” (InR) values. In the processed image, several areas holding high and low InR 
values can be seen. The low InR area (marked as A on the image) is a plowed (dry) field, which 
exhibits NSA values within the detection limit of the InR calibration curve. Based on the NSA 
values of this soil, it is assumed that the current plot is holding a good (non) crust condition in 
which the soil infiltration potential is high and the erosion risk is minimal. The high InR areas 
(marked as By C and D) are holding InR values that are outside the calibration range. Area B 
represents a dirt road enriched with high CaC03 content (27%) lime which is relatively higher 
than the average CaC03 content of the entire population that stands on 13.8% (SD 5%). Area C 
also consists of high CaC03 content (30%) and thus are not suspected to be crusted under the 
current analysis where area D consists of CaC03 content of 14.6%; and hence represents a 
significant crusted area. Another factor inherent in the calibration results is the soil moisture 
status (wet or dry) that also can change the soil color tones. This parameter can as well as the 
CaC03 features can be masked out by using the SWIR region, and hence by AVIRIS, but not 
with the current AISA sensor. More study in this direction has to be applied to make the crust 
mapping more accurate and totally independent of field information. Using the AVIRIS sensor in 
this direction, may be a step forward to achieve this aim. The spectral information suggests that 
there is a significant potential to do so under more complex soils systems. 

Laboratory Experiment Batch 1 Laboratory Experiment Batch 2 

1842 Joule/m2 

.-- ,________.__ ~ _ _ _ _ _ _  
- --1-------1--------1.-~-.-~ _ _ _ _ _  ~ ______  
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Figure 7: The ratio spectra of the laboratory treatment shown in Figure 8. Each spectrum 
composed of the reflectance at every rain energy treatment against the reflectance at 0 energy 
level. 
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SUMMARY AND CONCLUSIONS 
The main conclusion of this study is that reflectance properties of Loess crusted soils have a 
systematic relationship with the crust status. In the soil examined, the albedo parameters across 
the entire VIS-NIR region hold a significant correlation with raindrop energy, and particularly 
with infiltration rate. A normalized spectral curve, using a non-crusted soil spectrum as a 
reference, was suggested to use whereas the area under the ratio curve, suggested to be the 
parameter for the soil albedo. Doing so enables the utilization of the laboratory spectral 
relationship with other spectral data sources, such as the hyperspectral sensors introduces. The 
spectral variation in the field within the selected plots vary within the confident range the 
laboratory experiment provided. The soils’ pixel-by-pixel calculation of the InR shows a 
reasonable picture for the selected area and their surroundings. We hope that more ideas and 
thoughts on how to further apply the hyperspectral technology further in this direction will be 
presented by more other investigators. The AVIRIS sensor in this regard may play an important 
role as it covers the entire VIS-NIR-SWIR region and has a relatively good signal to noise ratio. 
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ASSESSMENT OF HYPERION FOR CHARACTERIZING MANGROVE COMMUNITIES 

Martina Demuro and Laurie Chisholm’ 

1 Introduction 
Mapping ithe distribution of species and vegetation types in coastal wetlands has become important because of the 
need for wetland inventories and their biodiversity (Finlayson et al., 1999; Phinn and Finlayson, 1999). Vegetation 
is also regarded as a biio-indicator of site conditions and it is therefore important to understand changes in its 
distribution and the priocess acting upon it (Kuchler, 1988; Blasco et aZ., 1996; Muller, 1997; Klemas, 2001). 
Mapping methods need to be efficient and cost effective (Mumby et al., 1999) with satellite remote sensing systems 
having been used extensively for mapping the distribution of vegetation types in coastal wetlands and other 
environments (Gross et al., 1989; Phinn et al., 1999). The detection of vegetation types will depend directly on the 
sampling unit used by the sensor (pixel) and the area imaged. The signal recorded for each pixel is composed of a 
mixture of components that characterize each community, including the species, canopy openness, height and 
substrate. Broad-band multispectral imagery is usually analyzed using methods that classify whole pixels using 
limited spectral information (Vane and Goetz, 1993), which do not aclcount for the problem of mixed pixels. The 
discrimination of vegetation types using satellite-borne sensors is usually based on the structure (height, openness) 
and broad vegetation categories (such as woody, perennial, evergreen) (Lewis, 1999; Holmgren and Thuresson, 
1998). A ~comnnon criticism of satellite remote sensing is its inability to define features of interest that are related to 
ecological processes because of the crude spectral and spatial dimensions of the images (Roughardeii et al., 1991; 
Holmgren and Thwesson, 1998). Advantages of higher spectral resolution imagery include the acquisition of 
detailed spectral information of the features on the ground (Ustin et a]., 199 1) and the possibility of image analysis 
procedures that aim to detect target spectra at a sub-pixel level (Curran, 1994; Clark, 1999; Mustard and Sunshine, 
1999). Airborne hyperspectral data have been used to detect minerals and plant biochemicals that have distinct 
absorption features (Curran, 1994; Serrano et al., 2002) and species diistribution (Dehaan and Taylor, 2002; Parker 
Williams and Hunt Jr., 2002). EO-1 Hyperion is the first satellite-borne hyperspectral sensor to orbit the Earth, 
capable of recording spectral information superior to previous satellite sensors. Hyperion differs from previous 
satellite sensors in that it records radiance in many narrow contiguous bands spanning the visible to the near infrared 
portion of the spectrum. Hyperion has a spatial resolution of 30 meters and records radiance in 220 bands spanning 
from the blue at 450 nm to the middle infrared at 2500 nm. Each band has a width of approximately 10 nm. 

1.1 Objectives 
This study aims to assess Hyperion for its ability to discriminate vegetation types based on species composition. The 
study focuses on the vegetation of coastal wetlands, namely temperate mangrove, saltmarsh and casuarinas forests. 
To the authors’ knowledge there are currently no studies that have tried Hyperion imagery for mapping mangrove 
species diversity and saltmarsh vegetation as yet. 

2 StudvSite 
The study was condwted in the Minnamurra River estuary, New South Wales. 
The study area is located approximately between S 34U36’ and 34D7’ and 
between E 150C50’ and E 15OC51’. The estuary sub-catchment area wlhere this 
study is based is approximately 10 km2 (Figure 2.1). The estuary is in an 
advanced stage of infilling and the river follows a meandering channel 
characterized by three bends flowing around three sand deposits (Came, 1991). 
The Minnamunra River estuary has been listed as a nationally important wetland 
in Australia because “it is a good example of a wetland type occurring within a 
biogeographic region in Australia” and because “the wetland supports native 
plant or animal taxa or communities which are considered endangered or 
vulnerable at the national level” (Environment Australia 200 1). 

1 School of Geoscienc:es, University of Wollongong (laurie-chisholm@uow.edu.au) 
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Figure 2.1. Study site location 
in NSW, Australia. 



2.1 Vegetation 
The estuarine vegetation of the Minnamurra estuary has been dewriid in a number of studies (Came, 1991; 
Chafer, 1997). The vegetation in the muddy intertidal m e  is composed of mangroves and dtmarsh (Figure 
2.2). A swampoak forest composed of camarb hees extends to the landward side of the mangrove and 
saltmarsh vegetation, outside the tidal range (Chafer, 1997). A littoral forest is fotmd further inland, which has a 
patchy distribution. The widths of the mangrove, saltmarsh and swamp oak forest areas are usually smaller than 
500 meters. Other cover types surrounding the estuary include: to the east, an extensive residential area, to the 
north a waste disposal depot and some artificial water bodies, and to the west, at higher elevations, an area 
composed of grasslands. 

Two mangrove commnnities have been identiiied in the temperate mangroves of Australia (Saenger et al., 1977). 
These are the A marina low closed-forest and A. marina low woodland The A. marina low closed-forest is a 
monospecific stand ofA. marina trees that have a foliage cover of over 70 % and a height of less than 10 m. The A. 
marina woodlwd is composed of both A. marina trees and A. corniadatum shrubs. The term woodland corresponds 
to areas where the projective foliage cover ofthe upper stratum (A. marina) is very low (10-30 %) and the trees have 
a height of less than 10 m. A mid-stratum of both the shrub A. corninrlahun and a 'dwarf variation of A. murina 
become very extwsive in this community. Similar to other temperate mangroves of New South Wales, the 
distribution of each community in the Minnamurra estuary is characterized by the formation of low closed-forests in 
the low zone, especially at the mouth of the estuary, while the low woodland develops to the landward side 
of the monospecific Avicennia mmina forests ( m e ,  1991). 

Saltmarsh commuaities develop to the landward side of the mangroves, with the succulent Sarcocornia quinquejlma 
dominant in the low marsh area, while the grass Sporobolus virginiw and the rush J w m  kanssii dominate in the 
middle marsh areas. The reed Phragmites m~ah becomes dominant in less saline areas of the saltmsrsh. Swamp- 
oak forests develop to the landward side of the mangrove and saltmarsh vegetation exclusively composed of the 
Cmarina spp. trees that grow extensively at higher elevations in Minnamurra. 

3 M c t h o d s  
3.1 Field data collection 

A N 

Figun2.2.Esmarinev~onof 
the MinasmurnRiver Eshlary. 
(Sonrcc: Chafer, 1997) 

Eleven plots of 90 m x 90 m each ( 3 x 3  pixels) were taped in the field two of Avicennia marina low closed-forest, 
three of A. marina low woodland, five of the saltmarsh vegetation and two of the casuarina forest The plots were 
made facing north in order to ensure that the largest number ofpixeb possible covexed the plots. The tape and 
compass method was used to tape the plots. Each comer was marked using 1.5 m high staok marked with sagging 
tape. A Trimble ProXL GPS with TDCI data logger was used to obtain the c o o d i e s  of each comer. The points 
were verified to correspond to each comer by plotting these over a geo-referenced aerial photograph and decidiug if 
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these coincided with each known point in the field. The coordinates of each corner were displayed in Arcview GIS 
and it was confirmed that the plots were rectangular and positioned in a south-north direction. 

The information collected for mangroves included, for each plot, the projective foliage cover of the upper and mid- 
stratum, average height and the relative abundance of A. marina and A’. corniculatum. The projective foliage cover 
was estimated using the gap-ratio method (McDonald et al., 1984) and the relative abundance of each species was 
estimated using the line-intercept method. In the saltmarsh, the relativle abundance of each species was measured for 
each plot. In the casuarina forest, the canopy closure and height of trees was sampled and an average calculated in 
order to determine the structural heterogeneity of the forest in each plot. 

3.1.1 
The A. marina Pow closed-forest was composed of 100% Avicennia marina trees of an average height from 4 to 
5.7 m in both plots. The projective foliage cover was approximately 51D% in each plot and the gap between the 
crowns was 12 cm, while average crown diameter was from 250 to 1000 cm in each plot, indicating high canopy 
closure. The A.  marina low woodland was composed of both A. marina and A. corniculatum species. In the low 
woodland vegetation, the relative abundance (aerial cover) of each species was over 50% for A. corniculatum and 
less than 30% for A. marina. The upper-stratum was dominated by isallated A. marina trees with a projective foliage 
cover of less than 10% and a mean gap between crowns of more than 7 m. The mid-stratum was dominated by 
A.  comiculatum s h b s  in all sites, with a projective foliage cover of approximately 40% in all sites. The saltmarsh 
vegetation was divided into low-marsh, dominated predominantly by the succulent herb Sarcocornia guinquejlora 
and the grass Sporobolus virginicus, and the midupper-stratum, dominated by Junkus kraussii, Phragmites australis 
and Sporobolus virginicus. The casuarina forest plots were composed of 100% Casuarina spp. trees, with both plots 
having the homogeneous forest formations. 

Structure and floristic of vegetation in each plot 

3.2 
The EO-1 Hyperion irnage was acquired by USGS (United States Geological Survey)/EROS Data Center, Sioux 
Falls, South Dakota, LJSA, on 27 July 2002 at about 10:30 a.m. (local time). The Hyperion data consist of a data 
‘cube’ represented by 242 spectral bands acquired over an array of 256 pixels (width). The number of lines (length) 
varies with the data acquisition event and the image is built up with thle forward motion of the sensor (Jupp et al., 
2002). The image acquired over the study area was 7.7 km wide and 185 km long. 

Satellite hyperspectral imagery acquisition and characteristics 

3.3 Pre-processing 
3.3.1 Atmospheric: and geometric correction 
All pre-processing and analysis of the EO-1 Hyperion imagery was done using the image processing system ENVIB 
(Environment for Visualizing Images, Research Systems, Inc.). The E.0- 1 Hyperion image was atmospherically 
corrected in order to convert the data from at-sensor-radiance to apparent reflectance. The “coastal Waters and 
Ocean MODTRAN-4 Based ATmospheric correction’’ (c-Wombat-c) implemented in IDL/ENVI@ was used. The c- 
WOMBAT-c applies a full MODTRAN-4 atmosphere parameterization and characterization to run the inversion 
fi-om radiance to reflectance. The parameters correspond to very dry and clear atmospheric conditions without 
aerosol contents. An inspection of a false color composite agreed with these parameters since the image appeared 
very contrasted and without hazy effects. A spatial subset of 4 km wide by 5.7 km long was selected from the image 
to define the Minnamiirra estuary study site, including the upland areas and coastal waters. The image was 
geometrically corrected using an image-to-image registration procedure using an ortho-rectified georeferenced aerial 
photograph of the area as reference. The image was registered to the Australian Map Grid 66 (AMG) coordinate 
system using 6 control points obtained from the photograph. A polynomial nearest-neighbor algorithm was applied. 
In this method, the pixel that has its center closer to the point located in the image is transferred to the corresponding 
display grid location (Richard and Jia, 1999). This technique does not alter pixel brightness values. The average 
RMS was 0.259 or within 1 pixel. Vegetation and cadastral vector files of the area were overlaid to observe the 
correspondence between the image and the geo-referenced files. After inspecting a number of points it was 
concluded that the registration was satisfactory. 

3.3.2 Band selection 
Of the 242 bands only 198 are calibrated to radiance while the rest are set to zero (Jupp et al., 2002). The 198 bands 
were viewed tIvough the animation tool in order to select noise-free bands for further processing. Bands 
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corresponding to water absorption features were very noisy containing no spatial information and were subsequently 
excluded from the data set. Streaking was apparent in some bands from both the VNIR and SWIR regions. Streaking 
is presented as vertical lines related to the along-track effects of push-broom systems (Jupp et al., 2002) and are 
more apparent in low SNR (signal to noise ratio) bands. The streaking effect was pronounced in the SWIR region, 
specifically between 2000 nm and 2500 nm. De-streaking was initially attempted, however, the resulting images 
appeared worse than the originals. Consequently only bands 207 and 208 were retained from the 200-2500 nm 
region. All other bands deemed to have unacceptable noise or streaking were also removed. In total 105 bands were 
selected for further use. 

3.4 Image analysis 
3.4.1 
The Mixture Tuned Matched FilteringTM (MTMF) is a technique that works by partially unmixing pixel spectra 
according to a user-defined endmember. In this procedure, the response of the reference endmember spectra is 
matched to the pixel spectra by maximizing the endmember response and masking the background unknown 
response (ENVI, 2001). The results indicate the degree to which the endmember was matched to the pixel spectra 
and the approximate sub-pixel response of the endmember (ENVI, 2001). An image is produced where bright pixels 
indicate high abundance of the endmember and therefore a high MF (matched filtering) score. An infeasibility result 
is also produced that represents the ‘false positives’ and assigns high infeasibility scores values to pixels erroneously 
matched to the endmember (see ENVI 200 1 for details). This approach has been used to determine biochemical 
composition of leaves using data sets of leaf spectral response (Pinzon et al., 1998) and species discrimination in 
saltmarsh vegetation (Zhang et al., 1996) and the discrimination of a weed species (Parker Williams & Hunt Jr., 
2002) using AVIRIS data. In this study, the technique was applied using each mangrove species as endmembers. 

Mixture Tuned Matched Filtering (MTMF) 

3.4.1. I 
Dimensionality reduction refers to the process by which the main components attributing to the spectral variance of 
the data set are identified. The aim is to reduce the information present in hyperspectral imagery so that it can be 
displayed in a minimized form without any alteration to the original data (Keshava & Mustard, 2002). The 
procedure used to achieve this was the Minimum Noise Fraction (MNF) implemented in ENVIB. The MNF 
transformation decomposes the data into the main components contributing most of the spectral variance and also 
accounts for the noise present in the data (Keshava & Mustard, 2002). The noise is first estimated resulting in a 
noise covariance matrix, which is then used to decorrelate and rescale the noise in the data. In the transformed data 
the noise has unit variance and no band-to-band correlation. A PCA is then applied to the noise-whitened data 
(ENVI, 2001). Two approaches were undertaken to find endmembers representative of each species. For the A. 
marina dominated low closed-forest community the endmember was selected from regions of interest (ROI) 
corresponding to the two plots for which field data indicated these were monospecific patches of Avicennia marina. 
For the low woodland community the endmembers were selected from the pixel cloud created with MNF bands 1, 8 
and 9. The h4NF band 9 showed that brighter pixels corresponded to Site 1 where Aegiceras corniculatum was 
dominant in terms of ground cover and projective foliage cover. 

Data reduction and endmember selection for the mangrove species 

3.4.1.2 
The MF score band and the infeasibility band were used to create a 2-dimensional scatter plot in order to select 
pixels that matched well with the reference endmember. Pixels of low infeasibility and MF score higher than 
approximately 0.25 were highlighted. These pixels Corresponded to areas where the endmember was recorded as 
present at a sub-pixel level at a proportion according to the MF score (where 1 = 100 %). The maps were compared 
to the plots taped in the field for each community and to areas visited in the field that contained these communities. 
The MTMF results were assessed by correlating the ground-cover measurements taken for each site with the 
estimated cover of each species at the sub-pixel level. The Pearson correlation coefficient (3) was calculated to 
determine the correlation between the predicted and actual species ground cover. The correlation was applied to the 
A. corniculatum endmember only-the reason being that the A. marina endmember resulted in high MF scores and 
high infeasibility values for some of the low woodland areas making the data unsuitable for the comparisons 
between actual and predicted species cover. 

3.4.2 
In the spectral angle mapper (SAM) classification, pixels are considered vectors in n-dimensional space according to 
their DN values for each band, where the number of dimensions is equal to the number of bands (Kruse et al., 1993). 

MTMF of the mangrove species and display 

Supervised classification- Spectral Angle Mapper (SAM) 
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SAM classifies pixels according to the angular distance between two vectors, the approach ignores vector lengths 
and is therefore unaffected by illumination effects (Mustard and Sunshine, 1999). Vectors with small angles are 
considered spectrally s,imilar during the classification and the user must define the minimum spectral angle threshold 
to which all angles are compared. In this case the angle was set to 0.1 radians for all classes. 

Regions of interest (ROI) were created for each community according to the position of their respective plot taped in 
the field. Additional spectral classes were also created using the information obtained during the endmember 
selection and field holwledge. A false color composite (RGB:50,33,1’7) was used to define other spectral classes, 
with all classes subsequently plotted in 2-to 3-dimension scatter plots using the original image bands. The visible 
and near infrared bands were used as vegetation features were of greatest interest. Pixels that plotted at the 
extremities of the spectral clouds were deleted from the class. The maximum, minimum, mean and standard 
deviation signature of each class were also calculated. These were inspected to ensure that the spectral variance was 
normal for each class. Supervised classifications were run using the original classes created, which iincluded all 6 
communities described in previous sections, and the newly created classes. 

3.4.2. I Accuruq assessment 
The accuracy of the resulting images was assessed by calculating confusion matrices that show the level of accuracy 
of each classified image (Congalton & Green, 1999). Producer’s and user’s accuracies were calculated for each 
class, as well as the enrors of omission and commission, overall accuracy and kappa coefficients. For each class 
additional non-biased regions of interest (ROI) were selected and used to calculate the statistics. For the mangrove 
and saltmarsh classes ithe regions of interest were defined by field checking carried out on the 20 and 25 November 
2002. During field visits a Global Positioning System (GPS) was used to record the coordinates of the areas of 
interest. For the casuarina forest and littoral forest the ROIs were defined fiom maps already produced for the area 
by Chafer (1 997) and Came (199 1) (not shown). For the other classes, defined fiom spectral analysis, false cdour 
composites and scatter plots, the additional ROIs used for the accurac:y assessment were defined from the false 
colour composite. The spectral signatures of these regions were inspected in order to ensure the pixels belonged to 
the relevant classes. The water classes, such as ‘ocean’ or ‘river’, were not included in the accuracy assessment. 
These classes were not correctly classified by SAM and it was determined that inclusion of the water classes would 
decrease the overall accuracy of the SAM classification. 

4 Results 
4.1.1 MTMF (Mixture Tuned Matched Filtering) 
The mean speciral refllectance of the A. marina and A. corniculatum endmembers are shown in Figure 4.1. The 
spectral reflectance ofthe A. marina endmember is higher in the middile infrared than for the A. corniculatum 
endmember. Spectral reflectance for the A. corniculatum endmember is higher in the visible, from the green and red 
(559 nm to 661 nna) and in the left shoulder of the near infrared plateau fiom 750 nm to 1 100 nm. Both endmembers 
have high absorbance in the chlorophyll band at approximately 675 nm. Figure 4.2 shows the scatter plot of the 
MNF bands 1, 8 and 91 and the pixels of A. corniculatum endmember that plotted to one of the corners. 

The distribution of the A. marina endmember is shown in Figure 4.3. Pixels that resulted in low infeasibility values 
and high MF scores ranging from 0.35 to 1.35 are painted green. Colored pixels on the image represent areas where 
the A. marina endmember has been identified as present. The distribution of the A. marina endmember corresponds 
to Sites 4 and 5 (shown with an arrow) and other areas of the low-intertidal zone closer to the mouth of the estuary 
(circled) that have been visited and confirmed as being dominated by A.  marina trees or shrubs. High MF scores and 
infeasibility values were recorded for some low woodland pixels. These areas were not highlighted since the MF 
scores are in reality ‘false positives’ (Boardman, 1998; ENVI, 2001) and do not match correctly with the A.  marina 
endmember. The distribution of the A. corniculatum endmember is shown in Figure 4.4. The sub-pixel abundance 
for this species agrees with the distribution of field sites corresponding to the low woodland community. The 
distribution also extertds to the upstream sections, over the low-intertidal zone. Correlation analysis between the 
actual and predicted ground cover of A. corniculatum indicated a high correlation between the predicted and actual 
abundance of the species (r2=0.879). 
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4.1.2 SRpen?sed flessifications (SAM) 
The resulting map fiom the supervised classifcation agreed with the distriiution of land-cover types at the 
landscape scale. Major cover classes, such as the urban mas, grasslands and littoral forests, were mapped in 
accordance to their diseibution. In addition, the intertidal vegetation was discriminated well from the rest of the 
vegetation in the area. Figure 4.5a shows the distribution maps prcduced for the aggregated saltmarsh and mangrove 
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classes using the SAM classification and the already created map for the area Table 4.1 shows the confusion matrix 
created with the mangrove and saltmarsh classes aggregated. 

camstiria tiuoml gran T* 
rn 

ban %' msngrovas forest saltmarsh fwest 
ground @as Class 

Table 4.1. Confusion matrix for the disfdbution map corresponding to Fig 4.54 produced with the SAM applied to the EO-I 
Hypaion subset of the Minnwrurra estuary. All aggregated classes. 
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Figure 4.5. Distribution maps resulting h m  a SAM classificati~ 
the Mindsrmma River Estuary, NSW. (a) -gated mangrove and saltmarsh classes @) not aggregated mangrove 
and .dtmarsl~ claws. Each imase renments an area of 4 km bv 5.7 km. 

The confusion matrix corresponding to Figure 4.5b (Table 4.2) shows the mangrove clam and casuwina forest c h  
were accwateJy disaimiaated with producer's accuracies of 62.47 % and 67290?&, respectively. The saltmarsh class 
recorded lower levels of producds accmcy of 42.22%. The user's accuracies were higher, approximately 90 % for 
all three wetlaud vegetation olasses, however, the saltmmh vegetation was erroneously mapped at high elevations 
as it was confused with the upland grasses and mban areas. The distribution map produced by the S A M  of the two 
mangrove classes are shown in Figure 4 3 .  The &m%ution of low closed-forests is to the mouth of the 
estuary and to the low-intertidal zone, while the distribution of low woodlands is more extensive in the low- 
intertidal zone upstream and in the upper intertidal zone downstman. The prodncer's accuracy for the low closed- 

lpplied to the EO-1 Hyperion image subset of 
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forest and the low woodland classes were 57.69 % and 56.67 Yo, respectively. The confusion occurs mainly between 
the two mangrove classes (Table 4.2). For example, some pixels corresponding to the low closed-forests were 
classified as low woodland, while some pixels known to contain mainly A. corniculatum shrubs were classified as 
low closed-forest (Table 4.2). The classifier produced good results, especially considering that around 10 % of the 
pixels in both classes remained unclassified. 

'lass 

unclassified 
bare ground 

dry grass 
low-closed 

forest 
low woodland 

low-marsh 
midupper 

marsh 
green grass 

urban 
littoral forest 

Table 4.2. Confusion matrix corresponding to Figure 4.5b obtained for the SAM classification. Showing the discrimination of the 
two mangrove communities, low-marsh, midiupper-marsh and casuarina forest. 

Overall Accuracq-66.39 %Kappa Coefficient = 0.61 .. 

Ground Truth (pixels) 
bare dry low-closed low low- midupper green littoral casuarina urban ground grass forest woodland marsh -marsh grass forest forest 
50 3 16 11 3 0 3 18 2 2 
33 
9 80 8 

60 44 1 1 40 

24 85 3 17 
2 4 26 27 16 

5 3 19 3 1 

2 237 24 14 20 
5 2 250 1 

6 85 10 

Unclassified 
(%I 

casuarina forest I 4 10 1 22 35 123 
Total I 99 90 104 150 12 48 298 316 139 2 14 

15.38 7.33 25 0 1.01 5.7 1.44 0.93 50,51 3,33 

Producer's 1 33.33 88.89 57.69 56.67 33.33 39.58 79.53 79.11 61.15 57.48 accuracy (??) 

Of 1 66.67 11.11 42.31 43.33 66.67 60.42 20.47 20.89 38.85 42.52 Omission (%) 

Total 

108 
33 
97 

146 

129 
75 

31 

297 
258 
101 
195 

1470 

7.35 

User's Commission 
(%) (%I 

100 0 
82.47 17.53 

41.1 58.9 

65.89 34.11 
5.33 94.67 

61.29 38.71 

79.8 20.2 
96.9 3.1 
84.16 15.84 
63.08 36.92 

5 Conclusion 
The MNF transformation applied to the Hyperion imagery showed that MNF band 9 corresponded with the 
distribution of A.  corniculatum, especially in areas of high cover. The MTMF results obtained by using the A. 
corniculatum endmember agreed strongly with the distribution of this species. Its presence was recorded in the three 
plots and in other areas visited and confirmed (Fig. 4.4). The correlation analysis resulted in high positive 
correlation between the predicted cover of the A. corniculatum endmember and the actual cover measured in the 
field (r2=0.879). Similarly the distribution obtained for the A.  marina endmember showed that the distribution 
agreed with the two low closed-forest plots and other areas in the low-intertidal zone around the mouth of the 
estuary (Fig. 4.3), where this species has a high cover and forms extensive monospecific stands. 

In mangrove forests, correlations have been found between the projective foliage cover (and leaf area index (LAI)) 
and the red and near infixed canopy reflectance (Jensen et al. 1991; Ramsey & Jensen, 1996; Green et al., 1997), 
where increases in foliage cover result in increases of near infrared reflectance. However, no correlations have been 
established between species cover and any of the broad bands used by the most common satellite-borne sensors 
(Jensen et al., 1991; Ramsey & Jensen, 1996). Previous studies have established that mangrove species could not be 
discriminated with broad-band satellite sensors because of the low spectral and spatial resolutions (Green et al., 
1996; 1998). Therefore, zonation has been mapped according to the structure of the vegetation in each zone (Blasco 
et al., 1998; Rasolofoharinoro et al., 1998) and the reflectance in the red and near infrared bands. The present study 
indicates that the improved spectral resolution of Hyperion, which allows for the application of more sophisticated 
methods of image analysis such as the MTMF, results in a good discrimination of the two mangrove species 
assessed in this study, despite the apparently low SNR (1:lOO) of the sensor (Kruse et al., 2001) and 30 m pixels. 
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ENDMEMBER SELECTION FOR MULTIPLE ENDMEMBER SPECTRAL MIXTURE ANALYSIS 

Philip E. Dennison’ and Dar A. Roberts’ 

1. Introduction 

1993). By utilizing an invariable set of endmembers, SMA does not account for the absence of one of the 
endmembers or spectral variation within “pure” materials. Multiple endmember spectral mixture analysis 
(MESMA) addresses tlhese issues by allowing endmembers to vary on a per pixel basis (Roberts et al., 1998). 
MESMA has been applied in a variety of environments for vegetation and snow mapping. Roberts et al. (1 997; 
1998; 2003) and Dennison et al. (2000) used MESMA to map vegetation species and land cover type in Southern 
California chaparral. Painter et al. (1998; 2003) mapped snow grain size in the Sierra Nevada of California using 
MESMA. MESMA has also been used to map vegetation in semi-arid environments (01th et al., 2001). 

Spectral mixture analysis (SMA) models image spectra as the linear combination of endmembers (Adams et al., 

2. Background 
Since the number of possible materials in an image can be very large, and since MESMA permits multiple 

endmembers for each material, an appropriate spectral library can contain hundreds of spectra. A large number of 
potential andmembers decreases computation efficiency and increases the complexity of the model output, so a 
parsimonious spectral library is desirable. Several methods of endmember selection for MESMA have been 
proposed. Painter et al. (1998) and Okin et al. (2001) used a limited number of reference spectra or apriori 
knowledge to select endmembers for their analyses. Roberts et al. (1 997) devised a hierarchical endmember 
selection rule that used specialist endmembers to unmix a scene and then used generalist endmembers to model the 
remaining urnodeled or poorly modeled spectra. Roberts et al. (1998) selected endmembers to maximize the area 
mapped and minimize the overlap between models using a solution to the maximal covering problem (Church and 
Revelle, 1974). This paper presents the application of a new technique for selecting endmembers for MESMA using 
the endmembers that best model the spectra within their own class. The endmember with the minimum average root 
mean square error (RR4SE) within a class is selected as the most representative endmember for the class. 

two endmember model. Each of these models has a goodness of fit as measured by the RMSE. Endmember 
average RMSE (EAR11 is the average RMSE for an endmember modeling the library spectra within its own material 
class. EAR is calculated as: 

Each spectrum in a spectral library can be modeled by any other spectrum within the library and shade using a 

2 RMSE, 1 ’  J 

- J =1 EAR, = 
n I 3  

where A is the endmember class, A,  is the endmember, B is the modeled spectra class, and n is the number of 
modeled spectra in claw B. For example, a “soil” class within a spectral library could contain 8 spectra. EAR can 
be calculated for the spectrum “soil3” as the average RMSE of “soil3’’ and a shade endmember modeling all the 
spectra within the soil class. EAR measures the actual model performance of an endmember for modeling spectra 
within its class. The spectrum with the lowest EAR best models the class, and is thus most representative of the 
class. 

3. Methods 

Santa Barbara, California and the south-facing slope of the Santa Ynez Mountains. Six land cover classes were 
identified as dominant at a scale of 20 meters within the study area, including 5 vegetation classes (Adenostoma 
fasciculatum, Arctostaphylos spp., Ceanothus megacarpus, Quercus agrifolia, and mixed introduced grasses) and an 
urban class. 65 reference polygons for the vegetation classes were identified using field inspection and hard copy 1 
meter resolution United States Geological Survey digital orthophotos in June, 2002. Ten urban reference polygons 
were identified from the digital orthophotos in January, 2003. Polygons were required to be at least 50% dominated 
by one of the six land cover classes and be at least 40 meters by 40 meters in size, so that at least one pixel was 
contained entirely within the polygon. 

AVIlRIS data were acquired between 1998 and 2001, in the months of May, June and September (Table 1). All 
dates were processed to apparent surface reflectance using a modified version of the MODTRAN radiative transfer 
model (Green et al., 1993) and calibrated using the field-measured reflectance of a sand target. The data were 

High altitude AVIRIS data were acquired on 5 dates over the Santa Barbara front range, including the city of 
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registered to an orthorectified SPOT mosaic resampled to 20 meters. Since the date is not a reliable indicator of 
vegetation water stress due to the variable nature of precipitation in Southern California, a simple soil water balance 
model was used to rank the relative moisture status of the 5 AVIRIS dates. Precipitation measured at the El Estero 
Water Treatment Plant in Santa Barbara was compared to reference evapotranspiration (ETo) measured at a 
California Irrigation Management Information System (CIMIS) station approximately 4 kilometers to the northwest 
of the treatment plant. Soil water balance was set to zero for the full dry season preceding each date. Soil water 
balance was determined by cumulatively summing the daily ET0 subtracted from the daily precipitation. Runoff and 
soil infiltration were not included in the model. The beginning of the dry season was determined to be the date on 
which the water balance reached zero after the last significant precipitation (> 3mm). Positive and negative soil 
water balance are referenced from this date (Table 1). 

reflectance images. 988 spectra from 59 polygons at least 75% dominated by a single land cover class were included 
in a separate spectral library for each date (Table 2). For each date, the library of 988 image spectra was unmixed by 
each of its component spectra and photogrammetric shade using MESMA. The non-shade endmember fraction was 
constrained to less than 106%, based on optimal constraints from Halligan (2002). For best-fit models with non-shade 
endmember fractions in excess of 106%, RMSE was calculated using the maximum non-shade endmember fraction of 
106%. Permitting higher non-shade endmember fractions allows dark endmembers to have low EAR values that are 
not representative of their ability to model the spectra within their class. EAR was calculated for each endmember by 
averaging the Rh4SE for modeled spectra within the same land cover class. Endmembers with the minimum EAR 
within their class for each date were selected for mapping the AVIRIS images. Each AVIRIS image was modeled 
using 6 two endmember models corresponding to the 6 minimum EAR endmembers for each date. Non-shade 
endmember fractions were constrained to between -6% and 106%. Residuals were not allowed to exceed 2.5% 
reflectance for more than 7 contiguous bands and RMSE was constrained to below 2.5% reflectance (Roberts et al., 
1998). 

Image spectra from pixels entirely inside the reference polygons were extracted from the 5 registered AVIRIS 

4. Results 

series (Figure 1). Solar zenith was smaller for the 1998 and 2001 images (Table l), and brightness effects due to 
lighting geometry were evident in the selected spectra of all of the land cover classes. All of the vegetation 
endmembers selected from the positive water balance images possessed a distinct red edge and chlorophyll 
absorption. Grassland endmembers exhibited the greatest changes in spectral shape due to the complete senescence 
of the grasslands. The red edge and shortwave infrared absorption features of the grassland endmember selected 
from the 1998 image were greatly reduced in the 2001 and 2002 endmembers, and were largely absent from the 
1999 and 2000 endmembers (Figure Id). A red edge was apparent in all of the selected urban spectra (Figure le), 
indicating subpixel scale vegetation was present in the urban environment. The presence of the red edge in both 
positive and negative soil water balance images indicates this vegetation was irrigated. The most interesting spectral 
changes occurred in A. fasciculatum and Arctostaphylos (Figure la,b). As soil water balance decreased, the 
presence of non-photosynthetic vegetation became more pronounced in the spectra of these land cover classes. 
Positive water balance spectra in these two land cover classes showed pronounced chlorophyll absorption and little 
ligno-cellulose absorption, while negative water balance spectra showed increased ligno-cellulose absorption and 
decreased chlorophyll absorption. This trend was less distinct in the selected C. megacarpus and Q. agrifolia 
spectra (Figure lc,e). 

Large areas corresponding to mixed residential and riparian areas were unmodeled by the 2 endmember models 
in all 5 AVIRIS images (Figure 2). Neither class was spectrally similar to the selected endmembers from the 6 land 
cover classes, and the high heterogeneity of residential neighborhoods made them difficult to model with only two 
endmembers. Both images with positive soil water balance (Figure 2a,b) were well mapped. C. megacarpus 
dominates the south-facing slope of the Santa Ynez Mountains, with bands of A. fasciculatum on rockier soils and 
Q. agrifolia on more mesic slopes and valley bottoms. Arctostaphylos spp. was properly limited to higher altitude 
rocky soils. Grassland was poorly modeled in the 1998 image, most likely due to varying degrees of grassland 
senescence. Three of the vegetation classes in the images with negative soil water balance were poorly modeled: A.  
fasciculatum, Arctostaphylos spp., and C. megacarpus (Figure 2c,d,e). Arctostaphylos spp. and A.  fasciculatum 
were overmodeled in all three images, while C. megacarpus was undermodeled. Q. agrifolia was overmodeled in 
the 2002 image, but was adequately modeled in the 1999 and 2000 images. Urban and grassland classes were well 
modeled in all the images with negative soil water balance. 

The selected minimum EAR endmembers displayed significant spectral changes through the AVIRIS time 
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5. Discussion 

class accuracy was assessed by grouping all of the modeled image spectra within a reference polygon and selecting 
the most frequently modeled land cover class as the dominant class for the polygon. Unmodeled image spectra and 
polygons >with equally dominant land cover classes were excluded fi-orn the accuracy assessment. Overall accuracy, 
kappa coefficient, and kappa variance were calculated for each date (Table 3) (Cohen, 1960; Congalton, 1991). The 
2001 modeled image hLad the highest accuracy (0.90) and kappa coefficient (0.87) of the five AVIRIS dates. The 
199s modeled image also possessed overall accuracy and kappa coefficients over 0.80. Kappa and kappa variance 
were used to calculate a Z-statistic for each pair of dates to determine whether the kappa coefficients for each date 
were signnficantly diffisrent (Congalton, 1991). The kappa values of the two positive water balance images were 
found to be significantly better than the kappa values for two of the three negative water balance images, at the 95% 
confidence level. All three negative soil water balance images suffered from low accuracy. This is directly the 
result of C. megucarpus and A. fasciculatum polygons being modeled by A. fasciculatum and Arctostaphylos 
endmembers, as is apparent in Figure 2. The confusion matrix for the 2000 image highlights the confusion between 
these three vegetation classes (Table 4). 

As the soil water balance decreases, the amount of senesced and dead material in a stand of vegetation 
increases. Even if the dominant species is not prone to senescence or dieback, subdominant components (grasses, 
Artemisia californica, Salvia spp.) of the stand may be. The vegetation classes modeled in the .AVIRTS images 
become less distinct uinder drought conditions due to varying amounts of non-photosynthetic vegetation (NPV). The 
selected C. megacarpus endmembers model fewer C. megacarpus polygons in the negative water balance images 
than in the positive water balance images. C. megacarpus polygons with a higher fi-action of NPV are modeled by 
the A. fasciculatuwz and Arctostaphylos endmembers, which displayed spectral features characteristic of increased 
NPV. Similarly, greener A. fasciculatum spectra were better modeled by C. megacarpus endmembers than by A. 
fasciculatum endmembers. 

The accuracy ofthe modeled images was assessed using the entire set of 75 reference polygons. Land cover 

6. Conclusions 
Endmember average RMSE was used to select the most representative image endmembers of six land cover 

classes from five AVIEUS images with varying soil moisture availability. Conksion between endmembers 
increased as soil water balance changed from positive to negative, reducing the accuracy of the modeled negative 
water balance images. Considering that many areas of all five AVIRIS images were mode led ,  a single two 
endmember model for each land cover class is not adequate for comprehensive mapping. Using multiple 2 
endmember models for each class or adding 3 endmember models will reduce the number of unmodeled spectra. 
The use of additional imodels may also diminish confusion between A. fasciculatum, Arctostaphylos, and C. 
megacarpus. Endmennbers with varying amounts of NPV could be selected for each species, allowing more 
accurate mapping in the negative water balance images. Even with an expanded set of endmembers, it is likely that 
wet season images wirh positive water balances will still be modeled ?with higher accuracies. This has implications 
for mapping vegetation using broadband sensor data, which will also be sensitive to seasonal spectral variability. 
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AVIRIS Dates 

May 30, 1998 
June 14,2001 
May 5,2002 

Sept. 16,2000 
Sept. 11, 1999 

Solar Soil Water 
Zenith Bal. (cm) 
12.5" +66.2 
1 1.2" +12.5 
19.7" -18.4 
37.0' -37.9 
32.9" -64.0 

Table 2. Spectral library constituents from 
each land cover class. 

Q. agrifolia 
urban 
total 

107 
179 
988 

Table 3. Accuracy, kappa, and kappa variance 
for each AVIRIS date. 

0.0034 
0.0021 

2002 0.0054 
0.0046 

0.74 0.0037 

Table 4. Polygon dominant land cover class confusion matrix for the modeled 2000 
AVIRIS image, including user's and producer's accuracies. 

Reference Dominant 

A. f a x .  
2 Arcto. 

3.5 C. mega. 
A grass 
a Q. agri. 

o a  

A. fasc. Arcto. C. mega grass Q. agri. urban 
5 1 5 0 0 0 
4 6 9 0 0 0 
2 0 9 0 0 0 
0 0 0 10 0 0 
0 0 1 0 8 0 

user's 
0.45 
0.32 
0.82 
1 .oo 
0.89 
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Faure 1. Selected minimum EAR endmembers for each land cover class, by year. 
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Adenostoma fasciculatum - Ceanothus megacarpus 
rn Arctostaphylos spp. 
rn Quercus agrifolia 

Grass 
I Urban 

Flgure 2. A V W S  images of the Santa Barbara front range modeled using the minimum EAR endmembers 
for each date. Image letters correspoud to the following dates: a) May 30,1998; b) June 14,2001; c) May 5, 
2002; d) Sept. 16,2000; and e) Sept. 11,1999. Black areas are uomodeled. 
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Using AWEUS Data to Map and Characterize Subaerially and Subaqueously Erupted 
BasalticVolcanic Tephras: The Challenge of Mapping Low-Albedo Materials 

William H. Farrand' 

1.0 Introduction 

characterization of' low albedo materials. Low albedo materials of interest include certain soils, 
man-made materials (asphalt, certain building materials, tires, etc.), and basaltic lava flows and 
ashes. Early in its history, the response of the AVIRIS sensor was not sensitive enough so that 
these low albedo materials could be reliably mapped. However, as indicated by Green and Pavri 
(2002) the noise equivalent delta radiance (NEdL) of AVIRIS in the 2001 flight season was 
below 0.0181 in all but the shortest wavelength channels. This is approximately a ten-fold 
improvement from the 1989 flight season when NEdL was closer to 0.1 (Green et al., 1990). In 
the current investigation, AVIRIS data from the 2002 flight season collected over the Pavant 
Butte tuff cone, Tabernacle Hill tuff ring, and an associated lava flow in the Black Rock Desert 
of west central Utah were examined to determine how well these generally low albedo volcanic 
lavas and tephas could be discriminated from background materials. The Pavant Butte tuff cone 
was examined by the author in an earlier study with a 1989 AVIMS dataset (Farrand and Singer, 
1991). 

lncreases in the signal-to-noise ratio (SNR) in AVIRIS has enabled the mapping and 

2.0 ]Field Area 

AVIRIS flightline that was examined. Tabernacle Hill and Pavant Butte are examples of, 
respectively, a tuff ring and a tuff cone. Such landforms are part of a continuum of volcanic 
landforms that are produced when magmas erupt in the presence of water. They represent 
different arniounts of wader present at the vent at the time of eruption. Tuff cones are produced 
from high watedrriagma ratios representative of eruption into standing water arid tuff rings result 
from a lower watedmagma ratio (Wohletz and Sheridan, 11983). Pavant Butte was erupted into 
Pleistocene Lake I3onneville in west-central Utah between 16,000 and 15,300 years ago (Oviatt 
and Nash, 1989). It consists of a partial cone that is composed of massively bedded ashes which 
are highly palagoriitized and cemented into tuff. These peilagonite tuff beds lie atop fresh to 
poorly palagonitized ash and tuff beds. The ash beds lie atop lacustrine sediments. Ash and 
cinders from the P'avant Butte eruption are prominent as a component of the soils surrounding 
the tuff cones. The AVIRIS scene analyzed in this study also contains a number of ephemeral 
lakes or playas some of which were apparently wet at the time of the overflight. South of Pavant 
Butte lies the younger, moderately palagonitized Tabernacle Hill tuff ring. Tabernacle Hill lies 
atop a weathered basalt flow. The age of the Tabernacle Hill eruptions is between 14,500 and 
14,300 years ago (Oviatt and Nash, 1989). Between Pavant Butte and Tabernacle Hill lies a 
more recent, relatively fresh, low albedo basalt flow. 

Figure 1 shows the location of the Pavant Butte area and the outline of the portion of the 

Fan View Consulting, Thornton, Colorado and Space Science Institute, Boulder, Colorado, E-mail: 
farrand@ricochet.com 
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Figure 1. Poaion of 
topographic map of 
the Pavant Butte area. 
The subsection of the 
AVIRISflightline 
discussedhereis 
outlined. 

I’ 

3.0 Materials of Interest 

extracted from the AVIRIS scene, are presented in Figure 2. The reflectance of the Tabernacle 
hill tuffs is approximately the same as that of the poorly palagonitized tuff shown in Figure 2. 
The well palagonitized tuff is distinguished by a distinct Fe3’ crystal field band just shortwards 
of 1 pm, deep water absorption features, and a small sheet silicate vibrational overtone at 2.3 
pm. In the poorly ualagonitized material, the “1 pmn feature is caused by both Few in the 
palagonite and Fez in the unpalagonitimd glass. Water absorption features are weak to absent. 
The highly palagonitized tuff is relatively bright while the poorly palagonithd tuff is 
characterized by relatively low reflectance values, on the order of 20%. The relatively unaltered 
ash has reflectance values below 10%. More detail on the spectroscopic characteristics of Pavant 
Butte tephras is provided in Farrand and Singer (1992). 

Reflectance spectra of hydrovolcanic tephras from Pavant Butte and the h h  basalt flow, 
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basalt flow - 
poorly palagonbd tuff and ash 

’ 
1 1.5 2 
Wavelength (micrometers) 

Figure 2. Reflectance spectra of hydrovolcanic tephras fkom Pavant Butte and fresh basalt flow 
as extnrcted fiom the AVIRIS data. Spectra have been scaled by a factor of 5000. Note that 
even the low reflectance sideromelane (basaltic glass) ash has discemable spectral shape. 

The surrounding lacustrine sediments include several clay minerals as well as the 
evaporite mineral gypsum. There are aeolian sediments which to the naked eye appear reddish 
and whose reflectance spectra indicate the presence of iron and a weak 2.2 mm band indicative 
of a dioctahedral clay phase. The recent basaltic lava flow in the central part of the scene has 
low reflectance values. In addition to the volcanic materials and aeo€ian and lacustrine 
sediments, some circularly irrigated agricultural fields are also present in the scence near 
Tabernacle Hill and the recent lava flow. 

4.0 Data 

Airborne Visiblehfked Imaging Spectrometer (AVIRIS). The data, as supplied by the 
AVIRIS data lab, were provided in a geometrically corrected format (Boardman, 1999). In order 
to eliminate null pixels at the borders of the scene that were introduced by the geometric 
correction, the data were spatially subsampled to a 688 by 2048 subsection. It is this spatial 
coverage that is outlined in Figure 1 and shown in the color composites of Figure 4. The data 
were corrected to surface reflectance by means of the HATCH atmospheric comction software 
(Qu et al., 2000). Spectral “polishing” of the data was achieved through application of the 
EFFORT software (Boardman, 1998) resident in ENVI. 

sideromelane ash 0 
0.5 

The hyperspectral data examined here were collected on October 8,2002 by NASA’s 



5.0 Results 

ENVI processing steps of Minimum Noise Fraction (MNF) transformation, Pixel Purity Index 
pixel selection, and n-Dimensional visualization @SI, 2002). This initial set of image 
endmembers was used as input to the linear spectral mixture analysis (SMA) routine contained in 
ENVI. SMA was run iteratively in order to obtain additional endmembers indicated in the root 
mean square (RMS) error image (Adams et al., 1993). The f d  set of image endmember spectra 
is shown in Figure 3. The endmember materials include the highly palagonitized tuff of Pavant 
Butte, vegetation, oxidized cinders associated with the flesh basalt flow and several playa 
endmembers. A surface class that is notably absent flom this set of endmembers is the basalt 
flow itself. The flow is one of the most obvious components of the scene upon visual inspection 
of a simple color composite (such as Figure 4a). However, it is a low albedo material and in 
running SMA on standard reflectance or radiance data, materials which are higher in albedo will 
be preferentially selected as required image endmembers. 

transformation (Pouch and Campagna, 1990) was applied to the data. Color composites of 
HSDC transformed data produced color contrasts much more vivid than composites of the non- 
transformed data. In Figure 4, a three band color composite of the original AVWS data is 
shown along with a composite of the same bands of the HSDC transformed data, In the color 
composite of the HSDC transformed data, low albedo materials such as the basalt flow and 

Fignre 3. Image 

Selection of an initial set of image endmembers was achieved by applying the “standard” 

In order to remove the effects of albedo, a hyperspherical directional cosine (HSDC) 
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. .  

Figure 4. A. Composite of 1.7 
lun (red), 0.8 w (green), and 
0.45 pm (blue) bands for the 
subsection of AVIRIS data 
discussed here. B. Composite 
of those same channels in data 
transformed by the HSDC 
transformation 

exposures of the unaltered Pavant Butte ash show up as red. Iterative SMA was applied to the 
HSDC-transformed data and an endmember required by this analysis was the basalt flow. The 
resulting fraction image of the basalt endmember also displays higher contrast against the 
background than when the same pixels are averaged to produce a comparable image endmember 
set and run against the original/non-albedo normalized data (Figure 5). 

Application of the HSDC transformation also helped to improve the mapping of the low 
albedo ashes associated with Pavant Butte and Tabernacle Hill. Fraction images of the relative 
abundance of the highly palagonitized tuff and the poorly palagonitid tephras associated with 
Pavant Butte and Tabernacle Hill were produced via application of constrained energy 
minimization (CEM) (Farrand and Harsanyi, 1997) and foreground / background analysis (FBA) 
(Smith et al., 1994). The highest fractions (.fractions greater than 0.4) from these hction images 
were thcesholded and these results are presented in Figure 6. While the ability to map out the 
highly palagonitized tuff of Pavant Butte was demonstrated in a previous study with relatively 
low SNR 1989 AVIRIS data (Farrand and Singer, 1991), the lower albedo tephras could not be 
uniquely mapped out with that data set and the ability to do so in this study is attributed to the 
increase in instrumental SNEL 
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i I' 

A. B 

Figure 5. A. Fraction image for 
basalt flow image endmember as 
derived and run against the HSDC 
transformed data. B. Basalt fraction 
image as derived and run against 
non-albedo normalized data. 

Whilc the influence of albedo on SMA is profound, it should be noted that other 
processing techniques can be more insensitive to the effects of albedo. A spectral featurc fitting 
approxh such as i s  implemented in ENVI and which is a critical component ofthe {JSCS 
'I'etracordcr (Clark et al., 2003) software requires that the data have the continuum removed. 
Such a continuum removal is a &facto albedo normalization. The Spectral Angle Mapper 
technique (Kruse let al., 1993) is also insensitive to albedo differences. 

6.0 Conclusions 
'The ability to map low albedo materials in AVIRIS data was demonstrated in this study. 

' lhe materials of interest in this investigation were volcanic lava flows and tephras of the Black 
Rock Desert of west central Utah. It was demonstrated that image endmember spectra selected 
by iterative SRlA ,are skewed towards high albedo materials. Hence, even a major low albedo 
component in the :scene, such as the basalt flow in the Pavant Butte scene, that i s  readily apparent 
to the observer in 'color composites is not a required endmember in iterative SMA ofnon-albedo 
normalized data. Forcing the issue, and including such a low albedo endmember in SMA of the 
non-albedo normalized data, results in a fraction image in which there is low contrast bctween 
thc target endmember and the background (Figure 5). A better representation of what materials 
i n  the scene are truly spectrally unique is obtained by conducting iterative SMA on albedo 
normalized data. in  this study, the HSDC transformation (Pouch and Campagna, 1900) was useu 
to remove albedo differences. Running SMA, or a related technique such as FRA, on the albedo 
normalimd d a b  also serves to increase the contrast between target and background in the the 
rcsulting fraction image. 



By using the high SNR 2002 AVIRIS data and the HSDC transformation, it was 
demonstrated that even the low albedo, relatively spectrally featureless poorly palagodtized 
tephras associated with tuff rings and portions of tuff cones could be uniquely mapped. These 
materials could not be uniquely identified in an earlier study that was conducted using 1989 
flight season AVIRIS data (Farrand and Singer, 1991). 

P,'., . 

Figure 6.1.7 pm band 
and p r l y  palagonit&& tuff and 
(right). Notethe at Tabemacfe Hill. 

overlay of highest (> 0.4) hracvions of highly pdago&W tuff (red) 
ow) over Pavant Butte (left) and Tabernacle Hill 

at the University of Cdorado for 
was wppoaed in part by NASA grant 
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Unsupervised Change Detection for Hyperspectral Images 

Michael Frank' and Mort Canty2 

8. Introduction 

on landcover is essential for many environmental studies. On the regiional to global scale, only multitemporal remote 
sensing is capable of monitoring landcover changes caused by short-lerm phenomena such as fire hazards and 
seasonal Vegetation change, or long-term phenomena such as urban development and desertification in a practical 
way. A variety of change detection techniques has been developed for multispectral satellite and airborne imagery, 
including arithmetic operations, methods of principle component analysis as well as post-classification comparison 
and multitemporal classification [Singh, 19891, [Roberts et al., 1998a1, [Yuan et al., 19981. Spectral change 
detection techniques rely on the principle that a difference exists in the spectral response of a pixel on two dates if 
the biophysical material within the instantaneous field of view (IFOV) has changed between these dates [Jensen, 
19961. Hyperspectral change detection has many advantages over multispectral data in detecting and discriminating 
surface properties because it provides a continuous spectrum across a range in wavelengths [Green et al., 19981. 
Nevertheless, only few attempts have been made for change detection based on hyperspectral images [Wiemker et 
a]., 19971. Until recently, the main limiting factor on the employment of hyperspectral sensors in change detection 
studies has been inadequate rnultitemporal coverage [Garcia and Ustin, 20011. But with the launch of the 
hyperspectral sensor Hyperion [EO 1,20001 and the growing number of hyperspectral airborne sensors, more of 
these images may be available soon, and with them a greater need for hyperspectral change detection methods. Past 
investigations mainly focused on the use of hyperspectral change detection for vegetation. Garcia (2001) [Garcia 
and Ustin, 20021 and Roberts (1999) [Roberts et al., 19971 use spectral mixture analysis to identify changes between 
soil, green vegetation (GV) and non-photosynthetic vegetation (NPV). But this involves time-consuming pre- 
processing and endmember selection to extract the amount and kind of changes depending on the selected classes. 
Other researchers used vegetation indices for change purposes [Chen et al., 19981, [Gamon and Qiug 19991. But all 
of these methods only considered specific changes. None of these methods accounts for general purpose monitoring, 
which is often needed to interpret the different changes in a global context. For example, changes in vegetation may 
often be due to anthropogenic influences. However, as multitemporal hyperspectral coverage increases even in those 
areas where no or little ground truth data is available the need for robust unsupervised change detection methods 
will be more evident than before. 

The purpose of this study is to detect seasonal vegetation dynamics in the Santa Monica Mountains using an 
unsupervised hyperspectral change detection approach. Seasonal vegetation dynamics in arid and semi-arid areas are 
largely regulated by the availability of water. But climatic shifts and anthropogenic influences may also have a 
major impact on seasonal fluctuations. Therefore it is important to understand how these properties interact to 
predict long-term environmental consequences of climate and land use changes on ecosystem fimction and 
sustainability [Ustin et al., 19981. However, detecting vegetation dynamics in the absence of land cover change is 
more challengnng then standard land cover analyses because of the subtle community response [Garcia and Ustin, 
20011. Therefore we investigate the usefulness of a relatively new unsupervised change detection procedure for 
hyperspectral images. The so-called multivariate alteration detection (MAD) technique proposed by Nielsen and 
Conradsein (1998) widsen et al., 19981. In past studies this method has been successfidly applied to multispectral 
images [Canty and Niemeyer, 20021, piemeyer et al., 19991, ~ i e l s e n ,  19961. Here it was used to highlight seasonal 
changes in bitemporal Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) images from the Santa Monica 
Mountains (California). We applied the algorithm to selected bands as well as to all bands to test the usefulness of 
this method. The MAD bands were then examined to identify the quantity and the quality of changes. The results 
were compared with a derivative-based green vegetation index (DGVH) proposed by Chen and Elvidge (1998) [Chen 
et al., 19981 and a spectral mixture analysis (SMA) [Ustin et al., 19931 to provide a basis for comparison with other 
studies ~ 

Chainge detection is a central task in the field of remote sensing. Detection of anthropogenic or natural impacts 

Geographisches Pnstitut der Rheinischen Friedrich- Wilhelms lJniversit&, Bonn, Germany (uzs5or@uni-bonn.de) 
Forschungszentrum Julich GmbH, Germany (m.canty@fz-juelich.de) 
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2. Methods 
2.1 Study Site 

The study site was located in the Santa Monica Mountains (California, USA). The range extends 70 km 
westward from the City of Los Angeles to Ventura, along the Pacific coast. Elevation ranges from sea level to about 
900 m. This region is characterized by a Mediterranean climate, having cool, wet winters and hot, dry summers. The 
mean annual precipitation is 600 mm per year mainly falling between December and April. Temperatures exceed 
35'C in the summer but seldom drop below IO'C in the winter. The rough, discontinuous, mountainous terrain is 
mostly dominated by chaparral vegetation communities, including drought-senescent ' 7 ~ ~ f t ) l  chaparral (coastal sage 
scrub) and evergreen "hard" chaparral [Barbour and Major, 19901. Hard chaparral (dominated by Ceanothus spp. 
and Adenostomafasciculatum) is mainly distributed at higher elevations on the interior side of the range. Soft 
chaparral (dominated by Salvia and Eriogonum spp. and Artesemia caZifornica) is more common in the coastal area 
at lower elevation but does also occur in isolated patches at higher elevation on outcrops of shallow or fine textured 
soils [Holland and Keil, 19671. However, vegetation patterns are complicated by the complex spatial distribution of 
chaparral species due to steep topographic gradients, variable fire histories, a complex landownership and different 
soil types [Roberts et al., 1998bl. 

2.2 AVIRIS Data 

AVIRIS collects spectra in the wavelength range from 390 to 2500 nm in 224 bands with a nominal spectral 
response of 10 nm [Green et al., 19981. The sensor is mounted on an ER-2 aircraft, flying at an elevation of 
approximately 20 km resulting in an IFOV of 20 m on the ground. A typical AVIRIS scene consists of 614 * 5 12 
pixel (- 11 km * 8 km). 

Bitemporal AVIRIS data sets were acquired over the Santa Monica Mountains on 23 October 1996 and on 7 
April 1997. The data presented here were obtained from flight-linesf970407tOlp02, run 06, scene 04 and 
f961023tOIp02 run 04, scene 05 and 06, centered over Point Dume, California (34 'SN, 1 18 '40'W). 
The images from 1996 were acquired 3 days after the Calabasas fire at the end of the dry Mediterranean summer, 
whereas the 1997 image represents a period of spring growth. 

2.3 Preprocessing 

Atmospheric correction was done using the MODTRAN 3 radiative transfer code to process the AVIRIS 
radiance data to reflectance. To retrieve apparent surface reflectance a method proposed by Green et al. [Green et 
al., 19931, Roberts et al. [Roberts et al., 19971 was applied on the MODTRAN corrected images. This model 
accounts for a spatially variable atmosphere, such as found over mountainous terrain. The images from fall 1996 
were then mosaicked to cover the scene from spring 1997. 

A tedious task associated with change detection is the registration of the images involved, in particular the 
setting of ground control points (GCPs). Registration errors will tend to reduce the accuracy of any digital change 
detection effort. It is essential that registration accuracies should be on the order of half a pixel or less, to avoid false 
change signals as much as possible. A typical problem of hyperspectral imagery recorded with airborne line 
scanners is that normal registration techniques like polynominal fitting yield accuracies of some pixels at best. This 
displacement is caused by the varying flight tracks of the aircraft (in contrast to satellites) and the usually large 
swath angles of airborne scanners which allow for oblique viewing angles. Therefore, imagery from airborne 
scanners in general requires locally adaptive transformation functions [Wiemker et al., 19971. For the image-to- 
image registration, the scene from 1997 was used as base image and a thin plate spline model (TPS) was applied to 
compute the warping transformation [Geomatics, 19971. This model computes, in addition to a global 
transformation, local interpolation functions between the GCPs. To ensure an accurate change detection registration, 
400 GCPs were manually digitized. 150 GCPs were selected as check points to compute the root mean square error 
(RMS) of the transformation. The overall accuracy of the registration was about 0.41 pixels. 

In order to preserve the spectral characteristics of the data as much as possible resampling was done using the 
nearest neighbor method. For further processing, 165 AVIRIS bands were selected and a sea mask was applied to 
the co-registered AVIRIS images. 

2.4 Multivariate Alteration Detection (MAD) 

The MAD procedure is an application of a classical statistical transformation referred to as canonical 
correlation and will briefly be described here. In general, hyperspectral imagery for monitoring purposes is recorded 
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by multitemporal over flights over the same land area. We represent hyperspectral pixel intensities measured at two 
different times by random vectors X and Y : 

r"' rJ, 
Y =  

N being the number of spectral components, then we search for a linear transformation 

u = a T X  = a,X, +..+a,X,, 

where the coefficients a I and b (i = I... N )  are as yet unspecified. In order to detect the changes between the two 
images, we calculate the difference U -  V. As an advantage of this procedure all the information is combined into a 
single image, and one is free to choose the coefficients a I and b in a suitable way. The MAD procedure determines 
these coefficients so that the positive correlation between U and Vis nninimised [Nielsen, 19941. 

In fact, we search for a linear transformation such that the difference between the transformed vectors has mxximum 
variance: 

var(u - v) = var(aTX - bTY)  --> Maximum 

subject to the constraiint 

var(u) = var(v) = 1 

Under these constraints we have: 

var(u - v) = var(u) + var(u) - 2cov(u,v) = 2(1- corr(u, v)). 

(4) 

Therefore, we seek vectors a und b, which minimizes the positive correlation corr(u, v). Mathematically this 
involves the solution of a generalized eigenvalue problem [Anderson, 19841. The MAD transformation is then 
described as: 

where a and b are the defining coefficients from a standard canonical correlation analysis. X and Yare vectors with 
mean zero. 

spread in its pixel intensities and, ideally, maximum change informat ion. The second-to-last component has 
maximuni variance subject to the condition that the pixel intensities are statistically uncorrelated with those in the 
first component, etc. Figure P shows a scatterplot of MAD1 vs. MAD12 for two AVIRIS scenes. The components are 
seen to be uncorrelated and approximately Gaussian. Assuming that different kinds of changes will generally be 

As a result we obtain as many MAD bands as input channels, whereby the last MAD component has maximum 
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uncorrelated with one another, these changes will be distributed among different MAD components. Noise will be 
concentrated in lower order components [Canty et al., 20011. 

LV 

0 0 . .  . . . . . . .  
1 2 5 5 '  ' ' . I  ' ' . . ' . . '  1 ' ' 

. .  . . . .  

Figure 1: Scatterplot MAD1 vs. MAD2. 

The MAD procedure is invariant to linear scaling. Therefore, it is insensitive to, for example, differences in gain 
and offset settings in a measuring device, and to the application of radiometric and atmospheric correction schemes 
that are linear in the digital numbers (DN) of each image band [Nielsen, 19991. The MAD method can also be 
applied on any spatial andor spectral subset of the full data set to focus the analysis in any desired manner. For 
specific applications, certain wavelength bands may be selected, whereby for general purpose monitoring, all 
spectral bands can be taken into account (see equation 2 and 3). 

The resulting MADS can qualitatively be interpreted by 

0 visual interpretation 

magnitude and direction of the changes 

Furthermore the MAD method can be computed completely automatically because the calculation of the 
transformation is solely determined by the statistical properties (spectral dispersion matrices) of the original image 
data [Canty et al., 200 11. 

transformation andor post-processing by means of a MAF (minimudmaximum autocorrelation factor) 
transformation could be useful [Nielsen et al., 19981. 

correlation with the original AVIRIS bands 

For cases where many spectral bands are to be used, pre-processing via the MNF (minimum noise fiaction) 

3. Results and Discussion 

get a rough estimation of the expected changes. Besides visual interpretation this can be done by using some 
fundamental image statistics. Therefore the mean and the standard deviations of both images were computed for 
every band and compared with one another to provide insight into the type of process that may have produced the 
changes (Figure 2). 

In Figure 2(b) the AVIRIS scene of October shows higher spectral variations in the NIWSWIR. In addition, the 
mean signature of the AVIRIS scene of April (Figure 2(a)) shows a more pronounced red edge, chlorophyll and 
water absorption as well as lower mean values in the NIR and SWIR compared with the scene fi-om October. On the 
basis of visual examination and due to the fact that both scenes are mainly covered with vegetation the signatures in 
the figure could be interpreted as a subsequent drying of the vegetation fi-om April to October with an increasing 
amount of NPV and Soil at the expense of GV. 

In unsupervised change detection studies, where little or no ground truth data are available, it is very useful to 
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Figure 2: Mean (a) and standard deviations (b) from April 1997 (thick line) and October 1996 (dotted line) 
calculated over all AV'IRIS bands. 

The h4AD method was applied to the co-registered images using: 

(i) vegetation specific bands 

(ii) 1MNF bands 

(i) Wavelength regions fi-om 673-702 nm (chlorophyll absorption), 770-8 18 nm (rededge shoulder), 1173- 
121 1 nm (plant water absorption), 2088-2 138 nm (ligno-cellulose absorption) and 2288-2338 nm (ligno- cellulose 
absorption) were selected as input channels for the MAD method in order to enhance these phenological changes as 
much as possible. The AVIFUS scene from April was selected as the base image in the MAD transformation. In 
order to detect the subtle vegetation dynamics we applied manual thresholding with 1.5 Standard deviations from the 
mean for the discrimination of change and no-change pixels. The MAD components are linearly stretched fi-om 
mean minus and plus ithree standard deviations. The results of the MAD transformation (first 6 components) are 
shown in Figure 3. Maximum change areas are shown as white (positlive changes) and black (negative changes) 
pixels. Gray areas indicate no change. Correlations between the change areas of the MADS and the original AVIRIS 
data (wavelength regions) are shown in Table 1. 

Table 1: Correlation matrix of the MAD components with the original AVIRIS bands. 

Date and wavelength 

April 7th (673-702 nm 
April 7th (770-8 18 nn 
Apri17fh (1173-1211 
April 7th (2088-2138 
April 7'h (2288-2338 

October 23rd (673-70 
October 23'd (771)-8 1 
October 23'd (1 173-1 
October 23rd (2088-2 

i October 23rd (2288-2 
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(a)MAD 1 (b) MAD 2 (c)MAD 3 

(d) MAD 4 (e) MAD 5 (0 MAD 6 
Figure 3: MAD components 1 to 6 (a-f). 

As mentioned above, MAD1 shows the largest changes. The correlation of MAD1 shows a weighted mean of 
all channels with positive correlation in the October image and negative correlation in the April image. Therefore 
MADl is probably an indicator of shadow-induced changes. Actually, if we consider MADl (Figure 3(a)) * we can 
identify positive and negative changes mainly located in east-west valleys, which are strongly effected by intense 
shadowing. Positive changes at the Calabasas fire site (at the lower middle site of the image) are due to post-fue 
vegetation re-growth from October to April. In MAD2 we expect smaller changes that are furthermore uncorrelated 
to MAD 1. Therefore more subtle changes, such as changes in phenology, are expected to occur in MAD2 and lower 
order MAD components. In fact MAD2 correlates with bands in the NIR and Red and could therefore be sensitive to 
changes in GV. Figure 3(b) shows high positive changes at the coastal region and in some isolated patches in the 
interior. These changes are consistent with the distribution of the soft chaparral communities. Soft chaparral is 
drought-deciduous and exhibits pronounced seasonal changes. Because seasonal vegetation dynamics in 
Mediterranean-climate ecosystems are mainly driven by the effect of water, most of the changes in the chaparral 
communities were basically due to loosing green leaves. Negative changes represent seasonal dynamics in hard 
chaparral communities. Most hard chaparral species are evergreen and undergo little seasonal senecense. 

MAD3 and MAD4 have highest correlation in the SWIR regions and are presumably change indicators of NPV 
and/or soil. In general the change-enhanced data of MAD3 (Figure 3(c)) and MAD4 (Figure 3(d)) show small areas 
of changes in the soft chaparral areas. However, because of the larger changes at the Calabasas fire site, MAD4 
seems to be more likely to represent changes in soil. Linear changes in MAD3 and MAD4 are probably due to poor 
registration of roads. MAD5 (Figure 3(e)) and MAD6 (Figure 3(Q) are uncorrelated with all bands in both years and 
show scanner noise. 

irrigation or seasonal planting of different flowers or plants. The golf course at the upper right shows high changes 
in some MAD components induced by irrigation and soil moisture. The changes at the coastline are caused by waves 

Changes in the urbanized area apparent in all MAD components are probably due to registration errors, 

* In this article all images are rotated 90 degrees clockwise. 
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and tides. Different changes at the Calabasas .fUe site best seen in (Figure 4(a)) are presumably due to the successive 
stages of post-tire vegetation regrowth. 

In comparison to the SMA (not shown) we see a general agreement between the MAD components and the 
fraction images (GV, NPV, soil and shadow) of the SMA. 

(ii) In order to concentrate and to visualize all spectral change information in one composite image the MAD 
transformation was performed based on a MNF transformation [Green et al., 19881 calculated fhm 165 AVIRIS 
bands. We used the ftrst 10 MNF Bands describing 90% of the variance of the image data. Figure *a) shows the 
RGB image of MADMNF components two, three and four with the same decision threshold (MADMNFI as an 
indicator of shadow induced changes was rejected). 

To provide a basis for compatisoo with other methds a DGVI dBerence image (Figure 4@)) with the same 
decision threshold as applied on the MAD transformation was computed [Chen et al., 19981. In the MAD/MNF 
composite we can see more changes than in the WVI difllerence image, especially in the housing estate areas, the 
Calabasas &e site and at the golf course. 

In addition, a change probability based on a MAD transformation calculated 6mn all 165 AVIRIS bands was 
performed. It was calculated usmg the sum of standardized, squared MADS [cgnty et aL, 20031 (see equation 8): 

The resulting image (FigUte 5)  is approximately chi-square distributed with six degrees of freedom describing a 
change probability of 95%. 

a) M A D M  RGB composite image with 
R=MAD/MNFZ, G=MAD/MiVF3, B =A4ALVMiVF4 

(b) DGVI change mask 

Figure 4 Comparison between MADiMNF and DGVI. 
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Figure 5:  MAD change probability. White areas represent changes with a probability of 95%. 

4. Conclusion 
The applicability of the MAD method to hyperspectral, bitemporal, unsupervised change detection studies was 

demonstrated and an interpretation approach based on the correlation matrix was given. The MAD transformation 
was applied on bitemporal AVIRIS images of the Santa Monica Mountains to detect seasonal changes. The method 
was performed on selected bands, MNF bands as well as to all bands. The main changes observed are due to 
contrasting seasonal patterns of chaparral communities. Large change areas are located within soft chaparral 
communities and at the Calabasas fire site. The lowest changes occurred in areas covered with hard chaparral. In 
addition changes that can be related to registration errors, irrigation practices, shadow formation and other 
anthropogenic influences were also shown by the MAD method. As expected subtle vegetation changes occurred in 
the lower order MAD components whereas large changes like shadow formation are more apparent in the first MAD 
components. 

We found the MAD transformation to be a good unsupervised change detection method for hyperspectral 
images. It can be applied on any spatial and/or spectral subset of the fill data set and sorts different changes into 
different images. The MAD transformation is also comparable to other methods based upon DGVI or SMA. MAD 
tends to be robust against varying recording conditions at the time of the data acquisition and can be run completely 
automatically. But as for all change detection techniques a good registration accuracy is needed. On the other hand, 
interpretation of the MAD components is difficult when many spectral bands are used, so data reduction is 
sometimes necessary as'a pre- and/or post-processing step. In general, the MAD transformation seems to be suitable 
for all kinds of change detection applications. 
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RELATIVE PERFCBRMANCE OF HATCH AND THREE OTHER TECHNIQUES FOR ATMOSPHERIC 
CORRECTION OF HYPERION AND AVIRIS DATA 

Alexander F. H. Goetz,"2 Bruce Kindel,' Mario Fer~-i,~ and Ethan Gutmann',2 

1.0 Introduction 

correct radiance data from the sensor to reflectance or the simultaneous acquisition of surface spectral reflectance 
data to obtain correction factors for the solar irradiance and atmospheric transmission and scattering. The 
transmission, and in some cases the scattering, is highly location dependent because the major absorber is water 
vapor, a poorly mixed gas. Therefore, radiative transfer modeling is required to extend point measurements to the 
rest of the image. 

1993), HATCH (Qu eit al., 2003), ACORN (Miller, 2002) and FLAASH (Matthew et al., 2000) have gained 
prominence. The latter two are commercially available. In this paper we describe the results of using model and 
measured reflectances propagated to the top of the atmosphere using MODTRAN4 (Adler-Golden et al., 1999) and 
retrieved using the above models for different precipitable water vapor values. In addition, we have applied the 
models to AVIRIS and Hyperion data in order to compare the average reflectances obtained with each model, and 
compared the results for the derivation of spectral reflectance under a variety of precipitable water vapor conditions. 

The analysis of hyperspectral image data requires either the application of a radiative transfer model to 

Several models have been developed for atmospheric correction and four of them, ATREM (Gao et al., 

2.0 Approach 

The methods used here are an extension of those described by Goetz eU al. (2003). In order to eliminate the 
variables of sensor response and signal-noise ratio, and the uncertainties in ground reflectance in the comparison of 
models, the above-the-atmosphere radiance for several total precipitable water vapor values was modeled using 
MODTRAN4 (Adler-IGolden et al., 1999). The modeled at-sensor radiance was entered into the four atmospheric 
correction models and the surface reflectance retrieved. MODTRAN4 was used to retrieve the modeled radiance to 
assure the validity ofthe at-sensor radiance values. A spectrum consisting of 50% reflectance values over the 
wavelength range 0.4-2.5 pm was input to MODTRAN4 for precipitable water vapor values of 0.5, 1.5,2.5 and 4.5 
cm. This artificial reflectance spectrum was created to emphasize the model differences since there were no slopes 
or absorption features normally associated with natural materials. 

There are errors induced into the retrieval if the wavelength calibration of the sensor departs from that of 
the model. Reduction of at-sensor radiance to reflectance requires taking a ratio between the modeled and actual 
radiance that will accentuate wavelength calibration errors especially at the edges of atmospheric absorption bands 
(Qu et al., 2003). The differences between models as well as the calibration errors are the major contributors to the 
uncertainty in the retrieval of surface reflectance. The comparison of the ratio between two MODTRAN4 models, 
incorporating a Wavelength shift in one of them, and the retrievals of the 50% spectrum discussed above make it 
possible lo quanti@ the errors and their sources. 

four different precipitable water vapor amounts in order to examine the model behavior. This test was important 
because each model uses a different interpolation scheme and the results differ. 

The models .were also applied to AVIRIS and Hyperion images having varying average water vapor values. 
Water vapor images were created and compared. A mean reflectance spectrum was calculated for each entire image 
so that any sensor inflluences, such the signal-to-noise ratio, were minimized. 

'The individual models were applied to field spectra representing pure soil and pure vegetation cover at the 
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3.0 Resub 
3.1 Artifid Reflectance Spectra 

retrieve the at-sensor radiance of a 50?h reflectance target modeled using MODTRAN 4 (Adler-GoIden et al., 1999). 
The di&rsnces are most notable at the edges of the water vapor absorption bands. There are no artifacts associated 
with inaccurate wavelength caliition, nor sensor signal-to-noise ratio chanrCtrrstics. The departures *om the 
50?h line correspond solely with ditkences between the atmospheric correction models and the MODTRAN 4 
model. Retrieval of the reflectance 5om the at-sensor radirmce using MODTRAN 4 produces the straight 50?h line 
shown in Fig. 1. The dif€erences among modek become more pronounced as the water vapor amount is increased. 
At 4.5 cm precipitable water vapor the FLAASH model b a k s  down. This problem has been corrected in later 
versions of the program. 

Figure 1 shows the results of applying the ACORN, HATCH and FLAASH atmospheric corrections to 

4 

f 

Figure 1. Model r e t r i e d  for varyins total precipitable water vapor amounts. a) 0.5 cm; b) 1.5 cm; c) 2.5 cm; 
d) 4.5 cm. The gaps are associated with the saturated water vapor absorption features at 1380 and 1900 nm. 

Sensor calibration errors lead to additional errors in the retrieval, particularly at the edges of sharp 
atmospheric or surfaoe reflectance features. The ermrs are introduced through the pmcess of ratioing the modeled 
at-sensor radiance with the me& radiance. Figure 2 shows the effects of wavelength calibration ermrs using a 
ratio of two MODTRAN 4 models convolved with the AVIRIS spectrometer point spread function and offset by 3 
nm. The wavelength calibration error results in errors in reflectance off 20 % of the value at the edges of the sharp, 
unsaturated atmospheric absorption features caused by 4, C q  and water vapor. Signal-to-noise ratio is important 
in the q d i  of the retrieved reflectance spectrum. Poor signal-Moise ratio will produce artifacts at sharp 
absorption edges similar to those created by poor calibration shown in Fig. 2. 

14 



0.4 

0 0.s 

1 
f rr 

0 1  

0.1 
wo I W O  ma rn 2 m  

Wavelength, nrn 

Fignre 2. MODTRAN 4 model of se118or radiance h m  a soil slnface that has been con- to reflectance using 
MODTRAN 4 (Model) and the same model but shi&d to longer wavelengths by 3 nm. The results of the 
abnwpheMc model HATCH applied to the MODTRAN s m w  radiance are shown in red. 
3.2 Application to AVIRIS data 

The atmospheric models were applied to AVRUS images taken under different water vapor conditions. For 
comparison of the spatial quality of the wata vapor eflbctmnoval, water vapor images were created. If the removal 
is complete, no su&e albedo variability will be visible. In order to exchde the effect of sensor si&-to-noise 
ratio on the corrected re&ctance, the entire reflectance image was averaged a h  the abnospheric correction was 
applied on a pixel-by pixel basis. Fig. 3 shows the water vapor images fim the AVIRIS scene taken over 
Yerington, Nevada The ATREM image (b) shows more aIbedo features and g m d y  shows gmater emm at high 
vapor values and in the presence of vegetation (ooetz et al., 2003). Fig. 4 shows the average reflectauces as a resnlt 
of the application of three atmospheric correction programs to correct the AVIRIS scene of Yerin%on, Nevada 
to......??? 

Because the full m e  is averaged, no sharp spectral refleciance features will be present. Any departure 
h m  a smooth reflectance cmve is the result of an error in the model coaGctiMl or an incorrect wavelength 
dbration, The HATCH algorithm aut0matlcaUy oorrects for wavelength &bration errors up to f 3 nm (Qu et al., 
2003). Them does not war to be a significant wavelength calibration error beoause the reflectance errors at the 
edgea of the sharp atmospheric a h e o n  features are equivalent for each of the models. 

An AVIRIS m e  from Hawaii with a higher average water vapor content is shown in Figure 5. 
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Figure 3. Water vapor images of Yerjngton, Nevada with average values of 0.69 
cm precipitable water vapor. The models applied were a) ACORN; b) ATREM; 
c) FLAASH; d) HATCH 
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F i i  S. fater vapor hagen of an AVWS image in Hawaii. 6 averag~ 
water vapor value is 231 cm. The models applied wefe a) ACORN; b) ATREM, 
c) FLAASH, d) HATCH 

In this steep twain the water vapor vaIues are closely tied to the impremion that the 
models are vexy sensitive to snrhe albedo. ATREM (b) I& the most difl'mnt otharthreemodelimages 
possibly refleaiug higher sensitivity to vegetation cover diffmnws. The wholeAmage reflectance re t r ied  are 
shown in Fig 6. 
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Figme 6. Reflectance averaged for the entire Hawaii scene for three correction models 

The SmQOthest rendition of re ACORN but for an unknown reasan the derived 
reflectance is considerably bigher than LAASH in the visible pation ofthe spectrum. 
FLAASH shows the greatestsensit c bands. HATCH exhibits 
reflectsuee aeonrid the 940 m water vapor absorption band not shown by FLAASH or 

3.3 AppUcatbn to Hyperion data 
HyperiOn (pearlman et al., 2003) is R pushbroom imaging spectrometer that poses a diffexent sa of 

challenges for atmospherk c o d o n .  The 940 nm water vapor absorption, feature normally used to determine the 
cohnnn wafer vapor value for use in correcting the rest of the speanun with the models, falls within the cross-over 
region between the two detector arrays. The sigd-to-uoise ratio is not high enough in tbis regMa to make an 
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accurate water vapor determination. As a result, the 1 140 nm water vapor band is used. The difficulty here is that 
the calculation is more affected by the nearby deep 1200 liquid water featnre in vegetation than the shallow 980 
water feature near 940 nm (Goetz et al., 2003). An additional problem is the stability of the radiometric calibration 
and the inaccuracies in the pixel-&pixel calibration precision leading to stripes in the images when they are 
enhanced by ratioing, principal components analysis or other means in which the least significant bits in the pixel 
values are utilized. Striping is also induced by atmospheric correction models because the small radiometric 
c a l i i o n  mors are highlighted by ratioing the sensor radiance data with the modeled radiance. Additional 
artifacts are induced by sensor “smile” or the change in spectral caliiation across the detector m y .  Smile is a 
characteristic of all pushbroom m y  systems and HATCH-Zd was developed to compensate for smile by calculating 
the wavelength calibration for each column in the image (Qu et al., 2003). ACORN and nAASH make use of only 
one wavelength calibration for each m y .  

HATCH-2d and FLAASH. Fig. 7 shows the water vapor images for a Hyperion scene of Yerington, Nevada. The 
average retiieved spectra are shown in Fig. 8. 

Hyperion scenes having varying amounts of precipitable water vapor were processed using ACORN, 

Figure 7. Water vapor images fiom the Hypedon scene of Yerington, Nevada. 
The models used were 1) ACORN; 2) FLAASH; 3) HATCH-2d. The average 
water vapor value is 1.26 cm. 
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Figure 8. Reflectance spectra of the averaged Yerington, Nevada Hyperion scene. 
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The ragged look of the spectra is attribntable to the column-to-cob imprecision in radiometric 
calibration. In this plot the HATCH-2d column-by-calm calibration was hmed of& The smoothest rendition of 
reflectance appears to be from the ACORN model. All of the models show major departure5 fiom smooth behavior 
around 2050 m& the position of two COS absorption features. Thew features are most ukely the result of 
wavelength calibration inaccuracies attributable to d e .  In Fig. 9 the advantage of the HATCH-2d column-by- 
column calibrationis demonstrated by switching the calibration option o t ~  The 2050 mn C& feature is signiscanfly 
dampened as are some of the other water vapor band features. 

500 i W O  I500 2WO 

Waveiength, M 

Figure, 9. HATCH-2d derived reflectance of the Hypexion Yerington, Nevada 
scene. “HATCH Cal off’ is the same curve “HATCH” shown in Fig. 8. 

Figure 10 shows Table Mountain no& of Boulder, Colorado. In this Hyperion scene the areas of dense 
vegetation were extracted and the reflectance values averaged after application of the models. Only HATCH-2d and 
ACORN results are shown in Fig 1 1. 

Figure 10. CIR composite of Table Mountain, Colorado. The 
avemge water vapor value was 2.6 cm. 
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Figure 11. Average reflectances for the densely vegetated areas shown in Fig. 10. 

HATCH-2d appears to provide a smoother result than ACORN in this case for the 900-1300 nm region. In 
the other regions the coincidence is almost perfect. 

4.0 Conclnsions 

The results derived from artificial reflectance targets propagated through the atmosphere using MODTRAN 
4 show that there are significant differences among the atmospheric correction models tested. The differences are 
equal to or greater than errors introduced by wavelength calibration or sensor noise. This result makes it impossible 
to know which model performs the best. 

cases the mflectances derived h m  scenes with higher water vapor contained more artifacts, or departures from a 
smooth reflectance curve. 

smoother reflectance spectra than when using an average spectral calibration for the entire array. The W v m t a g e  
is the increased computing time required. 
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FOREST INFORMATION PRODUCTS FROM AVIRIS AND HYPERION 

David G. Goodenough,'>* Hao Chen,' Andrew Dyk,' Tian Han? Sarah M~Donald,',~ 
Matthew Murdoch,' K. Olaf Niemaq3 Jay Pearlman: and Chris West' 

1. Introduction 

Hypeirspectral remote sensing can provide forest information products for applications in forest inventory 
and forest chemistry. Forest inventory products include the ability to map forest species with high accuracy using 
the airborne AVPRIS sensor and the EO-1 satellite sensor Hyperion. Hyperion data were acquired in 2001 and 2002. 
Corresponding AWIRl S data were also acquired. Experiments were conducted to compare the accuracies of the data 
sets for mapping forest species. Bioindicators are also being developed for mapping nitrogen. Compression 
experimeints were also1 conducted on Hyperion data to investigate the utility of compression in terms of classification 
accuracies for forest sipecies. This paper reports on the Hyperion and AVIRIS analyses and the results of the 
compression experiments. 

Ecosystem processes such as photosynthesis and nutrient cycling can be better understood by examining 
canopy biochemical content through analyzing chlorophyll, nitrogen, and lignin concentrations (Wessman, 1988). 
Detailed information derived kom hyperspectral remote sensing data, such as chemicals present in the forest 
canopy, can be used to investigate indicators of forest health, known as bioindicators (Martin, et al., 1998). 
Bioindicators can be used in forest management practices (Jacquemoud, 1996);(Adamus, 1995). Sources of stress in 
a forest ecosystem, such as nutrient deficiency, insect infestation and drought, may be examined using bioindicators 
that are detectable using remote sensing (Mohammed, 2000) and yet not visible to the human eye. 

'Various compression schemes have been suggested for acquisition, storage and distribution of 
hyperspectral remotely sensed data. Hyperspectral forestry applications that rely on the measurement of subtle 
variations in the spectral signature of the forest canopy can be affected by modification to the spectra induced by 
compression. 14s part of an experiment for the Canadian Space Agency (CSA), Hyperion data cubes acquired over 
the Greater Victoria Watershed District (GVWD) were compressed using the SAMVQ and HSOCVQ algorithms 
designed by CSA. Both the raw digital numbers (DN) and the radiance data were compressed using a compression 
ratio of 20: 1 and were returned uncompressed. These data cubes were classified into forest species using the same 
supervised classification methodology used with the original data. Spectra and the classification accuracies from the 
compressed and uncompressed data were compared. 

2. Data Collection 

Under the N4SA project Evaluation and Validation of EO-1 for Sustainable Development (EVEOSD), we 
have collected spaceborne and airborne hyperspectral remotely sensed imagery, as well as conducted extensive field 
reconnaissance, in the: GVWD, located on Vancouver Island, British Columbia, Canada. Measurements of the foliar 
chemistry at this site have been collected over two years to correspond with image acquisitions. Both organic and 
inorganic chemistry measurements have been collected from this site. 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, acquired by NASA's ER-2 aircraft and 
EO- 1 Hyperion data were used in this research. AVIRIS has the capability of capturing 224 contiguous spectral 
channels at approximately 10 nm intervals in the visible to near-infrared (400-2500 nm) portion of the 
electromagnetic spectrum (Green, 1998). The Hyperion sensor acquires 220 bands with a hll-width half maximum 
of approximately 10 nm in the same wavelength regions as AVIRIS. The 20 m AVIRIS data were used in 
conjunction with 30 rn EO-1 Hyperion data. Ground spectra, at 2.5 nm resolution, were collected using an 
Analytical Spectral Devices (ASD) at the time of image acquisition. Calibration sites consisted of a grassy field 
(bright target) and a deep-water lake (dark target). The ground spectra collected from the ASD were associated to 
corresponding AVIRI[S and Hyperion data using Global Positioning Satellite (GPS) data collected along with the 
ground spectra. 

'Pacific Forestry Centre, Natural Resources Canada, Victoria, British Columbia (dgoodeno@mcan.gc.ca) 
2Departnient of Computer Science, University of Victoria, Victoria, British Columbia 
Department of Geography, University of Victoria, Victoria, British Columbia 
Boeing Corporation, Seattle, Washington 
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3. Data Calibration 

Data calibration was necessary for deriving species classification, for deriving forest chemistry, and for 
evaluating compression. Radiometric corrections of the Hyperion data were generated using the level 1B 1 dataset 
from TRW, which was processed for smear correction, echo correction, background removal and bad pixel repair. 
Prior to further image processing, the data were corrected for destriping and desmiling as described by Han et al. 
(2002). The data were converted from radiance to reflectance using Environment for Visualizing Images (ENVI’s) 
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module based on MODTRAN4 
radiation transfer code. Details of the geometric correction procedures are described in (Dyk, et al., 2002). 
Geometric accuracies for the AVIRIS and Hyperion data were 10.1 m and 4.2 m, respectively. A force-fit hnction 
was created for each image using ground spectral data to calibrate reflectance values. The remotely sensed imagery, 
with the appropriate force-fit functions applied, were then used for forest classification and forest chemistry 
analysis. 

4. Forest Classification 

Species classification in the GVWD was performed using processed AVIRIS and Hyperion data. The 
Capital Regional District (CRD) provided a detailed forest cover GIS database to complement the chemical and field 
measurements made in EVEOSD for 54 plots. The forest cover layers were overlaid on 1 m orthophotos to delineate 
training areas for individual land cover types used in the classification. Forest and non-forest classes were selected 
based on definitions from the Canadian National Forest Inventory (NFI) photo plots (Dyk, 2001). 

With the large number of bands in the hyperspectral data, a data reduction technique was necessary to 
achieve accurate estimates of the covariance matrices produced by the classification algorithms. The AVIRIS and 
Hyperion data were subsetted to 204 and 165 bands, respectively, to remove water absorption and low signal-to- 
noise bands. The data were then transformed using a Minimum Noise Fraction (MNF) method and reduced to a few 
channels. The AVIRIS data were reduced to twelve new channels, which were used in the classification. Due to the 
influence of smile in the Hyperion data, the first MNF channel was not used, leaving 11 channels for classification. 
The MNF channels from both sensors were run through a Maximum Likelihood Classification with a total of 17 
classes defmed. Overall classification accuracies (Table 1) for the AVIFUS data were 90.5% for the truth and 88.5% 
for the check or test data. Hyperion overall classification accuracies were 87.4% for truth and 81.6% for check data. 

Table 1 - Detailed Classification Comparisons 

Results from the individual forest cover classification were aggregated and re-classified to produce a new 
set of forest cover percentages (Table 2). After aggregation, classification results for the sensors were 92.1% 
accuracy for AVIRIS and 90.0% accuracy for Hyperion. Image classification results are shown in Figure la-c. 
Classification results were verified with GIS reference data, field checks and ground plots. 
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Table 2 - Aggregated Classification Comparison 

Exposed land ~ Herb gramlnoldr 1 Hamlook, dominant w Doupie.-flr, domlnant 

nterbody Swamp area Lodgepols pine domlnant Undeesifled 

1 1 Shrub, low w Red elder, dmlnant w Wstlsrn redcedar 

Figure la-c: Landsat-7 image (a) I@, Hyperion classification @) middle and AVIRIS classification (c) right. 

5. Forest Chemistry and Bioindicators 

GVWD was examined using 2Om AVIRIS data and compared with sampled chemistry measurements using multiple 
regression analysis. Canopy niimgen content (N) was analyzed to derive a nitrogen distriiutim map of the study 

Hyperspectral remote sensing provides a method of deriving forest chemistry. Canopy chemistry in the 
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site. In order to do so, the hyperspectral data were converted to absorbance and transformed to derivatives for use in 
regression analysis. Absorbance (A)  was computed from reflectance (R) with the following equation (Smith, 2002): 
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Figure 2: AVIRIS Predicted Nitrogen vs. measured nitrogen with ? of 0.825. 

6. Compression 

examined. Hyperion data cubes acquired over the GVWD were compressed using the SAMVQ at a compression 
ratio of 20: 1 as described in Goodenough et al. (2002), where three cubes were classified for forest species and 
results were compared. A level 1B Hyperion image acquired over the GVWD on September 10,2001 was used for 
this research. Negative values and spikes were removed using a program called rm-neg-spk (RNS), designed by 
CSA, to create the second image cube used for comparison. The SAMVQ algorithm was applied by CSA at a ratio 
of 20: 1 to the RNS data cube. This compressed cube was then uncompressed and used for species classification. 

classification. Negative values and stripes were removed fi-om the original data cube using a BAD-PIXEL-CORR 
algorithm created by (Han et al., 2002). Image bands containing zero values and VNIWSWIR overlapping bands 
were removed to form spectra of 195 bands from the original 242 bands. A linear smile correction algorithm created 
by (Han et al., 2002) was then applied to the image cube. The data cubes were geocorrected using methods 
described by (Dyk et al., 2002). The data cubes were transformed using a forward MNF transformation 
(Goodenough, 2002); and the eigenchannels 2 to 12 were then used in the species classification as described 
previously. The first eigen channel was excluded as it contained a gradient due to smile. Seventeen classes were 
derived from ground truth data selected fi-om a GIS database and high-resolution aerial photography. A supervised 
classification was performed using two thirds of the truth pixels for calibration and the remaining one third for 
validation. 

Table 3 shows the difference in the classification accuracy between the three data cubes, the original, RNS 
and SAMVQ images. When examining the original data cube and the RNS data, no significant change (up to 1.1%) 
resulted. When comparing the difference between SAMVQ 20 and the RNS or original image, the non-aggregated 
classes decreased by 5.1% to 6.9% and the aggregated classes decreased by 2.1% to 6.8%. 

The accuracy of compression for storage and distribution of hyperspectral remote sensing data was 

The three data cubes, the original, RNS and SAMVQ uncompressed, were then processed in preparation for 
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Figure 3: AVIRIS Nitrogm concentraticm map 

Table 3: Classification Comparison and Differences of Original, RNS and SAMVQ 201. 

0- RNS S M n Q  ZB.1 
Average Overall Avmsge O v d 1  Aveage Overall 

Allclasses 1/3 8039% 81.61% 80.98% 81.11% 751w% 7495% 
AUClasscsZl3 8837% 87.38% 8847% 8629% 81.58% 81.19% 
AggsegatedlD 89.24% 89.96% 8934% 89.76% 87.19% 8638% 
Apgtepnt.dZn 9350% 94.21% 93.96% 93.61% 87A9.A 90.51% 

DlItcreace RNs-orig sAMVQ-m.9 sru\na-orlp 

AIICISSS~S in -0.01.h ason -5.184~ -6.16%. -5.1% -6.66% 
Au Clssw zn 0.10% -LW0h -6.89% -5.10% -6.79% 6.19% 
Appregnteili.? 030% 43% - W h  -2.78% -2.05% -2.98% 
-2~3 0.46%. 4.60% 4.47% -3.07% -6.01% -3.67% 

Average Overall Avssagc opcrsll Avasge Overall 

The Werence between the nonaggregated confusion matrix of the SAMVQ and the original two thirds 
training data showed an increased confusLon among forest species and densities (up to 19.43% difference). These 
differences show that the subtle changes made to the spectra are effecting the classificatiions at this finer level. 

7. Conclnsions 
AVIRIS was an essential tool enabling 11s to demonsme that we could recognize coastal forest species to 

operational accuracies. The overall correct classitlaition accul~cy for AVIRIS was 92.1% and for HyperiOn was 
90.0%. Initial results on nitrogen mapping are encouraging with reasonable agreement with field measurements of 
foliar chemistry. Compression does affect the results of even a simple supenrised classification by reducing 
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accuracies from 2.1% to 6.8% for aggregated classes and from 5.1% to 6.9% for non-aggregated classes. At this 
time, it is not recommended that lossy compression be used for satellite downlinks from hyperspectral sensors. Such 
compression is very useful for creating browse images and allowing people to search large archives of hyperspectral 
data. 

Table 4 : Classification confusion matrix difference (SAMVQ 20:l- original) 

Code Name Pixels 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 Exposed land 2 4 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
3 Recentcuts<6mo 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 Water 414 0 0 0.24 0 0 0 -0.24 0 0 0 0 0 0 0 0 0 0 
5 Shrub low 5 4 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
6 Old clear cuts 4 2 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
7 HerbGraminoids 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 Swamp 138 0 0 0 0 0 0 -2.2 1.48 0 0 -0.72 0 -0.72 0 0 2.2 -0.02 

9 Red alder 59 0 0 0 0 0 0 3.41 -11.8 0.01 0 0 0 0 -1.69 1.7 1.7 6.8 
IO Hemlock 60% 67 0 0 0 0 0 0 0 3.01 -8.93 0.01 5.93 0 -1.49 8.91 -1.49 -4.48 -1.49 

Dense 

Open 
1 I Hemlock 60% 45 0 0 0 0 0 0 0 0 4.4 -13.31 4.46 0 0 -0.02 0 4.48 0 

12 Lodgepole pine 171 0 0 0 0 0 0 0 0 4.63 1.73 -18.12 0 2.92 0.05 2.36 6.43 0 
13 Westemredcedar 12 0 0 0 0 0 0 16.7 0 0 0 0 -16.63 0 0 0 0.03 0 

14 DFDense60yr 95 0 0 0 0 0 0 0 0 -0.01 -1.05 1.04 0 -2.08 1.1 1.1 -3.12 3.13 
15 DFDense llOyr 169 0 0 0 0 0 0 0 0.02 2.97 0.6 0.61 0 -0.58 -7.08 2.33 -0.58 1.82 

17 DFOpen200+yr 244 0 0 0 0 0 0 -0.41 0 -0.01 -0.42 -0.01 0 0.36 0.42 4.53 -7.4 2.82 
18 DF Sparse40yr 288 0 0 0 0 0 0 3.1 1.76 0 0 0 0 3.49 -0.74 1.71 -0.71 -8.71 

60% 

16 DF Open 40 yr 72 0 0 0 0 0 0 0 -2.78 5.53 0 1.42 0 0.02 8.38 -19.43 2.73 4.12 

8. Acknowledgements 

most grateful for financial support from Natural Resources Canada and the Canadian Space Agency (CSA). We 
thank Dr. Allan Hollinger and Dr. Shen-En Qian for their assistance in hyperspectral compression experiments. 
This research would not have been possible without the extensive efforts of NASA, the AVIRIS team, and Dr. Rob 
Green of JPL. We thank them deeply for their support and professionalism. 

We acknowledge the cooperation of the Greater Victoria Watershed District staff and management. We are 

9. References 

Adamus, P. R., 1995, “Bioindicators for Assessing Ecological Integrity of Prairie Wetlands,” United States Environmental 

Dyk, A., 2001, “2001 National Forest Inventory Design Document Draft,” Pacific Forestry Centre, Natural Resources Canada, 

Dyk, A., D. G. Goodenough, A. S. Bhogal, J. Pearlman and J. Love, 2002, “Geometric Correction and Validation of Hyperion 

Goodenough, D. G., A. S. Bhogal, A. Dyk, A. Hollinger, Z. Mah, K. 0. Niemann, J. Pearlman, H. Chen, T. Han, J. Love, and S. 

Protection Agency E P N  600/ R-961082, September. 

Victoria, BC, Canada. 

and ALI Data for EVEOSD,” Proc. IGARSS 2002, Toronto, ON, Canada, vol. I, pp. 579-583. 

McDonald, 2002, “Monitoring Forests with Hyperion and ALI,” Proc. IGARSS 2002, Toronto, Ontario, Canada, vol. 11, pp. 
882-885. 

Green, R., Eastwood, M., Sarture, C., Chrien, T., Aronsson, M., Chippendale, B., Faust, J., Pavir, B., Chovit, C., Solis, M., Olah, 
M., and 0. Williams, 1998, “Imaging Spectroscopy and the Airborne Visible/Infiared Imaging Spectrometer (AVIRIS),” 
Remote Sensing of Environment, vol. 65, pp. 227-248. 

Han, T., D. G. Goodenough, A. Dyk, J. Love and P. Cheng, 2002, “Detection and Correction of Abnormal Pixels in Hyperion 
Images,” Proc. IGARSS 2002, Toronto, Ontario, Canada, vol. 111, pp. 1327-1330. 

Jacquemoud, S., Ustin, S., Verdebout, J., Schmuck, G., Andreoli, G. and B. Hosgood. 1996, “Estimating leaf biochemistry using 
the PROSPECT leaf optical properties model,” Remote Sensing of Environment, vol. 56, pp. 194-202. 

88 



Martin, M. E., S. D. Newman, J. D. Aber and R. G. Congalton, 1998, “Determining Forest Species Composition Using High 

Mohammed, G. IH., Noland, T.L., Irving, D., Sampson, P.H., Zarco-Tejada, P.J., Miller, J.R., “Natural and Stress-Induced Effects 

Spectral Resolution Remote Sensing Data,” Remote Sens. Environ., vol. 65, pp. 249-254. 

on Leaf Spectral Reflectance in Ontario Species,” Ontario Ministry of Natural Resources, Sault Ste. Marie Forest Research 
Report No. 156,2000. 

Smith, M. L., S. Ollinger, M. Martin, J. Aber, R. Hallett and C. Goodale, “Direct Estimation of Aboveground Forest Productivity 
Through Hyperspectral Remote Sensing of Canopy Nitrogen,” Ecological Applications, vol. 12, pp. 1128&1302,2002. 

Wessman, C., Aber, Y., Peterson, D. and J. Melillo, “Remote sensing of canopy chemistry and nitrogen cycling in temperate 
forest ecosystems,” Nature, vol. 335, pp. 154-156, 1988. 

89 





APPLYING TAFKAA FOR ATMOSPHERIC CORRECTION OF AVlRIS 
OVER CORAL ECOSYSTEMS IN THE HAWAI’IAN ISLANDS 

James A. Goodman,’ Marcos J. Montes: and Susan L. Ustin’ 

1. INTRODUCTION 

Growing concern over the health of coastal ecosystems, particularly coral reefs, has produced increased interest 
in remote sensing as a tool for the management and monitoring of these valuable natural resources. Hyperspec.h.al 
capabilities show promising results in this regard, but as yet remain somewhat hindered by the technical and 
physical issues concerning the intervening water layer. One such issue is the ability to atmospherically correct 
images over shallow aquatic areas, where complications arise due to varying effects from specular reflection, wind 
blown snrface waves, and reflectance from the benthic substrate. Tafkaa, an atmospheric correction algorithm under 
development at the US. Naval Research Laboratory, addresses these variables and provides a viable approach to the 
atmospheric correction issue. Using imagery from the Advanced Viible InhRed Imaging Spectrometer (AVIRIS) 
over two shallow coral ecosystems in the Hawai’ian Islands, French Frigate Shoals and Kane’ohe Bay, we first 
demonshate how land-based atmospheric uu~ections can be l i m i t e d  in such an environment. We then discuss the 
input mpbments and underlying algorithm concepts of Tafkaa and conclude with examples illustrating the 
improved performance of Tafkaa using the same AVlRIS images. 

2. STUDYAREAS 

Three AWUS fligbthes from the 2000 Hawai’ian Islands acquisition were used in this analysis. All three were 
acquired from the high-altitude ER-2 platform at an altitude of 20 h, thereby producing a nominal pixel size of 
approximately 17 m. Two of the flightlines cover the southern portion of French Frigate Shoals (Fig. 1). which is a 
sizeable semi-eircular atoll in the remote Northwestem Hawai’ian Islands extending nearly 34 km in width. The area 
contains a few small exposed sandy islets, but consists mostly of submerged coral reefs and other associated 
habitats. The two 5ightlmes for this are4 tD00418tO1pO3~rO1 and tDOO418tOlpO3-rO2, are significant because they 
contain overlappii spatial coverage and exhibit substantia1 differences in specular reflection f k m  the water 
s&e. This overlapping region provides a valuable avenue for evaluating algorithm performance for the same area 
but lmder Herent illumination conditions. The third flightlie, fDo0412tOlpO3-rO8, covers Kane’ohe Bay on the 
northeast shore of O’ahu. Kane’ohe Bay is a partially enclosed emhayment, extending approximate€y 4 h in width 
and 13 km in length along a northwest-to-southeast axis. The bay contains tlingjng reefs, sizeable pat& reefs and an 
extensive protecting barrier reef Habitat and water quality conditions vary within the bay and the reefs range from 
coraldominated to algae-dominant systems. Dif€erences in specular reflection are not as visually apparent in this 
flighthe and thus serve to test algorithm performance under mare consistent ilhnnination conditim. 

The Hawai’ian Islands 

O’ahu 

W b  French Frigate Shoals 

Figure 1. Study areas in the Hawai’ian Islands. 

‘ Center fw Spatial Technologies and Remote Sawing (CSTARS), Eqarmeni of Land, An and Watcr Resources, UnivMiiy of Califomis, 
Dans (wnospanding author: j ~ u & v i s . c d u )  
* R m t e  Scosi Llivisicm, Code 7232, Naval Research Iabomtory, W ~ ~ n .  Dc. 
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3. EXAMPLE CORRECTION LIMITATIONS 

The Atmospheric CORrection Now (ACORN) software package was selected to provide an example of the 
potential difficulties of using a land-based atmospheric correction algorithm over water. ACORN (Analytical 
Imaging and Geophysics, LLC) is a readily available commercial atmospheric correction package that is commonly 
used in terrestrial hyperspectral applications. Its use here is not intended to identify weaknesses in ACORN nor be 
critical of its use on other datasets, but merely to illustrate a situation where limitations in terrestrial algorithms 
become evident when applied to an aquatic system. 

3.1 ACORN Methods 

ACORN requires radiometrically calibrated radiance data as input and produces estimates of apparent 
reflectance based on MODTEUN radiative transfer calculations (AIG, 2001). Other inputs to the model include: a 
description of sensor characteristics for the wavelength position, full-width half-max, gain, and offset for each band; 
the average elevations of the sensor and the image; and scene specific information identifying the latitude, longitude, 
time and date of the image center. For application to the three AVIRIS flightlines considered here, the algorithm was 
run in Mode 1 (hyperspectral atmospheric correction of complete image) with a tropical atmospheric model, using 
the 940 and 1140 nm bands to derive water vapor, and allowing the model to estimate atmospheric visibility based 
on image characteristics. Options were also selected to reduce the effects of spectral mismatch and minimize the 
errors associated with the 1400 and 1900 nm water vapor bands and other smaller spectral artifacts. 

3.2 ACORN Results 

Reflectance outputs for two locations in French Frigate Shoals are illustrated in Fig. 2. The first area (2A) 
depicts results for a shallow location with significant reflectance from the benthic surface and the other area (2B) for 
a deep-water location with no influence fi-om the bottom. The two lines in each graph illustrate output for the same 
geographic location as derived from the two separate overlapping images, thereby providing a direct comparison of 
model performance for the same area but under differing amounts of specular reflection. Keeping in mind that 
reflectance in longer wavelengths should approach zero due to the absorption properties of water, it is apparent in all 
situations that the resulting reflectance exhibits a shift to higher values. Other observations reveal that this shift is 
not spatially uniform throughout the image nor is it dependent on water depth. Furthermore, it is uncertain whether 
this shift is constant across all wavelengths for a given pixel or whether it is independent of wavelength. There is 
also an inconsistency in results between the two overlapping images, which is presumably a function of the 
significant differences in specular reflection. Results for two locations in Kane’ohe Bay, an image with far less 
visually apparent variation in specular reflection, are presented in Fig. 3. A similar shift in reflectance is again 
apparent. The presence of this shift along with the observed inconsistencies illustrates a limit in the quantitative 
application of land-based atmospheric correction algorithm over water. 
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Figure 2. ACORN derived reflectance for French Frigate Shoals from two overlapping 
flightlines: (A) shallow area with strong bottom influence; and (B) deep water. 
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Figure 3. ACORN derived reflectance for Kane’ohe Bay: (A) shallow area with strong 
bottom influence; and (B) deep water. 

4. TAFKAA 

Tafkaa is an extensively modified version of the ATmospheric REMoval algorithm (ATREM; Gao and Davis, 
1997; Gao et al., 1993) that has been specifically adapted to address the confounding variables associated with 
aquatic remote sensing applications (Gao et al., 2000; Montes et al., 2001,2003a, 2003b). It uses information 
supplied in the input files and by the spectral characteristics of the input radiance data to generate atmospheric 
correction parameters i?om a series of lookup tables. Given input of radiometrically corrected at-sensor radiance 
data, Tafkaa provides output in the form of reflectance (p = nLw/Ed), remote sensing reflectance (L,/Ed), normalized 
water-leaving radiance: ([Lw]~), or observed reflectance (Pobs). Tafkaa also has an associated procedure called Mask 
that allows for masking of land and clouds. Presented below is an introduction to the Mask and Tafkaa algorithms, 
an overview off their input requirements, and a discussion of results as applied to the AVIRIS images of French 
Frigate Shoals and Kane’ohe Bay. 

4.1 Mask 

The Mask algorithm (undergoing development) provides a utility for identifying and masking land, cirrus 
clouds, and low altitude clouds. Tafkaa requires knowledge of which pixels are not aquatic because the underlying 
assumptions used for determining the appropriate aerosol model and optical depth over water do not apply to land or 
clouds. Thus, identification of land pixels allows Tafkaa to properly process land pixels using a different procedure. 
Additionally, independent identification of cirrus clouds may allow for correction of some of these pixels at a later 
date (Ciao et al., 1998). Criteria for creating each of the three masks are based on values of observed reflectance, Pobs, 

as calculated fi-011-1 the input radiance data and approximations of extra-terrestrial solar irradiance. The land mask 
employs a user-defined threshold on either a single wavelength (also configurable) or on a normalized difference 
index, NDI. The cloud masks are both determined by user-defined thresholds on particular wavelengths, 1375 nm 
for cirrus clouds and 940 nm for low altitude clouds. A complete description of all configurable parameters can be 
found in the Musk User’s Guide. Output is in BSQ image format, where bands in the image represent each of the 
resulting masks (6) is not masked and 100 is masked). The land mask selected for this analysis was the NDI option, 
(po~,(86Onm)-~~o~,(~6C~nm))/(p,b,(86Onm)+po~s(66O~)), with land assigned to pixels where NDI > 0.05. The cirrus 
cloud mask was identified by pixels where p0b,(1375nm) > 0.0025 and the low altitude cloud mask by pixels where 
pOb,(940nm)~ > 0.1. Example Mask output is presented in Fig. 4 for an area of Kane’ohe Bay centered on Moku 0 
1Lo’e (Coconut Island). Results reveal good agreement for the land areas of the land mask, but also appear to include 
areas of cloud as land. The cirrus and low altitude cloud masks show even less robust performance with these 
particular settings. Nevertheless, when used together the overall mask output does an acceptable job of leaving the 
aquatic areas unmasked while sufficiently masking land and clouds. 
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. i 

Figme 4. Mask output for Kane’ohe Bay with Molcu 0 Lo’e (Coconut Island) shown at center: 
(A) unmasked RGB; (B) land mask; (C) cirrus cloud mask; and (0) low altitude cloud mask. 

4.2 Atmospheric Correctton 

The underlying equation for Ta&aa considers total at-sensor radiance to he a funaion of path radiance, specular 
reflection from the water surface and reflected radiance from the water, which is a composite hction of reflected 
radiance from the water column and bottom passing through the air-water interface. The algorithm inteqmlates 
correction pamnetem from lookup tables generated using a vector rndiative transfer program and ultimately 
provides a pixel-by-pixel solution for the radiance reflected from the water. Input parameters include the sensor 
altitude, average ground elevation, wind speed, and level of atmospheric ozone (estimated wing data from the 
TOMS se,nsor). A full description of these and other input parameters can be found in the fhpmtly updated T&a 
User’s Guih. Tafkaa was nm on the three AVJRB flightlines with a tropical atmospheric mod& all available 
gasaous absorption calculations (HzO, COZ, 4, NzO, CO, CH,, &) and by excluding use of urban aerosols from the 
offered aerosol solutions. The model also allows the user to select bands from a set of options to sisnify wavelength 
with no apparent water leaving radiance for determining aerosol compntatiom (Fig. 5). Bands selected for French 
Frigate Shoals and Kme’ohe Bay included the 1040,1240,1640 and 2250 nm wavelength. The most recent version 
of T a h a  additionally includes a feature allowing for computations to explicitly account for pixel-by-pixel 
variations in view and illumination geometry (Montes et al., 2003a). Using this option proved to significantly 
enhance Tafkaa’s a b i i  to account for cross-track variations in specular reflection for the flightlines considered 
hem. The additional input parameters for this option were the date, time and location of the center for every image 
line, BS well as the AVIRIS cross-track pointing geometry. 

Figure 5. Observed radiance for three bands of radiometrically CoRZcted AVIRIS data for 
Kane’ohe Bay: (A) 550 nm; (9) 860 nm; and (C) 1040 nm. Note tbat bottom is strongly 
visile at 550 nm, only slightly apparent at 860 nm, andno longer evident at 1040 nm. 
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4.3 Tafkaa Results 

Reflectance results produced fiom Tafkaa are presented for the same areas as examined above and output is 
again presented in the form of reflectance. Fig. 6 illustrates results for French Frigate Shoals and Fig. 7 for Kane'ohe 
Bay. Unlike results h i m  the land-based algorithm, reflectance values in the Tafkaa output appropriately tend 
towards zero at longer wavelengths, which holds true throughout each of the images. A certain amount of spectral 
mismatch is evident in the results (e.g., around the 940 nm water vapor absorption feature), but overall the generated 
values are reasonable. Although it is possible to analyze and even ameliorate the spectral mismatch (Gao et al., 
20031, this ability has not yet been built into Tafkaa. Results for the same geographic areas from the two different 
flightlines in French Frigate Shoals (Fig. 6) are substantially more similar than those produced using the land-based 
algorithm (Fig. 2). Although this comparison is not perfect, the level of agreement between the two flightlines is 
encouraging considering the sizeable differences in specular reflection. Thus, analysis of spatial and temporal 
changes within and between flightlines can be performed with greater confidence that differences are a function of 
changing water and bottom conditions and not artifacts of the atmospheric correction routine. Overall, it is evident 
that there is still room for improvement, but improved results demonstrate that Tafkaa more successhlly generates 
acceptable reflectance output for atmospheric correction over water and produces improved results over land-based 
algorithms. 
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Figure 6. Tafkaa derived reflectance for French Frigate Shoals from two overlapping 
flightlines: (A) shallow area with strong bottom influence; and (B) deep water. 
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Figwe 7.  Tafkaa derived reflectance for Kane'ohe Bay: (A) shallow area with strong 
bottom influence; and (B) deep water. 
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5. CONCLUSION 

Analysis of benthic habitats in shallow aquatic areas is complicated by the confounding effects of the overlying 
water column and the air-water interface. This means that in addition to atmospheric influences, at-sensor 
measurements over water are also a function of water properties, surface waves, water depth, bottom characteristics 
and illumination conditions. This presents a more challenging environment than typical atmospheric correction 
problems over land, and thus is not necessarily suitable for land-based correction algorithms. For instance, as shown 
in the examples above, there are situations where results fiom land-based algorithms can be inconsistent and of 
limited utility. In contrast, Tafkaa is designed to directly address the aquatic correction issues. The Ta&aa results 
illustrated above demonstrate physically realistic reflectance output and uniformity within and between images. This 
represents not only an improved atmospheric correction, but also a more appropriate foundation from which to next 
address issues of water column correction and spectral analysis of the benthic surface. Thus, improvements in the 
atmospheric correction will ultimately lead to advances in the evaluation of benthic habitats. 
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MONITORING THE ON-ORBIT SPECTRAL CALIBRATION OF THE NEW MILLENNIUM 
EO-1 HYPEIUON IMAGING SPECTROMETER 

Robert 0. Green 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Caliornia 

. INTRODUCTION 
Imaging spectrometers measure multiple contiguous spectral channels that are reported as spectra. 

kese measments are used to pose and answer science-research and application questions about the 
surface, based on the molecular absorption and constitwent scattering signatures expressed in the spectra. 
Analysis of spectra measuied of the Earth in the solar reflected portion of the electromagnetic spectnun 
from 400 to 2500 nm requires accurate and precise spectral calibration. The sensitivity of imaging 
spectrometer analyses to spectral calibration results from the fine specid absorption features from the 
Earth's atmosphere imprinted on every spectrum (Green 1998). Figure 1 shows the modeled high- 
resolution upwelling radiance spectrum for a surface of constant 0.5 reflectance. The spectral response 
functions for a IO-nm imaging spectrometer and the convolved tadiance spectrum are shown as well. In 
the presence of these strong atmospheric absorption features, errors in speotnrl calibration induce errors in 
reported radiancss. Figure 2 shows the error in reported radiance resulting b m  specectrrtl Calibration errors 
of 1.0,0.5, and 0.1 nm fora 10-nm imaging spectrometer. This sensitivity causes spectral calibration to 
be a c M  parameter for analysis of imaging spectrometer measurements. This sensitivity has been used 
to investigate and derive the operational spectral calibration of imaging spectrometers instruments (Cone1 
et al. 1988, cfreen et al, 1990, Goetz et at. 1995, Grm 1995, Gao et al. 2002, Green and Pavri 2002). 

-Incident Radiance - Convolved Radiance (offset) 
-Normalized Response Functions (range 0 to 1) 
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Figure 1. Highresolution total upwelling radiance spectrum for a 0.5-retlectance surface. Spectral response 
functions for a 1 0 m  imaging spectrometer and the resulting 10-nm convdwd radiance spectrum are shown as well. 
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Figure 2. E m  in reported radiance resulting from errors in spectral calibration of 1 .O, 0.5, and 0.1 nm. 

Figwe3. A 
pottion of the 
Hyperion 
image 
acquired of 
Salar de 
Arizaro, 
Argentina, on 
February 7, 
Mol. 

The Hyperion imaging spectrometer (Fokman et al. 2000) 
was launched onboard theNew Millennium EO-1 satellite on 
November 21,2000. Hyperion is the first Earth-orbiting imaging 
speotrometer operating across a brvad portion of the soh 
refleoted spectrum with nominal spectral coverage from 400 to 
2500 nm and 10-nm sampling and resolution. The Hyperion 
instrument was radiometridy and spectrally calibrated in the 
laboratory in the summer of 1999 @any 2001). To assess the on- 
orbit performance of Hyperion soon &er launch, a series of 
experiments was orchestrated in the Janwcy and February 
summer illumination conditions of the Southern Hemisphere. For 
one of t h w  experiments a Hyperion data set was acquired of the 
high-dtiie dry salt lakebed of Sdar de Arizaro on February 7, 
2001. Salar de Arizaro is located at 24O south latitude and 67O west longitude with 
an elevation of 3700 m in the Andes of northwest Argentina. Figure 3 shows the 
Hyperion image acquired of Salar de Arizaro. Figure 4 shows the high uniform 
speotral reflectance for a dibration site on the surface of Salar de Arizam. The 
large homogeneous high reflectance surface and thin low-water-vapor atmosphere 
provided an ideal target to assess and monitor the on-orbit spectral calibration of 
Hyperion. Additional Hyperion data sets were acquired on February 10, March 30, 
April 25, May 1, and December 11,2002. This paper reports the approach, 
analyses and results of assessment and monitoring Hyperion on-orbit spectral 
calibration with data sets measured of the Salar de Arizaro, Argentina. 

2. SPECTRAL CHARACTERISTICS OF PUSHBROOM IMAGING 
SPECTROMETERS 

The design of the Hyperion imaging spemmeter is of the pushbroom form. 
With a pushbroom imaging spectrometer, the spectrum is dispersed onto an area 
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array detector such that each cross-traok spatial element of the images is acquired by a deeerent column in 
the detector array. For a uniform cross-track imaging spectrometer image, the dispersion of light into the 
spectrum must be identical in all cross-track elements on to the detector array. Factors in design, 
manufacture, alignment, and stability make development of a uniform pushbroom imaging spectrometer 
extremely challenging. Figure 5 depicts the goal of a uniform imaging spectrometer and two possible 
deviations from that goal resulting in a nonuniform imaging spectrometer. 
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Figure 4. Measured spectral reflectance for a calibration target on the surface of Salar de Arizaro, Argentina. 

(a I C b L  I @,' 
Fiaure 5. In these m e k .  the colors reoresent the soectrum. the sauares reoresent the detectors. and the dots 
represent the &I resobtjon field of Gew: (a) optimal imaging sphromet& design; spectral caiibration is uniform 
across the full field of view, (b) nonuniform C U N ~ ~ ,  and (c) tilted cross-tradc spectral calibration variation. 
3. LABORATORY SPECTRAL CALIBRATION OF HYPERION 

The Hyperion imaging spectrometer was spectrally calibrated in the laboratory (Barry 2001a). This 
spectral calibration resulted in a predicted spectral wavelength position and spectral response function 
full-width-at-half-maximum (FWHhf) for each spectral channel and cross-track spectral sample. Figure 6 
shows the laboratory spectral calibration for the spectral channel near 760 nm for each of the 256 cross- 
track spatial elements of Hyperion. Based on this laboratory calibration, the cross-track spectral 
calibration varies by as much as 3 nm in a tilted curve. A 3 nm variation corresponds to 30% of the 10- 
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nm FWHM of this spectral channel. Figure 7 shows the laboratory spectral calibration for the Hyperion 
spectral channel centered near 1145 nm. The cross-track variation is -0.5 nm, which corresponds to 5% 
of the 10-nm FWHM of this spectral channel. The forms of spectral calibration cross-track variation in 
Hyperion are different in these two spectral regions because Hyperion uses two spectrometers to cover the 
full spectral range. The visible-near-infrared spectrometer (VNIR) covers the range from 430 to 900 nm, 
and the short-wavelength-infrared spectrometer (SWIR) covers the range from 900 to 2390 nm. Each of 
these two spectrometers have different design, manufacture, alignment, and stability properties. There is 
a corresponding cross-track spectral calibration for each spectral channel of Hyperion. These laboratory 
calibration results represent the best prediction of the on-orbit spectral calibration of the Hyperion 
imaging spectrometer. 
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Figure 6, Laboratory-derived cross-track spectral calibration for the Hyperion spectral channel near 760 nm. 

4. ON-ORBIT SPECTRAL CALIBRATION APPROACH 

The approach used to assess the on-orbit spectral calibration of Hyperion relies on the strong narrow 
atmospheric absorption features present in the total upwelling spectral radiance incident at Hyperion. 
Figure 8 shows a full-spectral resolution MODTRAN radiative transfer code modeled spectrum for the 
Salar de Arizaro (Berk et al. 1989, Anderson et al. 1995 and 2000). Figure 9 shows a Hyperion spectrum 
from Salar de Arizaro for February 7,200 1. Shifts in spectral calibration were assessed by convolving 
the high-resolution MODTRAN radiance spectrum to the Hyperion laboratory calibration parameters and 
comparing the result to the Hyperion measured data over Salar de Arizaro. Errors in Hyperion spectral 
calibration become evident in spectral regions of strong atmospheric absorption, such as oxygen at 760 
nm. Figure 10 shows the spectral agreement between the convolved MODTRAN spectrum and the 
measured Hyperion spectrum for the 760 nm spectral region using the Hyperion laboratory spectral 
calibration. The size and form of the disagreement between the two spectra indicate that an improvement 
on the laboratory spectral calibration is possible. Figure 11 shows the agreement between the convolved 
MODTRAN spectrum and the Hyperion spectrum with a 1.2-nm shift of the Hyperion laboratory spectral 
calibration. The agreement is improved with the 1.2-nm shift. This analysis approach was automated and 
applied to all the cross-track elements of Hyperion for the 760-nm oxygen atmospheric band spectral 
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region. Figure 13 shows the on-orbit derived spectral calibration for the 256 cross-track samples of 
Hyperion for the Salalr de Arizaro measurements acquired on February 7,2001. A similar analysis was 
performed for the carbon dioxide absorption band near 2000 nm. Figure 14 shows the on-orbit cross- 
track spectral calibration results for this spectral region derived through this approach. 
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Figure 7. Laboratory-derived cross-track spectral calibration for the Hyperion spectral channel near 11 40 nm. 
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Figure 8. Full-spectral-resolution MODTRAN radiative transfer code modeled radiance spectrum for Hyperion for 
Salar de Arizaro on February 7, 2001. 
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Fw 9. Hyperion spectrum from the Salar de Arizaro acquired on February 7,2001. 
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Figure 12. On& derived cross-track specIra1 calibration for Hyperion in the 760-nm spectral region fwthe Salar 
de Arizaro data acquired on February 7,2001. 

103 



2007.0 

1 2003.0 - 
0 g 2002.0 - 

2001.0 - 

2000.0 - 

1999.0 

-Laboratory Derived 
--Arizaro 010207 

, 
0 32 64 96 128 160 192 224 256 

Ckoss-Traok Sample (#) 

Figure 13. On-orbit derived cmss-track spearal calibration for Hypwion m th@ 2M)O-nm speclral region for the Salar 
de Arizam data acquired on Februaly 7,2001 I 

5. ON-ORBIT SPECTRAL CALIBRATION MONITORING RESULTS 
In addiion to the Hyperion data measured on February 7,2001 at Salar de Atizaro measurements 

were ncquired on February 10, March 30, April 25, May 1, and December 11,2002. The on-orbit s p e d  
caliration derivation algorithm was appliedto these additional data sets. Figure 14 shows the on-orbit 
derived spectral calibration for the 760-nm spectral region f a  these additional dates. This spectral region 
is measured by the VNIR spectrometer of Hyperion. The on-orbit spectral calibration m&tains a similar 
cross-twck vatirdon form and shows less than 0.5-nm shift among these data sets. The analysis was also 
repeated for the 2000-nm spectral region. The spectral region occurs in the Hypedon SWIR 
spectrometer. Figure 15 shows the spectral calibration variation amongthese data sets in the 2000-nm 
spectral region. With the exception of May 1,2002, the spectral calibration showed similar excellent 
cross-traclrform and variation below 0.5 nm shift. The result for May I, shows a 1.5-nm shift to shorter 
wavelengths. The source of this shift is currently unknown. Overall the derived on-orbit spectral 
calibration of Hyperion is shifted with respect to the laboratory spectral calibration, but with the exception 
of May 1, the derived on-otbit spectral calibration WBS stable among the Salar de Arizaro data sets 
examined. 

6. CONCLUSION 

spectrometer data. h e  to the ubiquitous, strong, narrow absorption features ofthe Earth's atmosphere, 
small errors in spectral calibration produce comparable or larger errors in the reported radiance. 
Fortunate& this sensitivity to spectral calibration enables a spectral Wing approach to assess the spectral 
calibration of imaging spectrometers in the operational environment. 

calibration of Hyperion predicted considerable curvature and tilt in the spectral calibration of VNIR 
spectrometer and minimal curvature aad tilt in the spectral calibmtion of the SWIR spectfirmeter. 
Hyperion data sets were acquired at the high altitude high-reflectance dry salt lake of Salar de Arizaro 
star&g on February 7,2001. A spectral fittins approach was applied to derive the optimal on-orbit 

Spectral calibration is required for pursuit of scientific research and application with imaging 

The Hyperion imaging spectrometer was launched on November 21,2000, The laboratory spectral 
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spectral calibration of Hyperion for specific spectral regions of both the VNIR and SWIR spectrometers. 
In the VNIR spectrometer both cross-track spectral calibration curvature and tilt were derived of similar 
form to that of the laboratory spectral calibration. However, shifts in spectral calibration position of up to 
2 nm with respect to the laboratoiy spectral calibration were determined. The on-orbit derived specbal 
calibration in the SWIR spectrometer had a similar form to the laboratory calibration, but with a shift of 
up to 3 nm in spectral position. These on-orbit derivations provide an assessment and basis for improving 
the on-orbit spectral calibration knowledge of Hyperion. 
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Figure 15. Derived on-orbit cross-track spectral calibration of Hyperion for the SWIR 2000-nrn spectral region at 
Salar de Arizaro, Argentina, for a range of dates. 
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Hyperion data were acquired of the Salar de Arizaro dry salt lake on a number of dates during the 
period fiom February 7,2001 to December 11,2002. This range of data sets allowed assessment of the 
on-orbit spectral calibration stability of Hyperion. For the VNIR spectrometer in the 760-nm spectral 
region, Hyperion was shown to be stable, with variation of less than 0.5 nm. In the SWIR spectrometer 
the on-orbit spectral calibration was also stable to 0.5 nm, with the exception of May 1,2002. Overall 
these analyses and results show a significant shift between the laboratory and on-orbit calibration of 
Hyperion and that on-orbit, the spectral calibration of Hyperion is stable. 

As future imaging spectrometers are designed, manufactured, aligned, and operated, spectral 
calibration will remain of high importance. The technique used here for Hyperion provides an approach 
to derive, monitor and update the operation spectral calibration of imaging spectrometers. Nevertheless, 
it is of foremost importance that imaging spectrometers have excellent stability for these techniques to be 
optimally useful. 
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Inflight Calibration Experiment Results for AVIRIS on May 6,2002 at 
Rogers Dry Lake, California 

Robert 0. Green and Betina Pavri 
Jet Propu1s:ion Laboratory, California Institute of Technology, Pasadena, California 

1. INTRODUCTION 

Calibration of any remote measurement is required in order to to (1) extract information directly from 
the measured spectral radiance, (2) compare measurements acquired at different times and from different 
regions, ( 3 )  compare measurements with measurements from other instruments, and (4) derive 
information from mleasurements using physically-based computer models. 

The Airborne Visiblehnfrared Imaging Spectrometer (AVIRIS) (Green 1998a) measures the spectral 
range from 3 70 to 25 10 nm at -1 0 nm sampling, and spectral response finction. These spectra are 
measuretd as images with 5~ 20 by 20-m spatial resolution and an 1 1-km swath with up to 1 000-km image 
length from the NA,SA ER-2 aircraft flying at 20-km altitude. Qn the Twin Otter aircraft flying at 4-km 
altitude the spatial resolution is 4 by 4 m with a 2-km swath and up to 200-km image length. Each year 
AVIRIS is spectrally, radiometrically, and spatially calibrated in the laboratory (Chrien et al. 1990, 1995, 
1996,2000). 

Laboratory calibration and characterization are essential, but not sufficient to ensure that 
measurements acquired in the operational airborne environment are calibrated. To assess and validate the 
calibration off AVEJS in the flight environment, an inflight calibration validation experiment is 
orchestrated usually at the beginning, middle, and end of the flight season (Cone1 1988; Green et al. 1990, 
1992, 1993a, 1995, 1996, 1998b, 1999,2000,2001, 2002). For the inflight calibration experiment, 
AVIHS measurements are acquired over an extended-area homogeneous-surface calibration target. At 
the time of the AVIEUS measurements, the surface reflectance and atmospheric conditions at the 
calibration target arle measured. The surface reflectance and atmospheric conditions at the calibration 
target are measured. The surface and atmospheric measurements are used to constrain an atmospheric 
radiative transfer code and predict the upwelling spectral radiance arriving at AVIRIS. The quality of 
AVIRIS inflight calibration is assessed based on a comparison of the predicted incident upwelling 
spectral radiance and the AVIRIS-measured incident total upwelling spectral radiance. This paper reports 
the results of the priincipal AVIRIS inflight calibration experiment of 2002. 

2. FIELD IMEASWEMENTS 

The primary inalight calibration experiment for AVIRIS in 2002 was orchestrated on a clear-sky day 
at Rogers Dry Lake, California on May 6,2002. Rogers Dry Lake is located about 106) km north of Los 
Angeles, California, at 34.9" north latitude and 117.8' west longitude. Figure 1 shows an AVIRIS image 
of Rogers Dry Lake with the calibration target location indicated. The calibration target was designated 
on the surface as a visually homogeneous area of 200 by 40 meters of the dry lakebed surface. Large blue 
plastic demarcation tarpaulins were located 20 m beyond each end of the target. The elevation of the 
surface calibration target was 707 m. 

At the calibration target, the surface spectral reflectance of the calibration target was measured in the 
period *30 minutes of the AVIRIS airborne measurements with a portable field spectrometer (Analytical 
Spectral Devices Inc., Full Range Spectrometer). This field spectrometer measures the range from 350 to 
2500 nm and repods the spectra at 1-nm spectral sampling. Spectra of both the calibration target and a 
reflectance standard (Spectralon, Labsphere Inc.) were acquired. The measurements were reduced to 
reflectance as ratios of the calibration target and reflectance standard measurements. The ratios were 
further corrected for the absolute spectral reflectance of the standard and the bidirectional reflectance 
distribution ffunction for the solar zenith angle under which the measurements were acquired. Figure 2 
shows the average reflectance of the calibration target, the standard deviation, and the standard deviation 

109 



of the mean (Taylor 1982) for these 
measurements. The standard deviation is 
less than 0.02 reflectance, and the standard 
deviation of the mean is less than 0.005 
reflectance. The standard deviation of the 
mean indicates the accuracy to which the 
average reflectance of the calibration target 
is known. The average reflectance of the 
surface calibration target is required to 
predict the total upwelling spectral radiance 
incident at AVIRIS. 

Adjacent to the calibration target on the 
surface of Rogers Dry Lake, atmospheric 
measurements were acquired with a 10- 
channel solar radiometer (University of 
Arizona, Reagan Instrument). This 
instrument measures the solar intensity in 10 
spectral channels centered at 370,400,440, 
520,620,670,780,870,940, and 1030 nm. 
These measurements were acquired from 
S-e through local 
shows a plot of these measurements over 
time for the morning of May 6,2002 
AVIRIS inflight calibration experiment. Figure 4 shows a plot of the natural log of intensity versus 
airmass. Using the Langley method, the average total optical depth of the atmosphere at each spectral 
channel was calculated. With an absolute calibration of the solar radiometer, the instantaneous optical 
depths were calculated as well. The instantaneous derived optical depths for the May 6,2002 AVLRIS 
inflight calibration experiment are shown in Figure 5. This solar radiometer measures a spectral channel 
centered at the 940 nm atmospheric water vapor absorption band. These data were used to calculate the 
instantaneous total column water vapor (Reagan 1987; Bruegge et al. 1992). A value of 9.27 mm 
precipitable water was derived for the time of the AVIRIS overflight. 

noon. F i W  3 Figure 1. AVlRlS image of Rogers Dly Lake, California, with location of 
surface calihation tag& 

-Average Reflectance (93) 

- Standard Deviation 

- Standard Deviation of the Average 

O l  & 

400 700 1000 1300 1600 1900 2200 2500 
Wavelength (nm) 

Figure 2. Specbal retlectance measurements ofthe calibration target on the surface of 
Rogers Dry Lake, California, on May 6,2002. 
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Other properties of the atmosphere required for the inflight AVIRTS were the amounts of atmospheric 
carbon dioxide and ozone. Values for these constituents of the atmosphere were extracted from available 
global data sets. A value of 375 ppm was obtained for carbon dioxide Keeling and Whorf2002). A value 
of 375 Dobson units was obtained for ozone in the Rogers Dry Lake, California, region on lway 6,2002. 
These parameters provide further constraint of the atmosphere for prediction of total upwellii spectral 
radiance incident at AVIRIS over the Rogers Dry Lake calibration target. 
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Figure 3. Solar radiometer measurements for the May 6,2002 AVlRlS inflight calibration expwiment. 
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Figure 4. Langley plots of the solar radiometer measurements. The slope of each line gives the Langley 
optical depth of the atmosphere over the time of the measurements. 
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Figure 5. Instantaneous optical depthsfor May 6,2002 at Rogm Dry Lake, California. 

with the time ofhe AVlRlS overffieht indicated. 

3. MODELED RADIANCE 
To predict the total upwelling spectral radiance incident at AVIRIS over the calibration target ai the 

time of the overflight, the surface and atmospheric measurements were used to constrain the MODTRAN 
radiative transfer code (Be& et aI. 1989; Anderson et aI. 1995). The mid-latitude summer abnospheric 
model was used and the visibility parametex adjusted until a good match was obtained between the 
measured total optical depths and the corresponding MODTRAN atmospheric model optical depths. 
Figure 6 shows the memured and MODTRAN optical depths for a visibility of 75 km. The MODTRAN 

- MODTRAN Modeled 

400 450 500 550 600 650 700 750 800 850 900 950 1000 

Waveleagth (nm) 
Figure 6. Comparison of the measured and MODTRAN model total optical depths for the AVlRlS 

i M i  calibration ep'ment on May 6,2002 at Rogers Dry Lake, CaUfania. 

112 



radiative transfer code was constrained for these optical depths as well as water vapor, ozone, carbon 
dioxide, and surface spectral reflectance and used to predict the radiance incident at AVIRIS over the 
calibration target at the time of the AVIRIS overflight. Figure 7 shows the predicted upwelling spectral 
radiance at full MODTRAN spectral resolution. In Figure 8, the predicted radiance was convolved to the 
AVIRIS spectral reslponse functions. This spectrum of the predicted upwelling spectral radiance over the 
calibration target provides the basis to assess the radiometric calibration of AVIRIS in the operational 
flnght environment. 

- MODTRAN Full Resolution 

400 700 1000 1300 1600 

Wavelength (nm) 
1900 2200 2500 

Figure 7. Predicted total upwelling spectral radiance for the calibration target at Rogers Dry Lake, 
California at the time of the AVlRlS ovefflight on May 6, 2002. 

- MODTRAN Special Response Functions Convolved 
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Figure 8;. MODTRAN-predicted radiance incident at AVlRlS convolved to the AVIRIS spectral response functions. 
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4. AVIRISMEASUREMENTS 
AVIRIS measurements of the calibration target on the surface of 

Rogers Dry Lake, California, were acquired at IT59 UTC on May 6, 
2002. Figure 9 shows the location of the calibration target between the 
demarcation kupaulii in a channel ratio of a subset of the AVIRIS 
image. The AVIRIS measurements for the 40 by 200-m area of the 
catibration target were extracted and averaged. Figure 10 shows the 
average total signal, end-of-scan-line dark signal, and total minus dark 
signal for the calibration target. These measured data were calibrated 
to spectral radiance with the laboratoryderived radiometric calibration 
coefficients and spectral calibration parameters shown in Figure 11. 
The ratio of the onboard calibrator signal between the time of 
laboratory calibration and acquisition of these data was used to 
compensate for changes bemeen the laboratory and operational flight 
environment (Green 199313). Figure 12 shows the AVIRIS-calibrated 
radiance fa the Rogers Dty Lake, California, calibration target at 1759 
UTC on May 6,2002. 

Figure 9. A subsel of the AVlRlS 
Rogers Dry Lake. CalaOmia, image 
showing location of calibratmn target 
between demarcation tarpaulins on the 
slafgce. 
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Figure 10. AVlRlS average total signal, end-of-scan-line dark signal, and total minus dark signal for the calibration target. 
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F y r e  11. AVlRlS laboratmyaerived radiometric calibration coefficients and spedral calikalion parameters for the year 2002. 
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Figure 12. AVIRIScalibrated radiance for the calibration mget on the M a c e  d Rqm D y  Lake, cali(omii, on May 6.2002. 

5. W I G H T  FUDIOMETNC CALIBRATION VALIDATION 

accuracy of the AVIRIS calibration may be assessed in the flight environment. Figure 13 shows both the 
predicted and measured radiance for the &gem Dry Cdjfofi Oal1ktion target on May 6,2002, 
The ratio of these two radiauce spectra is also deviations ofthe ratio from 1.0 
to several sources including (1) AVIRIS calibration standards, (2) AVIRIS stability. (3) the MODTRAN 
radiative transfer code, and (4) the atmosphexe and solar parameters used by MODTRAN. Even with 
these residual uncertainties, the absolute average agreement between the MODTRAN-predicted and 
AWNS-measured radiance was greater than 96 percent, excluding the regions of strong water vapor 

With the MODTRAM-predicted and AVIRIS-measated radiance f a  the calibration target, the 
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absorption at 1400 and 1900 nm. In these water vapor regions of the spectrum, the radiance was close to 
zero, and a valid comparison was not possible. The good agreement between the in situ measurement- 
constrained MODTRAN-predicted radiance and the AVIRIS-measured radiance for the calibration target 
shows that AVIRIS was well calibrated in the flight environment. The onboard calibrator dab acqubed 
before and after every AVIRIS flight line were used to maintain and monitor the calibration of AVIRIS 
over the full 2002 flight season. 
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Fwe 13. CMnpariswr of the MODTRAN-predicted and AVIRSmeasured spectral radiance bf the 
calibration target on the surface of Row Dry Lake, Californim, on May 6.2002. 

6. AVIRIS RADIOMETRIC PRECISION 
In addition to AVIRIS radiometric accuracy, the radiometric precision was assessed in the flight 

environment. Dark signal radiometric precision is determined by calculating the standard deviation of 
dark signal measured at the end of each AVIRIS scan line. This provides an estimate of the dark signal 
noise for each AVIRIS spectral channel. Figure 14 shows this dark signal radiometric precision as noise 
equivalent delta radiance. This parameter was calculated as the product of radiometric calibration 
coefficients and the AVIRIS dark signal noise measured on May 6,2002 in the flight environment. 

Signal-to-noise ratio (SNR) is another common measure of instrument precision performance. The 
A W S  S N R  was calculated from the high signal of the onboard calibrator measured for the Rogers Dry 
Lake, California, calibration target flight h e .  The dark signal noise contriiution and the photon noise 
contribution based on an understanding of AVIRIS detector instrument throughput properties were used. 
Figure 15 shows the inflight SNR for AVIRIS at the AVIRIS reference radiance. The AVIRIS reference 
radiance was specified in the original AVIRIS proposals as the radiance h m  a 0.5-reflectance surface 
illuminated with a 23.5d-e solar zenith angle. The reference radiance is shown in Figure 16. The 
AVIRIS SNR continues to reach 1000 in the visible and near-infrared portion of the spectrum and mach 
400 in the short wavelength i n M  portion of the spectrum near 2200 nm. 
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Figure 14. AVBRIS inflight radiometric precision for May 6, 2002 calculated from the end-of-scan-line dark signal measurements. 
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Figure 15. AVlRlS inflight signal-to-noise ratio for the AVlRlS reference radiance. 
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Figure 16. AVlRlS reference radiance as specified in the original AVlRlS proposal. 

7. CONCLUSION 
The principal AVIRIS inflight calibration experiment of the 2002 flight season was orchestrated at 

Rogers Dry Lake, California, on May 6,2002. The experiment assessed the inflight radiometric 
calibration and precision of AVIRIS. A calibration target was designated on the surface of Rogers Dry 
Lake, where both surface and atmospheric measurements were acquired. These in situ measurements 
were used to constrain the MODTRAN radiative transfer code and predict the total upwelling spectral 
radiance incident at AVIRIS from the surface calibration target. The corresponding AVIRIS measured 
incident data for the calibration target were extracted and calibrated to upwelling spectral radiance based 
on the laboratory calibration coefficients and the onboard calibrator. A comparison of the MODTRAN 
predicted radiance showed good agreement with the AVIRIS-measured radiance for the Rogers Dry Lake 
calibration target. An average absolute agreement of better than 96% was obtained, excluding the strong 
water vapor absorption bands at 1400 and 1900 nm. 

acquired at the end of every scan line and the onboard calibrator high signal data. The inflight dark signal 
radiometric precision was reported as noise-equivalent-delta-radiance. The inflight SNR was calculated 
from the onboard calibrator high signal data and reported at the AVIRIS reference radiance. The AVIRIS 
SNR reaches 1000 in the visible and near-infrared portions of the spectrum and reaches 400 near 2200 nm 
in the short-wavelength infrared. 

high precision in the flight environment. Excellent radiometric calibration and high precision are required 
to pursue rigorous scientific research and applications with imaging spectroscopy measurements. 
Radiometric calibration of AVIRIS is expected to improve in 2004 with inclusion of an ultrastable 
onboard calibrator. The radiometric precision of AVIRIS is also expected to improve in 2004 with 
completion of the AVIRIS foreoptics refurbishment. 

The inflight radiometric precision of AVIRIS was derived from the dark signal measurements 

The results of this inflight calibration experiment show AVIRIS to be well calibrated and to possess 
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1. INTRODUCTION 

The Colorado Geological Survey and the co-authors of this paper were awarded one of 15 NASA Broad 
Agency Announcement (BAA) grants in 2001. The project focuses on the use of hyperspectral remote sensing to 
map acid-generating minerals that affect water quality within a watershed, and to identify the relative contributions 
ofnatural and anthropogenic sources to that drainage. A further objective is to define the most cost-effective remote 
sensing instrument coinfiguration for this application. 

The study area is located in the state of Colorado (Figure 1). Phase I of this project involves the Lake 
Creek watershed in central Colorado (a major tributary of the upper Arkansas River), which contains extensive, 
naturally exposed sulfide mineralization that is adversely impacting the water quality of Lake Creek. Phase I1 will 
map the upper Arkansas River, which is affected by mine drainage from the Leadville mining district" The two areas 
will then be comparedl. 

There are two major sources (Red Mountain West and Red Mountain East) for the natural ARD (Acid Rock 
Drainage) in the study area (Neubert, 2000), and several minor ones, which have been identified through ASTER 
and AVWS imagery. These all lie within the Grizzly Peak Caldera (Oligocene) shown in Figure 1. 

Figure 1 - [A] shows the general location map for the state of Colorado. The study area is located at the base of Mt. 
Elbert, near Twin Lakes Reservoir, about 20 miles south of the Leadville Mining District. It lies along the 
Independence Pass rocad to Aspen (Hwy.82). [B] shows the outlines of the Phase 1 and Phase 2 study areas. Phase 1 
follows the Lake Creek watershed, starting with the Peekaboo Gulch drainage from one of the sulfide bodies (large 
mow) into South Fork and into Lake Creek. It also includes Sayers Gulch drainage into South Fork from the second 
hydrothermal source (large arrow). Phase 2 follows the Arkansas River from the Leadville Mining District to south 
of Granite, and will evaluate mining impacts on water quality of the Arkansas in this area. 
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2. GEOLOGY 

The Grizzly Peak Caldera is south of Independence Pass in the headwaters of Lake Creek (Fridrich et al., 
1998). At about 39 Ma, prior to formation of the caldera, numerous rhyolitic stocks and dikes were emplaced in an 
arcuate zone of fractures that encircled and included the site of the future caldera. Circulation of hydrothermal 
fluids related to this pre-caldera magmatism caused widespread alteration and formed porphyry molybdenudcopper 
deposits and gold-bearing quartz-pyrite veins (Cruson, 1973; Fridrich and others, 1991; Neubert et al., in prep.). 

The Grizzly Peak Caldera resulted from eruption of the rhyolitic Grizzly Peak Tuff between 37 and 32 Ma, 
into rocks largely Precambrian in age. During subsidence, an inner ring-fracture zone formed. Caldera resurgence 
caused by emplacement of a granodiorite laccolith resulted in a complexly faulted dome. Post-caldera, intermediate- 
composition dikes and small stocks later intruded the fault zones in the resurgent dome (Fridrich and others, 1991). 

The dominant rock unit within the caldera is the Grizzly Peak tuff, a phenocryst-rich, lithic, lapilli ash-flow 
tuff that varies in composition from high- to low-silica rhyolite. Caldera collapse breccias (megabreccias), 
composed largely of Precambrian wall rock clasts, are prominent in the eastern part of the caldera (the “Red 
Mountain East” area). Numerous intermediate to felsic composition dikes and plutons related to the caldera appear 
within and on the margins of the caldera. Hydrothermal alteration is prominent in several areas within the caldera, 
most notably the Red Mountain West and Red Mountain East areas. While prospecting has occurred in those two 
Red Mountain areas, no significant mining activity has occurred on the eastern side of the Continental Divide 
(Neubert et al., in prep.). 

A small, north-south trending, Tertiary quartz-latite porphyry stock on the western side of the Continental 
Divide on the southwestern flank of Red Mountain West (Figure 1B) is strongly hydrothermally altered and 
weathered. The stock contains quartz-molybdenite-pyrite stockwork veins in a quartz-sericite-pyrite matrix. This 
intrusive is the likely cause of the extensive alteration of the Red Mountain West area and source for sulfides 
(Neubert et al, in prep). 

Acid-sulfate alteration, composed of the assemblage quartz-sericite-alunite-pyrophyllite, is known from 
Red Mountain West. Quartz-sericite alteration (QS) and quartz-sericite-pyrite-alteration (QSP) are the dominant 
alteration types present on the upper east slopes of Red Mountain. 

A large area of hydrothermal alteration is exposed to the east of Sayres Gulch on Red Mountain East 
(Figure lB), which lies along the eastern ring fracture of the Grizzly Peak caldera. The ring fracture is well marked 
by megabreccias and a ring dike. Based upon the localization of the hydrothermal alteration and its associated 
copper and molybdenum anomalies, the altered area probably overlies a shallow, felsic, post-caldera collapse, and 
porphyry intrusion, which was injected along the ring fracture (Cruson, 1973). 

Bedrock in the lower southwestern slope of Red Mountain East, along the two southern tributaries to East 
Sayres Gulch, is composed of essentially unaltered, Precambrian, banded quartz-biotite gneiss. The gneiss locally 
contains quartz veins and pegmatites. The principal altered rocks at “Red Mountain East” also appear to be 
composed of Precambrian gneiss, but the intense alteration makes distinction of rock types difficult. Fragments of 
Precambrian gneiss form the large clasts in the Tertiary megabreccia. Quartz-sericite alteration (QS) forms the core 
of the Red Mountain East area. Local areas of quartz stockwork exist within the main quartz-sericite zone. These 
appear to be composed of nearly pure quartz from a mass of intersecting veinlets. Quartz-sericite-pyrite alteration 
(QSP) forms a semicircular zone around the north, east, and south sides of the principal quartz-sericite zone, and is 
also present in a separate zone on the southern end of the altered area. The main minerals are quartz, muscovite, 
illite, dickite, pyrophyllite and alunite. High kaolinite content, argillic alteration forms both the ridge top and the 
outermost alteration zone in much of the area. Propylitic alteration is the typical type of alteration present in the 
megabreccia unit on the northwest side of Red Mountain East. Chlorite is the dominant mineral in the zone of 
propylitic alteration. Muscovitehllite is the main gangue mineral found throught both hydrothermal areas and 
because of its high albedo will be prominent in the imagery (Neubert et al, in prep). 

Reconnaissance water quality data was collected in the area in 1994 (Sares, 1996 and 1999; Neubert, 2000) 
by the Colorado Geological Survey. During these investigations several springs on the east side of Red Mountain 
West exhibited extreme acidity with pH values ranging between 2.17 to 3.12. The pH of Peekaboo Gulch, the 
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receiving stream lor these springs varied from 3.82, below the springs, to 4.40, approximately 1.5 miles downstream 
at its mouth with South Fork Lake Creek. The reconnaissance evaluations of spring water in the Red Mountain area 
confirmed the detrimental effect the hydrothermally altered rocks had on water quality in this area 

3. PROJECT DF:SCKIPTION 

Phase I ofthe project focuses on areas that exhibit natural acid rock drainage, specifically, the South Fork 
of Lake Creek and its watershed, and Lake Creek downstream of the confluence with South Fork. 'The South Fork 
watershed contains two areas of hydrothermal alteration, Red Mountain West (Fig. 2) and Red Mountain East, 
which drain acidic,, metal-laden water into Peekaboo Gulch, Sayres Gulch and smaller, unnamcd h-ihutaries. Metals 
and acidity derivzd from these areas affect water quality far downstream in Lake Creek. Before discharging to the 
Arkansas River, I-akc Creek water moves through the Twin Lakes Reservoir, which stores trans-basin diversion 
watcr for the watcr supply of Colorado Springs. Water sampling wi l l  correlate stream water quality to mineral types 
identified in thc alteration areas and downstream. Minerdl types wi l l  be identified through hyperspeclral remote 
sensing data and "ground-truth" spectral data collected in the field using hand-held spectrometers. 

Figure 2 - Hydi-othermally altered 
rocks of Red Mountain West in the 
heart of the Grizzly Peak Caldera. 
Springs here discharge very acidic 
(pH-2-5), metal-rich water. 'There 
are two types ofactivi ly. The iron 
sulfides are altering directly to iron 
sulfate minerals such as jarosite, 
schwertmannite, copiapite and 
melanterite. This i s  occurring at the 
spring sources (black arrows). Sulfur 
deficient, acid groundwater is also 
leaching the feldspars in the volcanic 
host rocks and creating a p H  5 
effluent, highly aluminum enriched, 
that is discharged from a spring 
indicated by the white arrow. This 
results in major aluminum loading in 
the watershed. 

Phase 2 wi l l  compare Lake Creek, primarily affected by natural acid rock drainage, with the upper 
Arkansas River, primarily affected by impacts from historic mining districts in the Leadville area. Much work has 
been done in identifying, characterizing, and remediating mining-induced contaminants in the Leadville area 
(USEPA, 2002). Phase 2 of the project wi l l  attempt to iise hyperspectral remote sensing to identify sources ofmetals 
downstream from Leadville, such as mi l l  tailings transported downstream and deposited in flood plains and point 
bars of the Arkansas River. Water quality wi l l  be analyzed and related to these types ofmetal sources along the 
main stem o f  the upper Arkansas River. 

4. PROBLEMS 8c OBJECTIVES 

.4 numhcr of streams in eleven different headwater areas of Colorado have naturally high concentrations o f  
metals and/or acidity, upstream of any significant human impacts. Rocks in these areas have been affected by 
intense hydrothermal alteration in the geologic past. It i s  hypothcsized that by characterizing the iron and aluminum 
beai-ing minerals, through reflectance spectroscopy, that these areas can be mapped using hyperspectral remote 
sensing to identify the minerals and therefore delineate p H  zones and transported metals. 



The objectives are therefore to: 
0 

0 

0 

e 

Identify the spectrally active minerals in the watershed 
To correlate those minerals to stream pH water quality, source area and streambed precipitateddentify 
cost-efficient remote sensing technologies for identification of mineralogy 
Geochemically model controls of metal solubility and mobility 
Assess the ability of remote sensing to identify and discriminate natural vs. anthropogenic sources of 
contamination 

Advanced Spaceborne 
- Thermal Emission and 
- Reflection Radiometer 

Private-sector satellite 

The NASA grant will allow us to look at this area in greater detail and test the usefulness of current remote 
sensing technology for identification of natural and anthropogenic influences on the environment 
5. APPROACH 

Monitoring potential; low- 
cost VNIR & SWIR Satellite 

VNIR Satellite Spatial detail; low-cost 

The approach used in this project is similar to those developed in previous NASA hnded investigations 
(Hauff et al., 1999a,b, 2000; Peters et al., 2000,2001). Background information on the area is fxst collected. Field 
sample sites are chosen, GPS coordinates taken for each and surface samples collected fi-om each site. These are 
analyzed with a field spectrometer for infi-ared active mineral signatures and portable XRF for metals content. For 
this project the iron and aluminum coatings on the rocks in the stream beds are of major interest. A special purpose, 
site specific database of spectral signatures and metal chemistry is compiled for the project. 

Airborne Yisible-Jnfrqed - 
Imaging Spectrometer 

Because the assessment and monitoring of water quality is the focus of this application, water quality data 
were collected at both high- and low-flow periods in the Lake Creek watershed. Data elements include dissolved 
and total recoverable metals, pH, conductivity, alkalinity, total mineral acidity, total acidity, sulfate, chloride, 
fluoride, nitratehitrite, and total suspended solids. A geochemical model of the entire watershed will be produced to 
predict seasonal flow and changes in pH, metal loading and mineralogy. It is anticipated that it will be possible to 
apply such a model to other similarly impacted watersheds, without the intense field work employed to develop the 
Lake Creek model. 

VNIR SWIR 1 1 Airborne Spatial & spectral detail 

The field data is then integrated with remotely sensed imagery. Several kinds of sensor data will be used 
during the project, as one of the objectives is to determine the optimum sensor configuration for the narrow, high 
mountain drainages. The NASA Stennis ART Toolkit (Zanoni, 2002), with AVIRIS and SPECTIR high-resolution 
data sets will be used to simulate sensor configurations that are optimum for this application in other parts of 
Colorado and other mineralized and mined areas. The sensors used to collect the data vary in spatial resolution, 
spectral resolution, and operating cost. Obtaining data fi-om a sensor on a satellite platform is less expensive than 
fi-om an airborne platform, however, the spatial resolution is usually poorer. Table 1 summarizes the different 
sensors for this project. 

Table 1 - SENSOR TYPES 

LANDSAT 

ASTER 

I HYPERION 

AVIRIS 
(low-altitude) 

SPECTIR 

Description I Spectrum I Platform I Strengths I 
Earth resources satellite 1 VNIR 1 Satellite I Regional view; low-cost I 

merspectral  Imager Spectral detail; moderate I VNIR& SWIR 1 Satellite I cost 

I I I I 
Full range Hyperspectral 1 VNIR - SWIR 1 
imaging spectrometer Airborne and spectral 

1 High resolution spatial 
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6. WATER CHEIMISTWY 
AND MINEROLOGY 

6.1 IRON & ALUMINUM METALS 
DISTRIBUTION 

The type and quantity of 
metals in the stream a,nd within the 
pirecipitates coating the rocks is of 
major importance in determining water 
quality factors. Table 2 compiles an 
example of metal conjent from a very 
low (2.. 17) pH spring at the base of Red 
Mountain West. 

Table 2 - Red Mountain West 
(from Sares. 1996). 

Multiple above 
r4nalyte aquatic life standards 

AI 
Cd 
cu 
Fe 
Mn 
Pb 

Zn 
s o 4  

4,724~ 
42x 
164x 
1 oox 

within standard 
within standard 

6x 
21x 
6x 

Water Quality - Peekaboo Gulch to Lake Greek 
September 9-12,2002 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Upstream Sample Location Downsfream 

Figure 3-Graph showing water quality changes downstream of the Red 
Mountain West hydrothermally altered area. Extreme Concentrations of 
iron and aluminum are shown in upper Peekabos Gulch near the acid 
generating source rock. Metal concentrations generally decline 
downstream due to metals precipitating out of the water column onto 
the slreambed and due to inflow of higher pEI diluting water. 
Separation between the dissolved (diss) and total recoverable (trec) 
concentrations occurs as the Fe and A1 ions moved out of the dissolved 
form into a suspended solid form. Acidic inflows from Sayres Gulch 
(SG) and Sayres Bowl Stream (SBS) show a temporary reversal in 
these downstream trends. 

The values in the table show the presence of the listed elements in the spring, not in concentration, but in 
the multiple above the statewide water quality standards for aquatic life. For example, the concentration of 
aluminum is 1,724 times the aquatic life standard of 87 micrograms per liter. This spring is draining from the 
mineralized and altered areas on Red Mountain West. These rocks contain high volumes of aluminum bearing 
minerals such as feldspars, muscovite and illite. Aluminum poses a great danger to aquatic life. It can coat the gills 
of fish and suffocate them. New research is also showing that aluminum can be chemically toxic to fish in both 
acidic and neutral waters (Soucek et al., 2002) . No fish live in the upper parts of the watershed affected by natural 
acid rock drainage. 

6.2 IRON MINERAILS & pH CORRELATION 

Over 80 ground truth data sets, which include seasonal water pH, water chemistry, mineral reflectance 
spectroscopy, and mineral XRF(X-ray Fluorescence), have been collected for correlation to the airborne and satellite 
sensor data. The main environmental remote sensing issues involve iron and aluminum oxyhydroxide phases that 
are created when the iron sulfides oxidize and generate acidic drainage, and the in-situ aluminum silicates that are 
chemically weathered by acidic ground waters. Iron and aluminum precipitates concentrate at the sources, collect 
metals, and are deposited throughout the drainages all the way down to Twin Lakes Reservoir. 

The infrared-active iron minerals currently detected include: 1) the sulfates jarosite, schwertmannite, 
copiapite, and melanterite: 2) oxyhydroxides, maghemite, lepidocrocite, ferrihydrite, and goethite. The diagram below 
shows the pH zones at which the commonest of these minerals form. This model will be used to predict the minerals 
most likely to occur through the drainages within the changing pH zones. 
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Figure 4 - This figure plots the iron 
oxyhydroxide and sulfate minerals observed 
to date in the Lake Creek drainage, and 
includes [A] lepidocrocite (y-FeOOH), [E] 
goethite Fe3+0(0H), [C] maghemite (y- 
Fe203), [D] ferrihydrite Fe3+203.0.5(H20), 
[E] jarosite [KFe3(S04)2(OH)6], [F] 
copiapite (Fe2'Fe3'4(S04)~(OH)2~20(HzO)), 
and [GI melanterite (Fe2'(S04).7(H20)). 

Please note that each of these minerals have 
diagnostic spectral profiles, especially in the 
visible through Near Infrared region (400- 
1000 nm). Although copiapite and 
melanterite have been identified in Peekaboo 
Gulch, they are not present in large enough 
amounts to be detectable from the air. The 
other issue is that nearly all of the spectra 
collected from the precipitates are mixtures 
of iron phases. Because the pH will change 
with stream flow, stability fields are 
constantly shifting as water levels fluctuate. 

The ground data collected show a distinct zoning of iron minerals that correlates to pH. The iron sulfates 
jarosite, schwertmannite, melanterite and copiapite occur in Peekaboo Gulch, and all are low (2-4) pH. These 
mineral assemblages change, as the pH increases to the 4.0-4.99 range along the South Fork Drainage, to iron 
oxides, dominant of which is ferrihydrite. In the Lake Creek drainage, the water is diluted by neutral North Fork 
water and the pH values range from 6.93 to 7.75, with goethite and lepidocrocite the main iron minerals. 

Table 3 summarizes the generalized mineralogy through the three drainages (Peekaboo - PG; South Fork- 
SF and Lake Creek-LC) under discussion. It can be seen how consistent the correlation of mineralogy to pH is. 
Location LC-1 has higher acidity as a function of inflow of lower pH waters from La Plata Creek and South Fork. 
Jarosite occurs along South Fork in selected areas below Site SF-7. At SF-7, a highly acid (pH=3) tributary drains 
into South Fork from the Red Mountain East sulfide source, causing jarosite precipitation within and below the 
mixing zones. 
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pH values in Peekaboo Gulch change as a function of more neutral water sources (PG-6) above the main 
acid springs (PG-7, PG-1, PG-2). 

7. HYPERSPECTRAL REMOTE SENSIING 

7.1 INTEGRATION with ASTER and AVIRIS 

ASTER satellite data are being evaluated in this project as a potential reconnaissance tool. The 30 meter 
SWIR range ASTER will have limitations in the narrow (3-5 meters), high mountain valleys. However, ASTER 
defines aluminum-bearing alteration minerals well. It can be used to outline areas of hydrothermal alteration and 
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can locate large concentrations of iron oxides (Figure 5, white arrow). It appears that ASTER can be used to vector 
towards drainages that potentially contain iron oxides and sulfates. 

Figure 5 -Pixels from ASTER SWIR 30 meter alteration image are overlain on the 15 meter visible image. The 
white double arrow ~ l l s  throngh the two main alteration systems at Red Mountain West and Red Mountain East. 
This image was processed for iron oxides, jarosite and muscovite/illite. Selected jarosite locations are marked with 
white stars. Some have been field verified. The image demonstntes that ASTER can be used as a first pass over an 
area to determine the presence of hydrothermal alteration and some secondary products. This image wmprocessed 
by Dmid Coulter, Overhill Imaging and Cartograph. 

7.2 AVIRIS IMAGE OF LAKE CREEK DELTA 

7.2.1 CALIBRATION 

Empirical line calibration spectra were collected from the broad, fairly homogeneous quartz-illite beach oerween me 
two reservoirs (Fig.6). The spectra were taken with an ASD Fieldspec Pro spectrometer. The calibration was 
checked with a pixel from the lake water. 

The beach was considered a uniform flat field. A cross check was made using a deeper part of the lake where the 
spectrum should be flat. This calibration was used for the AVIRIS images 

Low-altitude AVIRIS was flown in September, 2002, over both Phase 1 and Phase 2 areas. The data are now in the 
initial stages of calibration and processing. A segment of Flight Lime LC-3 (Fig. 7B) is shown, covering the Twin 
Lakes Reservoir, lower Lake Creek, and the Lake Creek delta (Fii. 7A). The image WBS processed for the iron 
mineral goethite, which was identified at several sample sites (LC-7,8,9). 
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Figure 6 - Atmospfueric calibration data. Figure 7A- Topograpl~i~ map of AvIRlS image @elow). 

1 

8. DISCUSSION 
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1. INTRODUCTIOP6 

Numerous satellite sensor systems useful in terrestrial Earth observation and monitoring have recently been 
launched and their derived products are increasingly being used in regional and global vegetation studies. The 
increasing availability of multiple sensors offer much opportunity for vegetation studies aimed at understanding the 
terrestrial carbon cycle, climate change, and land cover conversions. Potential applications include improved multi- 
resolution characterization of the surface (scaling); improved optical-geometric characterization of vegetation 
canopies; improved assessments of surface phenology and ecosystem seasonal dynamics; and improved 
maintenance of long-tlerm, inter-annual, time series data records. The Landsat series of sensors represent one group 
off sensors that have produced a long-term, archived data set of the Earth’s surface, at fine resolution and since 1972, 
capable of being proctssed into useful information for global change studies (Hall et al., 1991). 

Spectral vegetation indices are one example of satellite-based products for mapping temporal and spatial variations 
in surface biophysical parameters. Vegetation index products fi-om Advanced Very High Resolution Radiometer 
(AVHRFQ SeaWiFS, SPOT-VEGETATION, Moderate Resolution Imaging Spectroradiometer (MODIS), Global 
Imager (GLI), Landsat, and other sensors are now or soon will be widely available for monitoring both seasonal and 
long-term ecosystem dynamics. Their combined use can greatly improve ecosystem spatial and temporal variability 
studies in two ways, (1) through inter-sensor synergies and (2) through multi-sensor data and product continuity 
records. Seasonal and inter-annual vegetation dynamics have been readily observed with moderate resolution 
satellite products, such as the 20-year NOAA-AVHRR normalized difference vzgetation index (NDVI) time series 
record (Los, 1993: Roderick et al., 1996). 

With the launch of new sensor systems, there is interest in maintaining data continuity and Compatibility across the 
sensor-specific data sets. However, there will also exist compatibility problems among the various satellite data 
products due to differences in their sensor characteristics as well as algorithms used (Gao, 2000; Gitekon and 
Kaufman, 1998). Some of the multi-sensor differences, key to their synergy, may become limitations to data and 
product continuity. Tlhis includes the issue vegetation index (VI) continuity and compatibility among the various 
sensors, which must first be addressed. In shifting fi-om an older sensor to a newer one, one can take advantage of 
‘state of the art’ technology advancements (e.g., better sensor materials) and improved scientific knowledge (e.g., 
better spectral band configurations), however, there is the dilemma of maintaining data continuity across a time 
series data record while allowing for new and improved algorithms and data processing. 

The “key” factors affecting continuity and compatibility of VI data sets computed fiom different sensors involve; 
- sensor calibration and degradation 
- 
- co-registration and geolocation 
- 
-. 
-. 
- compositing techniques and period 

differences in spatial resolutions and their associated point spread fbnctions (PSF) 

differences in spectral bandpass filters 
atmospheric correction methods (03, HzO, aerosols) 
cloud masking methods and their efficiency 

Narrow and broad-band vegetation indices were investigated by Elviclge et al. (1995). Miura et al. (2002) utilized 
Hyperion imagery along a Brazil transect and showed VI translation between sensors to be land cover, soil, and 
biomass dependent. Yoshioka et al. (2003) developed an algorithm for translating VI data among sensors utilizing a 
linear approximation of vegetation isolines and numerical simulations using leaf and canopy radiative transfer 
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models. They applied the algorithm to a Hyperion image and were able to significantly reduce the differences in 
NDW data for awide range of LAI conditions. 

In this study we used EO-1 Hyperion imagery obtained over a set of biome types to generate broadband reflectance 
and VI values for various Earth observing satellite sensors. Multi-sensor comparisons and analyses of vegetation 
index prcduccs are made for the “Constellation” series of sensors that include Landsat-7 Em+, Eo-1, Tew- 
MODIS/ASTW, and the Multispectral Medium-Resolution Scanner (MMRS),  as well as for additional fine and 
moderate resolution sensor systems. We focus on the spectral issues (filter response hction, bandwidth, center 
wavelength) in5uencing the derived reflectance and vegetafion index values and also address the various issues 
involved in multi-semor synergy use, including translation, data con ti nu it^, and scaling. The objectives for this 
study were (1) to investigate the “spectral” continuity and compatibility of reflectances and VIS among the di&rent 
sensors using Hyperion scenes over a range of land cover types, and (2) to investigate target dependencies (land 
cover, soil, etc.) on the trsnslation coefficients among sensors. 

2. STUDY SITES AND METHODS 
There are many tecbniques that can be used to analyze multi-sensor differences in VI’s, including the use of ‘real’ 
satellite sensor observations. The advantages of this approach are that the real data h m  which we wish to establish 
translation are used and this also encompasses all sources of uncertainty, including filter degradation and caliition 
drift, The disadvantages are the time intervals between different sensor ‘looks’ over the same target and the 
confusion created with possible variations resulting h m  sun angle and atmosphere differences. One must also be 
precise in m-registration of the two sensor data sets with additional uncertahaies resulting from geolocation mor. 
A more controlled approach is to utilize finer resolution sensor data and simulate the responses of coarser resolution 
sensor data sets. Hyperion hyperspectral data are thus ideal to simulate MODIS, SeaWiFS, AVHRR, and GLI 
pixels, the advantages being that only a single atmosphere and sun angle are involved and there are no spatial 
registration mrs. The disadvantage is that the data is synthetic and the spectral response hctions and modulation 
transfer function (MTF) need to be spproximated. 

We utilized Hyperion data over a 4W2500 nm wavelength range with nominal specbal resolution of 10 mn at 30 m 
gmmd resolutiot~ The radiometrically cal i i ted level 1A images were 6rst corrected for vettical destripmg noise 
by using the average values of assumed homogeneous areas for subsequent pixel adjustment. The data were then 
spcotrally convolved to the bandpasses of the sensors of interest and then processed to atmospherically-c&ed 
reflectauw and VI’s. The variations in spectral bandpass properties encountered in this study are shown in Fig. 1. 
Some atmospheric simulations were also conducted with the ”6s” radiative tnmsfer code. 

Figure 1. Variations in red (left) and near-inbred (right) q 
sensors used in vegetation studies. 

I 

- 
tral bandpsses among various FA& obse.rving 

Hyperion imagery over a range of international core land validation sites of varying land cover types and sllrface 
conditions were utilized in this study, including a Hyperion data over Maricopa Agriculture Center in Arizona, the 
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Mandalgovi steppe site in Mongolia, and the Harvard fmst  long-term ecologic research (LTEX) site (Fig. 2). At 
each of the Hyperion sites, data were extracted from a 20 x 20 pixel area for further analyses. 

Figure 2. EO-1 Hyperion imagery over the study sites used in the &on of vegetation indices. Maricopa 
September 29,2001 (left); Mendagovi August 31,2001 {middle); andHanard forest September 5,2001 (right). 

3. RESULTS 
The Hyperion bandpass-convolved results over the Harvard forest study area are shown in Fig. 3 for the MODIS, 
Landsat-7 ETM+, and NOAA-AVHRR 14 sensors under atmospherically corrected (surface) and UIlcOlTected (top 
of-abmspb,  TOA) conditions. There were much higher inter-semor Variations encountered w& the TOA 
results, indicating the strong interactions of atmosphere and sensor bandpass on the resulting red, NIR, and NDVI 
data. The AVHRR varies the most from the other sensors with higher red reilectances and lower NIR and NDW 
values. The nuface NDW values from the AVHRR are lower than the other 2 sensors due to the higher red 
reflectance response. The Maricopa Agricultme study site had a bi-modal range of sutfaee conditions with bare soil 
and highly-vegetated crops present in the same scene (Fig. 4). The red reflectance results among the 3 sensors 
varied only slightly in both TOA and surface cases while the NIR results only varied in the uncorrected, TOA data 
with AVHRR yielding the lowest reflectances and MODIS the highest. Thhis may be an atmosphere water vapor 
e W  with the AVHRR bandpass the most vulnerable to water vapor while the MODIS NIR bandpass was designed 
to be of water vapor cmmmumt ' ion. The TOA- NDVI values followed the same pattern with AVHRR having 
the lowest values and MODIS the highest. By contrast, the surface-based NDVI values differed less significantly. 

In the following graph we ana lp  in more detail the inter-sensor spectral bandpass effects on the computed 
vegetation indim. The top portion of Fig. 5 shows that all bands are highly inter-correlated, as would be expected 
since they are measuring within the same portion of the spectrum. One can also note, however, that the inter-sensor 
relationships have significant slope and or intercept diffeiences. The AVHRR and ASTER NLR reflectances, for 
example, deviate significantly from the 1 : 1 line (Fig. 5). In the lower portion of Fig. 5, we plotted the surface 
reflectance difference ( p m  - p u o ~ ~ )  to highlight these deviations. Using the MODIS reflectances as the 
reference (any semm could be used fa the reference case), we see that the differexices associated with a &%rent 
bandpass in the red and NIR region are dependent on the initial MODIS reflectance condition and that a s e d  
sensor's response could result in higher or lower values. In the case of the red bandpass, maximum deviations fbm 
the MODIS value occur at low and high reflectance conditions with deviations increasing as the MODIS su&ce 
reflectance departs h m  0.15 in either direction (Fig. 5). In the case of the NIR reflectances, minimum variations 
occur at low MODIS reflectances (4.33) with deviations becoming stronger as MODIS NIR reflectance increases 
in vahxe. Another observation worth noting is that for any given MODIS reflectance values, there are varying 
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reflstauce values for a second senaor, e.&, a MODIS reflectance value of 0.40 in the NIR yields numerous ASTER 
reflectances. 

;*r- . . .: ."... .I Harvard Forest, DOY 248 

. .  
Surhca red TOA- NDVI 

Surfa 4IR Surfaa- MDVI 

Figure 3. Histograms of red, MR, and NDVI data over the Harvard forest study site for the 3 sensors, MODIS, 
Landsat-7 Em+, and NOM-AVHRR-14, and for TOA and atmospherically-corrected (surface) conditions. 

Naricopa Agriculture 

TOA- NIR Gurface- NIR Surface- NDM 
Figure 4. Histograms of red, NIR, and NDVI data over the Maricopa Agriculture Center study site OF, 
MODIS, Landsat-7 Ern+, and NOM-AVHRR-14, and for TOA and atmosphexically-corrected ( 
Conditions. 
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Hyperion data from Maricopa Agricultutl: Sitc 

Figure 5. Hyperion-generated crossplots of inter-sensor band snrfacereflectances (top) and their differences using 
MODIS as a reference (bottom). 

In Fig. 6, the corresponding VI values are plotted using the sensor differences to highlight the deviations. The 
NDVI comparisons behaved similar to the red bandpass comparisons in Fig. 5. Thus, the difkence in NDVt 
between MODIS and AVHRR become greater at higher NDVI values, i.e., MODIS NDVI values are higher than 
AVHRR at higher biomass conditions (up to 0.07 NDVI Units). In the right hand side of Fig. 6 we also compared a 
partially afmosphere c o r n e d  data set (only corrected for Rayleigh scaftging and omne absolption) and we found 
tbat atmosphere ptays a biger role in inter-sensor relationships than 
in the case of the enhanced vegetation index (EVr) (Huete et al., 2002), atmosphere-induced variations are not so 
stmng aad bandpass variations among sensors become greater with higher MODIS EVI values (Fig. 6). Thm are 
not as many sensors available for comparisons given the need for a blue band for the EVI computation. 

4. CONCLUSIONS AND DISCUSSION 
We investigated continuity and compatibility of the broadbandreflectances and VIS across various Earth observing 
sensors. EO-1 Hrpetion data was used in different biome sites to spthetimlly generate multi-sensor reflectmces 
and VI'S, including the NDVI and EVI. Oar analyses focused on the spectral issue (spectral characteristios of 
multiple sensors and their influences on the derived VI values). The sensors eonsidered in this spectral syntheses 
were MODIS, AVHKR, SeaWiFS, VEGETATION, GLI, ASTER, and E m + .  The major fbdhgs were that 

dif femws among scasors. However, 

VI relatiomhips among sensm wem neither linear nor unique and were found to exhibit complex patterns 
and dependencies on spectral bandpes .  
From the biophysieal point of view, inter-sensor VI relationship3 varied with land cover types and surface 
characteristics. Thus, a prior knowledge of such ecosystem parameters as leaf area index (LAI), land cover 
type, and soil brightness are needed for exact translation. 
Atmosphcrio MntaminSnns were found to increase the discrepmcies and land cover dependencies of 
inter-sensor VI relatimbips, of which magnitudes depends both on level of atmospheric contaminations 
and on amount of vegetation density. 
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Hyperion Data from Maricopa Agricultue Site 

1.09 
P 81 0 10 c.0 0 PO OM 

WDDU N1 

Figure 6. Hyperion generatsd crossplots of inrtr-sensOr NDVI difcetences (top) and ~~MEIWI EVI differences 
(boaom) using MODIS as a reference. 

Vegetation indexrelationships among sensors were found CO eshiiit complex paUerns and dependencieg based only 
Thus, u re f lwce  OT VI valm from one sensor em yield mdtiple values in a seoond 

conditions, such as land cover ?+p, bbphysical 
parameter amollIlfs and possibly shown hem demon&&&$ --sensor 
calaration and continuity of VI’S are achievable but require biophysical nnd land cover charadenzetl ’ ‘onofsurfaoe 
COncEitons. We found that the atmosphere mistant VI’s would provide improved muiti-sensor translations, by 
redocing the efkcts of atmosphere on inter-wnsor tranelation of VI’s. Other Eactoff that could affect the multi- 

BRDF-related effects, and the method of 
iew angle MVC (CY-WC), minimum 

Multi-sensot comparisons with actual data 
confirm some of the o h t i o n s  reportsd 
~~aloagtarmtimes*iesrecordimroMngtheAVHRRtime seriesrecord(I981-)withM0DIS(2000-) 
and the next generation of the National Pohwbitjng Operational Environmental Satellite System (NPOESS). 
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EO-I, MODIS, A m  and Terra am ah0 needed to . Such studies wiU b e c o m e  even more relevant in 
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HYPERSPECTRAL DETECTION OF FOREST FUEL ATTRIBUTES AS INPUT TO 
ITE FIRE MODEL IN THE FRONT RANGE OF COLORADO 

Gensuo J. Jia, Ingrid C. Burke, and Sonia A. Hall' 

1. INTRODUCTION 

The increasingly severe forest fires in the western U.S. states in recent years (e.g., 
Colorado/Arizona/C)regon fires in 2002 and California/Oregon/Idaho fires in 2003) emphasized their 
power to modify the landscape and challenge the security of human life and economy in the urban- 
wildland interface. In the 2002 fire season alone approximately 3,000 structures were damaged or 
destroyed in some 71,200 forest fires that burned nearly 2.67 million ha (7.1 million acres) in the U.S. 
There is strong evidence that many current forests are denser and more vulnerable to catastrophic fires 
than they were historically (Covington et al., 1997, Kaufmann et al., 2000, Veblen et al., 2000). Those 
forest fires strongly influence the spatial distribution, variability and dynamics of plant communities 
(Romme 1982, Turner et al., 1997). In addition, forest fires have dramatic effects on ecosystem carbon 
storage (Houghton et al., 2000). Beyond the effects on the structure and carbon storage of forested 
landscapes, however, there are significant potential impacts to the growing human populations in the 
west, and particularly the Colorado Front Range, where three large fires since 1996 have devastated 
homes and municipal water supplies. These effects are evident in the high priority placed on fire research 
and management by the federal government, in programs such as the Joint Fire Science Program, a six- 
agency partnership authorized by Congress in 1997 to develop information and tools for managers and 
specialists who deal with wildland fuels issues, and by the newly designated $1.8 billion National Fire 
Plan. Therefore it is important to build our capacity to predict, with a reasonable degree of accuracy, the 
probability of fires occurring in time and space, in order to be able to appropriately minimize these risks 
with fuel treatments and prescribed fire. The probability and severity of fire are controlled by a series of 
factors, related to characteristics of the forest, to environmental conditions, and to the proximity and 
activities of humans. Among those, fuel attributes are critical and could be managed through mechanical 
thinning and prescribed burning. 

Fire related forest characteristics vary across space, due to gradients in environmental and 
biological factors, including disturbance history (Romme 1982, Veblen et al., 2000, many others). These 
characteristics include species composition, stem biomass or volume, basal area, species composition, 
crown closure and understory biomass, all of which affect the probability of occurrence, spread and 
intensity of forest fires. Being able to quantify these characteristics, their potential development or change 
through time, and their spatial patterns is fundamental to decision-making. The existence of accurate fuel 
model and forest structure data could add important inputs and new strength to existing models of fire 
probability, fnre behavior, and fire consequences (e.g., Perry 1998, Keane et al., 1996, Miller and Urban 
2000), and allow policy-makers and managers to determine the best strategies for fire management. 

Satellite and airborne remotely sensed imagery have been demonstrated to be useful for the 
description of spatial patterns of different forest ecosystem attributes (e.g., Wessman et al., 1988, Running 
et aP., 1995, Roberts et al., 1998, Asner et al., 1998). The main advantages of using remote sensing are 
the spatial resolution and coverage, and the speed and relatively low cost with which these data are 
available. There is a fast-growing variety of remotely sensed data sources available. Their advantages 
only materialize and become implemented if and when research evaluates and validates the relationships 
between these data amd actual, biologically relevant vegetation characteristics. Our objective is to evaluate 
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the suitability of different remotely sensed data sets for the estimation of forest characteristics related to 
fire hazard, and their spatial patterns. 

In the study, we tested various remote sensing and modeling efforts, including high altitude 
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and Hyperion detection of fuel attributes, 
and LiDAR detection of forest vertical structure, in two test areas in the Colorado Front Range. We 
identified potential sources of remotely sensed imagery for estimating major fuel input variables for the 
FARSITE fire behavior model (Finney, 1998), and validated those spatial representations against field 
data. Based on those test analyses we generated maps of fuel classes and burn severity for fire assessment. 

2. DATA AND METHODS 

2.1 Field spectral and forestry measurements 

The purpose of our fieldwork was to measure the spectral reflectance of all possible fuel related 
materials (endmembers) and to estimate fuel variables in the areas covered by remote sensing data, so as 
to validate remote sensing estimates. Vegetation types of concern in the montane zone of Colorado 
include ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii var. glauca), mixed 
conifer (including ponderosa pine, lodgepole pine (Pinus contorta), and Douglas-fir), shrubland, 
grassland/woodland, aspen (Poputus tremuloides), and riparian (cottonwood/willow). In summer 2002 
and 2003, we conducted intensive field measurements of spectral reflectance and forest fuel 
loadingkondition along 31 lOOm transects and 227 ground control points selected in the Pike National 
Forest and the Arapaho-Roosevelt National Forest, Colorado Front Range. Meanwhile, a large data set of 
50 0.1-ha plots was available from USFS for a ponderosa pine landscape in the Pike National Forest 
(Kaufmann et al., 2000), and ready for analysis. Our measurements included complete overstory 
inventories, i.e., tree crown diameter, canopy cover, basal area, height, species, live or dead status, and 
burn severity (if any); modified-Whittaker understory data, i.e., percent cover by species, growth forms; 
and surface fuel inventory. We selected our sample sites randomly and covered various fuel conditions 
and burn severity classes in both NF. During the fieldwork, we also linked a Garmin V GPS unit to a 
laptop computer with ENVI software to instantly track and mark sample plots and transects on QuickBird 
(a spaceborne multispectral data with 2.8m pixel resolution, provided by DigitalGlobe Inc.) and AVIRIS 
images in term of species composition, canopy cover and burn severity. Later on we used those ground 
control points (GCP) to test spectral unmixing and to train classification algorithms based on AVIRIS, 
Hyperion and Landsat 7 data for estimating fuel variables over the study areas. 

Along with forest transect and ground control points sampling, we collected field reflectance 
spectra of plant species and various fuel-related materials in the sample sites whenever weather condition 
were favorable, with a Fieldspec Pro spectroradiometer (Analytical Spectral Devices, Boulder, Colorado) 
over the 400-2500 nm wavelength region at 1 nm intervals. We made measurements on cloud-free days 
between 11 :00 and 13:OO to minimize atmospheric effects and shade disturbance. The spectroradiometer 
was positioned approximately 1 meter from the sample surface at a 0" view zenith angle. With the 18" 
optics on the spectroradiometer, the diameter of the field of view at the sample was 28 cm. The sunlight 
and view angles were chosen to minimize shadowing and to emphasize the fundamental spectral 
properties of the plant and other materials. 9-15 spectra were acquired of each sample by moving the 
sensor over the objects to get the average spectra that are more comparable with the spectra of AVIRIS 
and Hyperion pixels. A white board panel was used to calibrate the spectroradiometer prior to 
measurement of each material. We calculated the average spectral curves for each endmember and 
established fuel spectral libraries in ENVI. We later used those field spectra as endmembers in AVIRIS- 
based spectral unmixing analysis. 
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2.2 Hyperspectral data acquisition and analysh 

High-altitude AVIRIS radiance data (fD21015tOl) were acquired with the ER-2 plane by the Jet 
Propulsion Laboratory (JPL) on October 15, 2002 at 18:34 GMT (12:34 MT) over the Colorado Front 
Range, covering Hewlett Gulch-Bobcat Gulch (r12), West of Longmont-Boulder (r13), and South Platte 
(r14, r15, r16, r17, r18). The AVIRIS mission transected the short prairie grassland landscapes, 
urbadwfidland inte~ace, to the Ponderosa pine / Douglas-fir forest in the Front Range region, crossing 
Larimer, Boulder, Jefferson, Park, and Fremont Counties of Colorado. The flight approximately followed 
the Front Range &om north to south. Flight fD21015tOl had approximately 17.5 m spatial resolution, of 
224 spectral bands, with 10 nm spectral resolution. Them were patches of snow at high elevation, but the 
visibility was excellent, with a little haze over the southwest portion of r18. The data were then 
georectified in JPL based on on-board GPS records and USGS 1Om Digital Elevation Model (DEM). 
Figure 1 shows the location of the night lines. In the images, permanent vegetation is apparent as the 
ponderosa pine / Douglas- fir forest, conifer woodland, shrub and grassland. Due to the frequent wildfires 
in the region, fire scars and fire-disturbed landscapes of dif%rent ages are very commonly seen. 

Figure 1 Location of the study areas and flight lies. The red polygons show the study areas, while the 
green polygons represent the AVDRIS flight lies wed in this study. The approximate location of the 
Hayman fue is also shown on the map. 

The original AVIRIS data sets were atmospherically corrected and converted to reflectance using 
the High-Accuracy ATmospheric Correction for Hyperspectral Data (HATCH) algorithm, evaluation 
version, developed by the Center for the Study of Earth from Space, University of Colorado at Boulder. 
Even after the calibration, atmospheric effects constantly existed in certain bands, i.e., band 1-5, 33-35, 
107-113, 152-167, and 222-224. We spectrally subset the AVIRIS images by removing those bands, and 
finally had 190-band images ready for further analyses. 

Hyperion data was acquired with a hyperspectral sensor on board NASA's EO-1 satellite on 
September 27,2002. It has 220 bands (10 nm spectral resolution) with 30 m spatial resolution. The data 
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was radiometrically corrected in EROS Data Center and provided in radiation values. We atmospherically 
corrected and converted the radiation data to reflectance using the HATCH algorithm, and then 
georegistered it with a reference Landsat 7 image. To further eliminate atmospheric effects and to 
increase the signal-to-noise ratio, we excluded band 12 1 - 129 and 166- 178 in hrther analyses. 

In the hyperspectral unmixing analysis, we first calculated the minimum noise fraction (MNF) 
transformation of the original 190 AVIRIS bands, which resulted 40 MNF bands that contained 99% of 
the original spectral information. Then we checked each of the MNF for signal-to-noise ratio, and decided 
to use the first 13 bands for the spectral angle mapper (SAM) classification. We analyzed the pixel purity 
index (PPI) and matched PPI regions of interest with our spectral library to define known endmembers 
(classes). We combined those endmembers with the n-dimension visualizer spectra as input of classes for 
the SAM classification. As a post classification process, we compared the 32 undefined SAM classes to 
assorted reference data (e.g., QuickBird image, field plots and literature data) and then recoded them into 
broad classes of fuel types. According to USFS forest classification system, we created a map of fuel 
classes for the upper South Platte area. Using a similar approach, combined with QuickBird images, we 
classified forest canopy cover into five levels that meet the requirements of both the FARSITE model and 
USFS forest management. 

Based on the spectral reflectance curves and burn severity inventory from our fieldwork, we 
analyzed burn severity on both AVIRIS and Hyperion images with linear unmixing of photosynthetic 
vegetation (PV) and non-photosynthetic vegetation (NVP) endmembers (Asner et al., 1998), and 
generated a three-level burn severity classification. We derived standard spectral reflectance curves from 
an AVIRIS image, a Hyperion image and from our field spectra and compared the reflectance features 
among them. 

2.3 LiDAR analysis 

Light Detection and Ranging (LiDAR) provides remotely sensed information describing the 
vertical structure of forests. Using LiDAR-derived metrics such as mean canopy height as input to 
predictive models, additional forest metrics such as timber volume and biomass can be estimated rapidly 
and frequently for individual holdings (Lefsky et al., 1999). In this study, 3Di/EagleScan’s DATISII 
airborne discrete-return LiDAR system was flown over ponderosa pine dominated forests close to the 
Cheesman reservoir, Pike NF, in the fall of 2001. We derived 39 metrics from the raw LiDAR data, to 
synthesize the information on location and intensity of returned energy. These metrics were developed 
based on information from pre-existing LiDAR studies, both using discrete-return and waveform- 
digitizing LiDAR (e.g., Lefsky et al., 1999, Naesset, 2002). They include measures of mean canopy 
height, spatial variability in height, measures of canopy cover, biomass density, and height to live crown. 
We used these metrics as independent variables in a wide array of linear and non-linear models to predict 
a variety of stand structural variables on a per unit area basis, such as canopy bulk density, canopy base 
height, Lorey’s height and basal area. Using an information-theoretic approach (Burnham and Anderson, 
2002), we selected the best model to describe each stand structure variable. See Table 1 for summary of 
remote sensing data discussed above. 

Table 1 Remote sensing data available for study 

Remote Sensing Data Type Date Acquired Spectral Resolution Spatial Resolution 
AVIRIS (fO2 10 15t01) 10/15/2002 224 bands, 10 nm 17.5 m 
EO-1 Hyperion 9/27/2002 220 bands, 10 nm 30 m 
Landsat 7 TM 10/5/1999 8 bands 30 m, 15 m 
LiDAR 11/2001 1 band 1-2 m 
QuickBird 10/2/2002 5 bands 2.8 m, 0.7 m 
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3. RESULTS AND DISCUSSION 

3.1 Fuel Spectra 

Fuel models are integrated descriptions of typically fuel loadinglcondition based on fuel type, the 
amount of fuel, whether the fuel is alive or dead and on the time required for the fuel to come to moisture 
equilibrium with its environment @ h e y  1998). Liquid water must be evaporated before a fuel can reach 
combustion temperatures. Live fuels require much more preheating than dead fuels. While traditional 
multi-spectral satellite data can measure biomass of live herbaceous and woody plant materials, it is less 
sensitive to dead plant materials and vegetation structure that are critical for charactenz * ing fuel models 
and fire risk. Combining AVIRIS hyperspectral features and LiDAR backscatter metrics, with potential 
for detecting various materials and their spatial structures, is promising for efforts to overcome the lack of 
sensitivity of multi-spectral data. 

The leaf-scale spectral reflectance of ponderosa pine and Douglas-fir, the two dominant conifer 
species in the region, are shown in Figure 2a However, they do not completely match the spectra derived 
from AVIRIS (Figure 2b). Conifer species (Ponderosa pine and Douglas-fir) have very similar leaf scale 
spectral features. However$ there is more merent spectra at crown or stand scale, mainly due to their 
di€€erence in canopy gap probability, crown shape and archit-. We failed to distinguish the two 
conifers using leaf spectra, but got relatively accurate results with crown scale ROIs. Linear spectral 
unmixing techniques proved to have the capacity to detect the proportiou of conifer trees in a certain pixel 
or p u p  of pixels, and therefore separate them from each other and from background vegetation. 

Flgure 2 Spectral reflectance of dominant endmembers and spectral mixtures in the study area: a) 
Ponderosa pine and Douglas-fir at leaf scale, b) stand-scale ponderosa pine and Douglas-fir spectra 
derived from AVIRIS, c) field-measured endmember spectra for a ponderosa pine forest patch. 

In a given AVIRIS pixel in our study area we distinguished at least five endmembers: ponderosa 
pine, shadow, grass, soiflitter, and shrub. Their field-measured spectra are shown in Figure 2c. Spectral 
mixture analysis cannot provide direct information about fuel condition underneath forest canopies (Le. 
endmember of litter, grasses and shrub); however, it provides fraction cover of those components in a 
certain area and enables us to estimate live/dead fuels. 

3.2 Fuel Mapping 

We generated a map (see Fig. 3) of fuel attributes from AVIRIS spectral analysis procedures that 
includes 18 categories; they are five canopy cover classes for ponderosa pine forest and four canopy cover 
classes for Douglas-fir forest, three classes of burn severity, spruce/fu forest, aspen forest, shrubland, 
meadow/grassland, barren, and riparian. It was indicated in our AVIRIS derived fuel map that 13.2% of 
the study arm has over 60% canopy cover with relatively high crown fuel loads. These are potentially 
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priority areas for fuel treatment plans. From this classification, we separated three data layers that are 
necessary for fuel condition and fire damage assessment, including fuel model, canopy cover, and bum 
severity. To generate a fuel model map, we evaluated the 18 classes of the fuel map against gomd fuel 
measurements and literature, and then translated the classes into 5 customized fuel models. 

We validated our remote sensing analyses with our field measurements and survey data fkom 
USFS fuel treatment units. It was shown that AVIRIS derived liquid water thickness and vegetation index 
were strongly and positively related to green leaf biomass and canopy cover respectively in conifer 
stands. There was 71.3% of agreement between AVIRIS-derived fuel classes and ground measurements. 
There was high accuracy in the interpretation of vegetation types, while most of the errors occurred with 
canopy cover estimates. 

-00- -00- 

8 Upper South Platte 
Fuel Claesificaton 

Figure 3 AVIRIS derived map of fuel classes in upper South Platte. The map was generated from S A M  
classification and was validated with ground fuel survey and spectral measurements. 
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3.3 Forest structure 
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Assessing forest fire potential requires accurate estimates of surface and canopy fuel 
characteristics. LiDAR’s ability to capture stand structural information led us to estimate canopy variables 
that are critical for modeling fire behavior and variables that are directly related to the amount of 
combustible mass in a stand. Selected variables were: canopy bulk density, canopy base height, Lorey’s 
height and basal area (see Fig. 4). Canopy bulk density is the density of canopy fuels that would be 
consumed in the flaming front of a fully active crown fire (Scott and Reinhardt, 2001). Canopy base 
height is the lowest height above the ground at which there is sufficient canopy fuel to propagate fire 
vertically through the canopy (Scott and Reinhardt, 200 1). We used Lsrey’s height (basal-area weighed 
mean tree height) as a measure of stand height. 
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Figure 4 Observed .values of forest structure attributes versus values predicted by the best regression 
model derived from LiDAR metrics. The solid gray line represents the 1 : 1 line, where observed = 

predicted. The dotted black lines are the limits of the 95% prediction intervals for the plotted model. a) 
Basal-area-weighed average height (Lorey’s height, in meters) of sampled trees; b) Basal area (m2/ha); c) 
Canopy bulk density (kg/m3); d) Canopy base height (m). 
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We compared both linear and non-linear models with LiDAR metrics as predictors of each stand 
structure variables. Our results show high agreement between observed and predicted Lorey’s height (Fig. 
4a; ?=0.87). Results for basal area and canopy bulk density were promising, especially for low values 
(Figs. 4b and 4c; 2 4 . 7 9  and ?=0.83, respectively). The lack of enough sites with large values for these 
two variables limits the generality of the relationships we found. Though we were. able to explain 79.8% 
of the variability in canopy base height (Fig. 4d), this relationship was dominated by one particularly 
large value. Therefore, we conclude that there is evidence of LiDAR’s capacity to provide estimates of 
canopy base height, but more research is needed to select a general model to do so. 

Combined AVIRIS and LiDAR data can be used to map fuel type, fuel amount, fuel condition, 
and bum severity in forests of the Colorado Front Range. AVIRIS derived NDVI, equivalent liquid water 
thickness, cellulose absorption index and LiDAR backscatter metrics have demonstrated abilities for 
mapping fuel models, canopy cover and bum severity. Fuel properties derived from hyperspectral and 
LiDAR information will serve as valuable inputs for fire behavior modeling. 

3.4 Burn Severity 

Three levels of bum severity were clearly distinguished with the spectral reflectance derived from 
AVIRIS and Hyperion images, and visually separated on a RGB @and 4:3:2) Quicksird image. The 
higher the bum severity, the lower the fraction of live vegetation in pixels, and therefore, the less 
chlorophyll signature in spectral mixture. This can be clearly seen by comparing the spectra of PV and 
NPV endmembers. This is the basis for the bum severity classification and mapping with hyperspectral 
data. On this false-color infrared Quicksird image (Figure 5), live vegetation appears in bright red, while 
bumed trees are. in blue-green color. Single bumed trees are. also distinguished on the image. 
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Fignre 5 AVIRIS and Hyperion derived spectra reflectance of bumed forest with different severity 
(right), and bum severity shown on Quicksid image (left) 
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4. FUTURE WOKK 

We have been examining the use of multi-sensor remote sensing imagery, including AVIRIS, 
Hyperion, ALI, ASTER, Landsat 7 and QuickBird image of the same area in upper Soluth Platte, to 
develop a technique to identify fuel types based on their spectral differences in plant communities. We are 
hoping to reach a compromise between spectral resolution, spatial resolution, cost, and accuracy, and find 
the best data set for fuel loading estimates. Meanwhile, we are in a process to build relatively accurate 
data layers of fuel features for most of the Colorado Front Range based on the AVIRIS data collected in 
2,1002 and 20103 and a scheduled ER-2 flight in 2004, combined with small areas of ASTER, ALI, 
Hyperion, and Landsat data. 

Maps produced from our current hyperspectral analysis have been used to assess forest fuel 
condition and fire risk in both the Pike NF and the Arapaho-Roosevelt NF in the summer of 2003. That 
information has helped forest managers in their fuel treatment plans. In each case, operations were 
enhanced by the av,ailability of information on fuels. Further comparative analysis between pre and post 
file1 treatment should assist forest managers to better evaluate the effect of their treatments and adjust the 
treatment plan while: necessary. 

As more AVIRIS data becomes available in coming years, additional information on forest fuel 
clonditions should become discernible. This information will be incorporated into enhanced mapping 
techniques. With accurate fuels information in hand, fire managers should be able to make informed 
decisions about ongoing wildland fires and fuel treatments. These decisions will result in safer conditions 
for fire fighters land less damage during a fire. 

As a part of the new forest management initiatives, the Arapahoe-Roosevelt and Pike National 
Forests have planned prescribe fire for several thousand hectares of Colorado Front Range forests since 
2002. During the 2003-2004 year, we plan to interact with these National Forests and gain landscape 
coverage of ithe key variabjes for driving FARSITE for several prescribed burns. In the simulations, the 
remotely sensed input variables we derived from hyperspectral analysis will play a key role, and the 
accuracy of our remote sensing interpretation will be critical to the model result. After each fire, we will 
simulate the prescribed burns using relevant weather data and pre-fire fuel conditions, and we will 
compare our results; to the observed fire behavior. This will provide us with important validation of our 
combined remote sensing-FARSITE simulation approach, and may feed back into modifications of either 
the input variable assessments, or the actual simulation approach. 
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Mineral Mapping with AVIRIS and EO--1 Hyperion 

Fred A. Kruse' 

HSI Spectral 
Sensor Resolution 
AVIRIS-High Altitude 10 nm 
Hyperim 10 nm 

1.0 Infirodiuction 
Imaging Spectrometry data or Hyperspectral Imagery (HSI) acquired using airborne systems have been used in the 
geologic community since the early 1980's and represent a mature technology (Goetz et al., 1985; Kruse et al., 
1999). The solar spectral range, 0.4 to 2.5 pm, provides abundant information about many important Earth-surface 
minerals (Clark et al., 1990). In particular, the 2.0 to 2.5 pm (SWIR) spectral range covers spectral features of 
hydroxyl-bearing minerals, sulfates, and carbonates common to many geologic units and hydrothermal alteration 
assemblages. l?revious research has proven the ability of airborne and spaceborne hyperspectral systems to uniquely 
identify and map these: and other minerals, even in sub-pixel abundances (Kruse and Lefkoff, 1993; Boardman and 
f i s e ,  1994; Bioardman et al., 1995; Kruse, et al., 1999). This paper describes a case history for a site in northern 
Death Valley, California and Nevada along with selected S N R  calculations/results for other sites around the world. 
Various hyperspectral mineral mapping results for this site have previously been presented and published (Kruse, 
1988; Kruse et al., 1993, 1999,2001,2002,2003), however, this paper presents a condensed summary of key details 
for hyperspectral data from 2000 and 200 1 and the results of accuracy assessment for satellite hyperspectral data 
compared to airborne hyperspectral data used as ground truth. 

Spatial Swath SWIR 
Resolution Width SNR 
20 m 12 km -500: 1 
30 m 7.5 km -50: 1 

2,,0 
The launch of NASA's EO-1 Hyperion sensor in November 2000 marked the establishment of spaceborne 
hyperspectral mineral mapping capabilities. Hyperion is a satellite hyperspectral sensor covering the 0.4 to 2.5 pm 
spectral range with 242 spectral bands at approximately lOnm spectral resolution and 30m spatial resolution from a 
705km orbit (Pearlman et al., 1999). Hyperion is a pushbroom instrument, capturing 256 spectra each with 242 
spectral bands over a '7.5Km-wide swath perpendicular to the satellite motion. The system has two grating 
spectrometers; one visible/near infrared (VNIR) spectrometer (approximately 0.4 - 1 .O pm) and one short-wave 
infi-ared (SWIR)) spectrometer (approximately 0.9 - 2.5 pm). Data are calibrated to radiance using both pre-mission 
and on-orbit measurernents. Key AVIRIS and Hyperion characteristics are compared in Table 1 and discussed 
fitrther in Green et al., 2003. 

Comparison lof Hyperion and AVIFUS Specifications 

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) represents the current state of the art airborne 
hyperspectal system. AVIRIS, flown by NASNJet Propulsion Laboratory (JPL) is a 224-channel imaging 
spectrometer with approximately 10 nm spectral resolution covering the 0.4 - 2.5 pm spectral range (Green et al., 
1999). The sensor is a whiskbroom system utilizing scanning foreoptics to acquire cross-track data. The IFOV is 1 
milliradian. Four off-axis double-pass Schmidt spectrometers receive incoming illumination from the foreoptics 
using optical fibers. €our linear arrays, one for each spectrometer, provide high sensitivity in the 0.4 to 0.7 pm, 0.7 
to 1.2 pm, 1.2 to 1.8 pm, and 1.8 to 2.5 pm regions respectively. AVIRIS is flown as a research instrument on the 
NASA Eli-2 aircraft ah an altitude of approximately 20 km, resulting in approximately 20-m pixels and a 10.5-km 
swath width. Since 1998, it has also been flown on a Twin Otter aircraft at low altitude, yielding 2 - 4m spatial 
resolution. 

Table 1 : AVIRISEIyperion Sensor Characteristics Comparison 

Analytical Irnaging and Geophysics LLC (AIG), Boulder, Colorado, USA, E-mail: kruse@aigllc.com 1 
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,.O Methods 
Analytical Imaging and Geophysics LLC (AIG) has developed methods for analysis of hyperspectral data that allow 
reproducible results with minimal subjective analysis (Kruse et al., 1996,2001). These approaches are implemented 
and documented withiin the “Environment for Visualizing Images” (ENVI) software system originally developed by 
AIG scientists (now an Eastman KodaWResearch Systems Inc [RSI] commercial-off-the-shelf [COTS] product) 
(Research Systems In,:, 2001). They are also described in additional detail in Kruse et al. (2002,2003). The 
hyperspectral analysis, methodology includes I )  data pre-processing (area-array destriping as required), 2) correction 
of data to apparent reflectance using the atmospheric correction software ACORN (AlG, 2001), 3) linear 
transformation of the reflectance data using a Minimum Noise Fraction (MNF) transform to minimize noise and 
determine data dinienijionality (Green et al., 1988; Boardman 1993), 4) location ofthe most spectrally pure pixels 
using the Pixel Purity Index (PPI) approach (Boardman et al. 1994, 1995), 5) extraction of endmemember spectra 
using n-dimensional scatter plotting (Boardman et al., 1995), 6) identification of endmember spectra using visual 
inspection, automated identification, and spectral library comparisons (Kruse and Letkoff, 1993; Kruse et al., 1993) 
and 7) spatial mappin;: and abundance estimates for specific image endmembers using the Mixture-Tuned Matched 
Filtering (MTMF) method (Boardman, 1998). A key point ofthis methodology is the reduction of data in both the 
spectral and spatial dimensions to locate, characterize, and identify a few key spectra (endmembers) that can be used 
to explain the rest ofthe hyperspectral dataset. Once these endmembers are selected, then their location and 
abundances can be mapped from the linearly-transformed or original data. These methods derive the maximum 
information from the lhyperspectral data themselves, minimizing the reliance on a priori or outside information 

4.0 
The study area described here is located in northern Death Valley, at the 
extreme northern end of Death Valley National Park (Figure I ) .  The geology 
consists principally of‘a Jurassic-age intrusion exhibiting quart-sericite-pyrite 
hydrothermal alteration (Wrucke et al., 1984; Kruse, 1988). This site has been 
used as a test area for imaging spectrometers since 1983 (Kruse, 1988; Kruse el 
al., 1993, 1999). For the purposes ofthis study, AVIRIS data collected 9 June 
2000 (fD00609t01p03~r04) were compared to Hyperion data collected July 23 
2001 (E012001204~~!0AD20AC~rI~PFI~01 .Ll-A). 

A spectral subset of bands covering the short wave infrared (SWIR) spectral 
range (2.0 - 2.5 pm fbr AVlRlS and 2.0 - 2.4 pm for Hyperion) was selected 
and these bands were linearly transformed using the MNF transformation. A 
plot of eigenvalues vrrsus MNF band number (not shown) shows a sharp 
falloff in eigenvalue magnitude between 1 and 20 for AVIRIS and between 1 
and I O  for Hyperion. Because higher eigenvalues generally indicate higher 
information content, this indicates that the AVIRlS data contain significantly 

Results - Noirthern Death Valley Site 

Figure I :  Location ofthe 
Northern Death 
Valley Site 

more information. The actual data dimensionality is usually determined by comparing both the eigenvalue plots and 
the MNF images for each dataset (Figures 2 and 3). In the case of AVIRIS, the MNF analysis indicates a 
dimensionality of approximately 20. The Hyperion data exhibits dimensionality of approximately 8. 

Figure 2. MNF images for the northern Death Valley AVIRIS SWIR data. Images from left to right, MNF band 1, 
MNF band 5, MNF band 8, MNF band I O ,  MNF band 20. 



Figure 3. MNF images for the northern Death Valley Hyperion SWIR data. Images from lefi to right, MNF band I ,  
MNF hand 5, MNF band 8, MNF band 10, MNF band 20. 

The top MNF hands for each data set (20 for AVIRIS, 
6 for Hyperion), which contain most of the spectral 
information (Green et al., 1988), were used to 
determine the most likely endmembers using the PPI 
procedure. These potential endmember spectra were 
loaded into an n-dimensional scatterplot and rotated in 
real time on the computer screen until “points” or 
extremities on the scatterplot were exposed 
(Boardman, 1993). These projections were “painted” 
using region-of-interest (ROI) definition procedures 
and then rotated again in 3 or more dimensions (3 or 
more MNF bands) to determine if their signatures 
were unique in the MNF data. Once a set of unique 
pixels were defined, then each separate projection on 
the scatterplot (corresiponding to a pure endmember) 
was exported to a ROI in the image. Mean spectra 
were then extracted for each ROI ffom the apparent 
reflectance data to act as endmembers for spectral 
mapping (Figure 4). These endmembers were used for 
subsequent classific;ation and other processing. 
Mixture-Tuned-Matched Filtering (MTMF), a spectral 
matching method (Boardman, 1998), was used to 
produce image-maps showing the distribution and 
abundance of selected minerals. (Note: MNF 
endmemher spectra, n’ot reflectance spectra are used in 
the MTMF). The re:sults are generally presented as 
gray-scale images (not shown) with values from 0 to 
1.0, which provide a means of estimating mineral 
abundance. Brighter pixels in the images represent 
higher mineral abundances. Results images for both 
AVIRIS and Hyperion were produced by correcting 
the Hyperion data to match the AVIRIS spatial scale 
and orientation as described above. Selected results 
were combined as color-coded images to show the 
distribution of the principal (spectrally predominant) 
minerals (Figures 5 and 6). 

Figure 4: Comparison of selected AVIRJS endmember 
(mean) spectra (left) and Hyperion endmemher 
(mean) spectra (right) for the northern Death Valley, 
California and Nevada site. 



Figure 5:  MTMF mineral maps for AVWS (left) and Hyperion (right) produced for the endmembers in Figure 4 for 
the northern Death Valley, California and Nevada site. Colored pixels show the spectrally predominant 
min-l a+ pnwentrations greater than 10% 

Figure 6: MTMF mineral maps for AVWS (left) and Hyperion (right) produced for a subset (combined) ofthe 
endmembers in Figure 4 for the northern Death Valley, California and Nevada site. Colored pixels show 
the spectrally predominant mineral group at concentrations greater than 10%. 
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Visual comparison of the detailed mapping results for the northern Death Valley site shows that Hyperion identifies 
similar minerals to AVIRIS and that there is generally good correspondence between the AVIRHS and Hyperion 
mapping. It is also possible to extract abundance information from both the AVIRIS and Hyperion data (Boardman 
and Kruse, 1994; Boardman et al., 1995, Kruse et al, 1999), but this is not illustrated here. Confusion matrix results 
comparing the AVIRIS and Hyperion mapping results, excluding the unclassified pixels show overall accuracy of 
approximately 76% for the Hyperion mapping as compared to AVIRIS, with a Kappa Coefficient of 0.7 1. Table 2 
indicates that there is, however, considerable difficulty separating similar mineralogy. In this case, detecting and 
mapping the three muscovite varieties appears to be near the detection limit at the calculated 60: 1 SNR of the 
Hyperion data. Grouping similar minerals together (calcite with dolomite, and combining the three muscovites) 
results in dramatic identification and mapping improvements (Figure 6, Table 3). 

Hyperion Class 

Carbonate 

Muscovite 

Silica 

Zeolite 

I 

Table 2: Confusion Matrix comparing Hyperion northern Death Valley MTMF mineral mapping results to AVIRIS 
Overall “Ground Truth” MTMF detailed mineral mapping results. 

Accuracy i s  76%. Kappa coefficient is 0.71 
Excludes unclassified pixels. 

AVIRIS Ground Truth (Percent) 

( 

Ground Truth (Percent) 

Dolomite Muscovite #1 Muscovite #2 Muscovite 83 Silica Zeolite Total 
Class 

1 6 . 7 5  0 . 0 0  0 . 3 1  1.11 0 . 4 6  0.21 11.46 

83.01 0. 00 0.00 0.00 0.09 0.10 9.74 

0.00 85.62 1 5 . 0 4  4 1 . 1 3  1 . 3 7  0 . 0 0  3 3 . 0 7  

0 . 0 0  2.11 76.43 11.49 0.09 0.00 8.62 

Table 3: Confusion Matrix comparing Hyperion northern Death Valley MTMF mapping results to AVIRIS 
“Ground ‘Truth” MTMF basic (Combined Minerals) mapping results. Excludes unclassified pixels. 
Overall Accuracy is 94%. Kappa coefficient is 0.9 1. 
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5.0 
The quality of digital remote sensing data is directly related to the level of system noise relative to signal strength. 
This is usually expressed as Signal-to-Noise Ratio (SNR), a dimensionless number that describes overall system 
radiometric performance (Collwell, 1983). System noise is tied to sensor design and takes into account factors such 
as detector performance/sensitivity, spatial/spectral resolution, and noise characteristics of the system electronics. 
Though the noise levels for a given sensor are generally fixed, for remote sensing data acquisition, the signal portion 
of the SNR is affected by other external factors such as solar zenith angle, atmospheric attenuation and scattering, 
and surface reflectance, which modify the signal available to the sensor (Collwell, 1983). 

SNR Comparisons - Effect on Mineral Mapping 

One common means for determining an approximate SNR for remote sensing data is to use a Meadstandard 
Deviation method (Green et al., 1999,2003). This approach requires definition of a spectrally homogeneous area, 
calculation of the average spectrum for that area, and determination of the spectrally distributed standard deviation 
for the average spectrum. SNR are normalized to 50% reflectance for comparison. SNR calculated using this 
method are representative of those that can be extracted directly fiom the data, however, SNR for bright targets may 
be underestimated because of homogeneity issues at higher SNR (increasing SNR may result in breakdown of 
apparently homogeneous areas into multiple materials and new homogeneous areas must be selected). Slightly 
higher SNR values could probably be obtained through direct analysis of the data dark current signal (Green et al., 
1999), an “Instrument SNR”, however, this isn’t always possible. SNR calculated using the Meadstandard 
Deviation method, an “Environmental SNR” are sensitive to acquisition conditions as mentioned above, and thus 
should be considered lower limits on performance. 

Analysis of approximately 14 Hyperion scenes from around the world using the Meadstandard Deviation SNR 
method shows that there is a strong relationship between the acquisition time of year (which controls the solar zenith 
angle) and the SNR of the Hyperion data (Kruse et al., 2001,2003). Calculated SNR for Hyperion SWIR data are 
higher in the summer and lowest in the winter (Figure 7). This has a direct effect on spectral mineral mapping, with 
lower S WIR SNR resulting in extraction of less detail (Kruse et al., 200 1,2002,2003). While Hyperion data with 
approximately 25: 1 SNR allow basic mineral identification (no separation of within-species variability) more detail 
(additional endmembers) are detected and mapped using the higher SNR AVIRIS and Hyperion data (60: 1 SNR) at 
the northern Death Valley site. This is also important for geologic/mineral mapping, because higher SNR allows 
separation of similar endmembers such as calcite from dolomite (Figure 4) and within-species variability such as 
kaolinite vs dickite (Figure 4). In the northern Death Valley case, the relatively high Hyperion SNR allows 
detection of 3 different mica endmembers with different aluminum substitution (Kruse et al., 1999). Previous 
investigations have indicated that SNR is critical for this determination (Kruse, 1988, Kruse et al., 2002). 
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Figure 7: Comparison of Hyperion calculated SNR for “winter” data (left) and “summer” data (right). Filled areas 
indicate range of SNR for 14 Hyperion scenes. 
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6.0 Conclusions 
Results at the northern Death Valley site establishes that data from the Hyperion SWIR spectrometer (2.0 - 2.4 pm) 
can be used to produce useful geologic (mineralogic) information. Comparison of Hyperion data to airborne 
hyperspectral data (AVIRIS) show that Hyperion provides the ability to remotely map basic surface mineralogy. 
Minerals mapped at this site include calcite, dolomite, muscovite (3 varieties), hydrothermal silica, and zeolites. 
These case histories demonstrate the analysis methodologies and level of information available from these Hyperion 
data. They also demonstrate the viability of Hyperion as a means of extending hyperspectral mineral mapping to 
areas not accessable to aircraft sensors. 

AVIRlS data collected during July 2000 (northern Death Valley) served as the “ground truth” for this investigation. 
Ciomparison of Hyperion results for northern Death Valley (June 2001) to the known mineralogy derived from the 
AVIRIS data generally validate on-orbit mineral mapping and Hyperion performance. Standardized hyperspectral 
data processing methods applied to the Hyperion data lead to definition of specific key minerals, however, it is more 
difficult (than for AVIRIS) to extract the information because of the Hyperion data’s lower SNR. The effect of this 
reduced response compared to AVIRIS is lower data dimensionality, thus fewer endmembers can be identified and 
mapped than with AVIRIS. Accuracy assessment and error analysis indicates that with Hyperion data that, in many 
cases, mineral identification is not possible where specific minerals are known to exist. In addition, Hyperion often 
confuses similar minerals that are separable using AVIRIS 

The Hyperion data demonstrate the importance of high signal-to-noise performance for hyperspectral sensors. The 
northern Death Valley Hyperion scene was collected under optimum (summer - high solar zenith angle) conditions 
and exhibits SWIR SNR as high as approximately 60: 1. These data allow detailed mineral mapping, including 
within-species variability, however, this capability is at the detection limit of current Hyperion SNR levels. 
Combining minerals to form a basic mineral map results in improved mapping with greater than 94% 
correspondence between AVIRIS and Hyperion at the northern Death Valley site. The level of mineralogic 
information available from the Hyperion data is directly tied to the SNR. 

As a technology demonstration, Hyperion performs satisfactorily for mineral identification and mapping. Summer 
season Hyperion acquisitions with high SNR result in improved mapping capabilities. Improvements principally 
take the form of characterizing subtle distinctions such as determining the difference between calcite and dolomite 
and mapping within-s pecies variability caused by molecular substitution (eg: aluminum substitution in micas). 
Unfortunately, Hyperjon data collected under less than optimum conditions (winter season, dark targets) have 
marginal SWIlR SNR and allow mapping of only the most basic mineral occurrences and mineral differences. This 
results in a recommendation that future HSI satellite sensors have significantly higher SNR performance 
specifications than Hyperion for the SWIR (at least 1OO:l based on dark current measurements). 

9.0 Acknowledgments 
This research was partially funded by NASA under grant NCC5-495. Additional financial support was provided by 
Analytical Imaging and Geophysics LLC internal research and development funds. AVIRIS data were provided by 
JIPL. ACORN is a trademark of ImSpec Associates, LLC. ENVI is a registered trademark of Research Systems 
Inc., Boulder, Colorado. Pixel Purity Index (PPI), n-Dimensional Visualizer, Spectral Analyst, and Mixture-Tuned 
Matched Filter (MTMF) are all trademarks of Research Systems Inc. 

8.0 References 
Analytical Imaging and Geophysics LLC (AIG), 200 1, ACORN User‘s Guide, Stand Alone Version: Analytical 

Imaging and Geophysics LLC, 64 p. 
Boardman, J. ’W., 1993, Automated spectral unmixing of AVIRIS data using convex geometry concepts: in 

Summaries, Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, v. 1, p. 11-14, 
Boardman J. W., amd Kruse, F. A., 1994, Automated spectral analysis: A geologic example using AVIRIS data, 

north Grapevine Mountains, Nevada: in Proceedings, Tenth Thematic Conference on Geologic Remote 
Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, p. 1-407 - 1-4 18. 

data: in Sum,maries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-1, v. 11, p. 23-26. 
Boardman, J. W., b i s e ,  F. A, and Green, R. O., 1995, Mapping target signatures via partial m i x i n g  of AVIRIS 

155 



Boardman, J. W., 1998, Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing 
and rejection of false positives: mixture tuned matched filtering, in: Summaries of the Seventh Annual JPL 
Airborne Geoscience Workshop, Pasadena, CA, p. 55. 

minerals: Journal of Geophysical Research, v. 95, no. B8, p. 12653-12680. 

Remote Sensing (ASPRS), pp. 344-363, and pp. 1196. 

Science, v. 228, p. 1147 - 1153. 

terms of image quality with implications for noise removal: IEEE Transactions on Geoscience and Remote 
Sensing, v. 26, no. 1, p. 65 - 74. 

Green, R. O., B. Pavri, J. Faust, and 0. Williams, 1999, “AVIRIS radiometric laboratory calibration, inflight 
validation, and a focused sensitivity analysis in 1998,” in Proceedings of the 8Ih JPL Airborne Earth 
Science Workshop: Jet Propulsion Laboratory Publication 99-1 7, p. 161 - 175. 

Calibration of Hyperion Using Ground, Atmospheric and AVIRIS Underflight Measurements,” TGARS 
Special Issue on EO-1 (in press). 

Kruse, F. A., 1988, Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally 
altered rocks in the northern Grapevine Mountains, Nevada and California: Remote Sensing of 
Environment, v. 24, no. 1 , pp. 3 1-5 1. 

Kruse, F. A., and Lefkoff, A. B., 1993, Knowledge-based geologic mapping with imaging spectrometers: Remote 
Sensing Reviews, Special Issue on NASA Innovative Research Program (IRP) results, v. 8, p. 3 - 28. 

Kruse, F. A., Lefkofc A. B., and Dietz, J. B., 1993, Expert System-Based Mineral Mapping in northern Death 
Valley, California/Nevada using the Airborne Visible/Inf?ared Imaging Spectrometer (AVIRIS): Remote 
Sensing ofEnvironment, Special issue on AVIRIS, May-June 1993, v. 44, p. 309 - 336. 

Kruse, F. A., Huntington, J. H., and Green, R. 0, 1996, Results fi-om the 1995 AVIRIS Geology Group Shoot: in 
Proceedings, 2”d International Airborne Remote Sensing Conference and Exhibition: Environmental 
Research Institute of Michigan (ERIM), Ann Arbor, v. I, p. 1-21 1 - 1-220. 

Grapevine Mountains, Nevada: in Proceedings of the Sth JPL Airborne Earth Science Workshop: Jet 
Propulsion Laboratory Publication, JPL Publication 99-1 7, p. 247 - 258. 

Hyperion: in Proceedings of the lofh JPL Airborne Earth Science Workshop: Jet Propulsion Laboratory 
Publication 02-1, p. 253 - 265. 

Kruse, F. A., Boardman, J. W., and Huntington, J. F., 2002, “Comparison of EO-1 Hyperion and Airborne 
Hyperspectral Remote Sensing Data for Geologic Applications,” in Proceedings, SPIE Aerospace 
Conference, 9-16 March 2002, Big Sky, Montana, published on CD-ROM, IEEE Catalog Number 
02TH8593C, Paper #6.0102, 12 p. 

Kruse, F. A., Boardman, J. W., Huntington, J. F., Mason, P., and Quigley, M.A., 2003, Evaluation and Validation of 
EO-1 Hyperion for Geologic Mapping: in Special Issue, TGARSS, IEEE (in press) 

Pearlman, J., Stephen Carman, Paul Lee, Lushalan Liao and Carol Segal, 1999, Hyperion Imaging Spectrometer on 
the New Millennium Program Earth Orbiter- 1 System: In Proceedings, International Symposium on 
Spectral Sensing Research (ISSSR), Systems and Sensors for the New Millennium, published on CD- 
ROM, International Society for Photogrammetry and Remote Sensing (ISPRS). 

Clark, R. N., King, T. V. V., Klejwa, M., and Swayze, G. A., 1990, High spectral resolution spectroscopy of 

Collwell, R. N. (ed.), 1983, Manual of Remote Sensing, 2“d Edition, American Society of Photogrammetry and 

Goetz, A. F. H., G. Vane, J. E. Solomon, and B. N. Rock, 1985. Imaging spectrometry for earth remote sensing, 

Green, A. A., Berman, M., Switzer, B., and Craig, M. D., 1988, A transformation for ordering multispectral data in 

Green, R. O., Chrien, T. G., and Pavri, B., 2003, “On-orbit Determination of the Radiometric and Spectral 

Kruse, F. A., Boardman, J. W., and Huntington, J. F., 1999, Fifteen Years of Hyperspectral Data: northern 

Kruse, F. A., Boardman, J. W., and Huntington, J. F., 2001, Progress Report: Geologic Validation of EO-1 

Research Systems Inc (RSI), 2001, ENVI User’s Guide, Research Systems Inc, 948 p. 
Wrucke, C. T., Werschkey, R. S., Raines, G. L., Blakely, R. J., Hoover, D. B, and Miller, M. S., 1984, “Mineral 

resources and mineral resource potential of the Little Sand Spring Wilderness Study Area, Inyo County, 
California,” U. S. Geological Survey Open File Report 84-557,20 p. 

156 



PRELIMINARY RESULTS - HYPERSPECTRAL MAPPING OF CORAL REEF 
SYSTEMS IJSING EO-1 HYPERION, BUCK ISLAND, U.S. VIRGIN ISLANDS 

Fred A. Kruse’ 
Analytical Imaging and Geophysics LLC 

4450 Arapahoe Ave, Suite 100, Boulder, Colorado 80303 USA 

1.0 Introduction 
Hyperspectral imaging (HSI) data consisting of hundreds of spectral bands provide the unique ability to 

identify Earth surface materials based on their spectral properties (Goetz et al., 1985). While these data can be 
analyzed using multispectral image (MSI) analysis techniques, classical MSI methods do not take full advantage of 
the spectral dimensionality of these datasets. Geologists have been analyzing hyperspectral data since 1983 with 
excellent results (Goetz et al., 1985; Lang et al. 1987; Kruse, 1988; Crowley, 1993; Boardrnan and h s e ,  1994; 
Clark et al., 1996; Boardman and Huntington, 1996; Crowley and Zimbelman, 1996, Kruse et al., 1993a, 1999, 
2001,2002,2003). Consequently, a broad range of hyperspectral-specific analysis techniques have been examined, 
refmed, and put into olperational practice (Kruse, 1988; Mazer et al., 1988; Clark et al., 1991; Clark and Swayze, 
1995; Boardman et al., 1995; Boardman, 1998; Kruse et al., 1993a, 1993b, 1999). These methods utilize the unique 
capabilities of hyperspectral data to locate, map, and identify the materials present on the Earth’s surface. This 
paper describes a successful geologic case history using an end-to-end approach with satellite-based (Hyperion) 
data, including data correction to apparent reflectance, use of a linear transformation to minimize noise and 
determine data dimensionality, location of the most spectrally pure pixels, extraction of endmember spectra, and 
spatial mapping of specific enhembers. Recently, AIG has begun utilizing this approach with hyperspectral data 
of the near-shore marine environment (Kruse et al., 1997; Richardson and Kruse, 2000). While ocean data are 
generally more complex, and some work has been done in applying HSI data to near-shore-marine problems 
(Dekker et al., 1992; Davis et al., 1993; Carder et al., 1993; Clark et al., 1997, Holasek et al, 1998; Holden and 
LeDrew, 1999; Holden et al., 1999; Hochberg and Atkinson, 2000), many of the concepts developed for geologic 
analysis are applicable to analysis of near-shore hyperspectral data. The Hyperion case history described here for 
Ruck Island, St Croix, U.S. Virgin Islands utilizes the unique capabilities of hyperspectral data to locate, map, and 
identify components of the coral reef ecosystem, assessing hyperspectral data’s capability with respect to established 
ground truth. lJse of the “standard” methods provides a viable first look at reef composition and distribution. 
Application of additional water column corrections to the hyperspectral data prior to signature extraction results in 
mapping improvements and demonstrates the requirement for extraction of bottom reflectance signatures to avoid 
mapping water depth dependencies rather than bottom composition differences. 

2.0 EO-1 Hyperion 

hyperspectral mapping capabilities. Hyperion is a satellite hyperspectral sensor covering the 0.4 to 2.5 pm spectral 
range with 242 spectral bands at approximately lOnm spectral resolution and 30m spatial resolution from a 705km 
oirbit (Pealman et al., 1999). Hyperion is a pushbroom instrument, capturing 256 spectra each with 242 spectral 
bands over a 7.5Km-wide swath perpendicular to the satellite motion along an up to 160km path length. The system 
has two grating spectrometers; one visibleinear infrared (VNIR) spectrometer (approximately 0.4 - 1 .O pm) and one 
short-wave infrared (SWIR)) spectrometer (approximately 0.9 - 2.5 pm). Data are calibrated to radiance using both 
pre-mission and on-orbit measurements. Key Hyperion characteristics are discussed further in Green et al., 2003. 

Hyperion data are available for purchase from the U. S. Geological Survey (see htt~:/ /eol.us~s.~ov/).  To date, 
over SO00 Hyperion scenes have been acquired for a variety of disciplines. The EO-1 Science Validation Team has 
evaluated and validated the instrument. Selected results have been presented at team meetings (see 
http://eo 1 .asfc.nasa.govJ and also published in various venues (Asner and Green, 2001; Hubbard and Crowley, 
2001; Kmse eit al., 20103; also see Ungar, 2003 for a summary along with associated papers). The instrument remains 
healthy and additional data can be requested for specific sites. 

The launch of NASA’s EO-1 Hyperion sensor in November 2000 marked the establishment of spaceborne 

’ Analytical Imaging and Geophysics LLC (AIG), Boulder, Colorado, USA, E-mail: kruse@aigllc.com 
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3.0 Analysis Methods 

(AIG) has evolved a “standardized” hyperspectral 
data analysis methodology (Figure 1) that has been 
tested for a variety of data (Boardman et al., 1995; 
Kruse et al., 1996; h s e  et al., 2001). These 
approaches are implemented and documented 
within the “Environment for Visualizing Images” 
(ENVI) software system originally developed by 
AIG scientists (now an Eastman KodaWResearch 
Systems Inc [RSI] commercial-off-the-shelf 
[COTS] product) (Research Systems Inc, 200 1). 
They are also described in additional detail below. 
This is not the only way to analyze these data, but 
we have found that it provides a consistent way to 
extract spectral information fi-om hyperspectral data 
without a priori knowledge or requiring ground 
observations. The analysis approach consists of the 
following steps: 

Analytical Imaging and Geophysics LLC 

0 n-D Visualizer 

* Spectral Analyst 

classification 
0 CBassiancation and sobpixel 

Q SAM Unmix spectra! ~~~~x~~~ 
matched filtering a .d MTMF 

Figure 1 : AIG Hyperspectral Analysis Scheme. Note the 
“hourglass” shape, which schematically represents 
the reduction of the hyperspectral data to just a few 
key spectra at the “neck” and then expansion back 
to spectral maps of the full dataset. 

1. 
2. 

3. 
4. 
5. 

6. 

3.1 

correction for atmospheric effects using an atmospheric model “ACORN” (AIG, 200 1) 
spectral compression, noise suppression, and dimensionality reduction using the Minimum Noise Fraction 
(MNF) transformation (Green et al., 1988; Boardman, 1993), 
determination of endmembers using geometric methods (Pixel Purity Index - “PPI”) (Boardman et al., 1995) 
extraction of endmember spectra using n-dimensional scatter plotting (Boardman et al., 1995) 
identification of endmember spectra using visual inspection, automated identification, and spectral library 
comparisons (Kruse and Leflcoff, 1993; Kruse et al., 1993a) 
production of mineral maps using a variety of mapping methods. The “Spectral Angle Mapper” (SAM) 
produces maps of the spectrally predominant mineral for each pixel by comparing the angle between the 
image spectra and reference spectra in n-dimensional vector space (Kruse et a]., 1993b). “Mixture-Tuned- 
Matched-Filtering” (MTMF) is basically a partial linear spectral unmixing procedure (Boardman, 1998). 

ACORN Atmospheric Correction to Apparent Reflectance 
One of the most critical steps in most imaging spectrometer data analysis strategies is to convert the data to 

reflectance, principally so that individual image spectra can be compared directly with laboratory or field data for 
identification and verification. Remote sensing measurements of the Earth‘s surface are strongly influenced by the 
atmosphere. Both scattering and absorption by gases and particulates affect the amount and wavelengths of light 
reaching the sensors. Absorption by atmospheric gases is dominated by water vapor with smaller contributions fi-om 
carbon dioxide, ozone, and other gases (Gao and Goetz, 1990). Strong atmospheric water absorption bands make 
the atmosphere opaque in many regions (for example the 1.4 and 1.9 pm regions) and only small atmospheric 
windows are available for terrestrial remote sensing. 

Onboard calibration, however, is difficult and typically not available. In its absence, one method that comes close to 
achieving this goal is a radiative transfer model-based technique ACORN (AIG, 200 1). Currently used for correction 
of both airborne and satellite hyperspectral data, ACORN is a commercially-available, enhanced atmospheric 
model-based software that uses licensed MODTRAN4 technology. ACORN requires input of data parameters such 
as the acquisition date and time, the latitude and longitude of the scene, and the average elevation, along with 
atmospheric model parameters (AIG, 2001). The output of the procedure is high quality surface reflectance data 
produced without ground measurements. This method makes it possible to quantitatively derive physical parameters 
and analyze data fi-om different regions and different times without apriori knowledge. It also makes possible 
comparison and analysis of imaging spectrometry data acquired by different instruments and comparison to field and 
laboratory spectral measurements or to spectra generated using theoretical models. 

Ideally, imaging spectrometer data should be calibrated to absolute reflectance using onboard calibration. 

While ACORN works well over land and may form the starting point for atmospheric correction of near- 
shore-marine remote sensing data, unfortunately there are a number of other factors not taken into account by this 
model. These include corrections for sun glint and multiple scattering at the aidocean interface and by the water 
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column itself (references here). Several researchers are working on improved model-based corrections that will 
account for these factors (references here). The results presented here using only ACORN demonstrate that 
considerable spectral rnapping of corals is possible, however, even using the simple correction. We also present 
some mapping results with additional simple mathematical and model-based corrections, though we expect that 
refmedspecialized maldels will improve the mapping results even furtfier. 

3.2 MNF Transformation 
A “Minimum Noise Fraction” (MNF) Transform is used to reduce the number of spectral dimensions to be 

analyzed. The MNF transformation is a linear transformation related to principal components that orders the data 
according to signal-to-noise-ratio (Green et al., 1988). It can be used to determine the inherent dimensionality of the 
data, to segregate noise in the data, and to reduce the computational requirements for subsequent prociessing (Green 
et al., 1988; Boardman and Kruse, 1994). The MNF transformation can be used to partition the data space into two 
parts: one associated with large eigenvalues and coherent eigenimages, and a second with near-unity eigenvalues 
and noise-dominated images. By using only the coherent portions in subsequent processing, the noise is separated 
from the data, thus improving spectral processing results. 

3.3 Pixel Purity Index (PPI) 

fclr further processing. These axe used in the “Pixel Purity Index” (PPI), processing designed to locate the most 
spectrally extreme (unique or different or “pure”) pixels (Boardman et al., 1995). The most spectrally pure pixels 
typically correspond to mixing endmembers. The PPI is computed by repeatedly projecting n-dimensional 
scatterplots onto a random unit vector. The extreme pixels in each projection are recorded and the total number of 
tiimes each pixell is marked as extreme is noted. A PPI image is created in which the digital number of  each pixel 
corresponds to the number of times that pixel was recorded as extreme. A histogram of these images shows the 
distribution of “hits” by the PPI. A threshold is interactively selected using the histogram and used to select only the 
purest pixels in order to keep the number of pixels to be analyzed to a minimum. These pixels are used as input to 
an interactive visualization procedure for separation of specific endmembers. 

Based on MNF results, the lower order MNF bands are usually set aside and the higher order bands selected 

3.4 n-Dimensional Visualization 
Spectra can be thought of as points in an n-dimensional scatterplot, where n is the number of bands 

(Boardman, 1993; Boardman et al., 1995). The coordinates of the points in n-space consist o f  “n” values that are 
simply the spectral reflectance values in each band for a given pixel. The distribution of these points in n-space can 
be used to estimate the number of spectral endmembers and their pure spectral signatures, and provides an intuitive 
means to understand the spectral characteristics of materials. In two dimensions, if only two endmembers mix, then 
the mixed pixels will fall in a line in the histogram. The pure endmembers will fall at the two ends of the mixing 
line. If three endmembers mix, then the mixed pixels will fall inside a triangle, four inside a tetrahedron, and so on. 
Mixtures of endmembers “fill in” between the endmembers. All mixed spectra are “interior” to the pure 
endmembers, inside the simplex formed by the endmember vertices, because all the abundances are positive and 
sum to unity. This “convex set” of mixed pixels can be used to determine how many endmembers are present and to 
estimate their spectra. 

rotated in real time on the computer screen until “points” or extremities on the scatterplot are exposed. These 
projections are “painted” using Region-of-Interest (ROI) definition procedures and then rotated again in 3 or more 
dimensions (3 01- more bands) to determine if their signatures are unique in the MNF data. Once a set of unique 
pixels are defined, then each separate projection on the scatterplot (corresponding to a pure endmembier) is exported 
to a ROI in the image. Mean spectra are then extracted for each ROI to act as endmembers for spectral mapping. 

In practice, the thresholded pixels from the MNF images are loaded into an n-dimensional scatterplot and 

3.5 Spectral Idenlification 
Spectral identification of the endmembers extracted using the n-dimensional scatterplotting is based on a 

combination of visua1 inspection of spectral plots and manual/automated comparison to Spectral libraries (Clark et 
al., 1990, Kruse and Lefkoff, 11993, Kruse et al., 1993a). Spectra are visually examined to identify key spectral 
features locations, depths, and shapes, and these are compared against application-specific spectral libraries. 
Automated methods that compare overall spectral shape and specific features are also applied to determine candidate 
materials and to produce mathematical comparisons. Once names have been assigned to individual endmember 
spectra, then these cain be passed forward to the spectral/spatial mapping algorithms. 
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3.6 

spectra (Boardman, unpublished data; Kruse et al., 1993b). The algorithm determines the similarity between two 
spectra by calculating the “spectral angle” between them, treating them as vectors in a space with dimensionality 
equal to the number of bands. Because this method uses only the vector “direction” of the spectra and not their 
vector “length”, the method is insensitive to illumination. The result of the SAM classification is a color-coded 
image showing the best SAM match at each pixel. Additionally, rule images are calculated that show the actual 
angular distance (in radians) between each spectrum in the image and each reference or endmember spectrum. 
Darker pixels in the rule images represent smaller spectral angles and thus spectra that are more similar to the 
endmember spectra. For the purposes of display, the dark pixels are inverted, so that the best matches appear bright. 
These images present a good first cut of the spatial distribution of spectrally unique materials. 

Spectral Angle Mapper (SAM) Classification 
The Spectral Angle Mapper (SAM) is an automated method for comparing image spectra to individual 

3.7 Mixture-Tuned-Matched Filtering (MTMF) Mapping 

the best match to a given spectrum. Matched filtering (MF), based on well-known signal processing methodologies, 
maximizes the response of a known endmember and suppresses the response of the composite unknown background 
(Chen and Reed, 1987; Stocker et al., 1990; Yu et al., 1993; Harsanyi and Chang, 1994). MF also provides a rapid 
means of detecting specific minerals based on matches to specific library or image endmember spectra, again, 
however, it fails to consider spectral mixing. Matched filter results are presented as gray-scale images with values 
from 0 to 1 .O, which provide a means of estimating relative degree of match to the reference spectrum (where 1 .O is 
a perfect match). Earth surfaces, however, are rarely composed of a single uniform material, thus it is usually 
necessary to consider mixture modeling to determine what materials cause a particular spectral “signature” in 
imaging spectrometer data. Mixture-Tuned-Matched-Filtering (MTMF) utilizes the MF theory above, but also 
includes a simple additive linear mixing model to estimate the abundances of the materials measured by the 
hyperspectral sensor (Boardman, 1998). Two dimensional scatterplotting of the MF score versus the MTMF 
Infeasibility score can be used to produce color-coded maps for materials occurring above specific abundance 
thresholds. Individual grayscale MF images can be used to show material abundances. 

While the SAM algorithm does provide a means of identifying and spatially mapping materials, it only picks 

4.0 

Park was used to demonstrate and validate Hyperion data using existing geologic analysis methods (Kruse et al., 
200 1,2002,2003). The geology consists principally of a Jurassic-age intrusion exhibiting quart-sericite-pyrite 
hydrothermal alteration (Wrucke et al., 1984; Kruse, 1988). This site has been used as a test area for imaging 
spectrometers since 1983 (Kruse, 1988; Kruse et al., 1993a, 2003), thus considerable previous remote sensing 
information as well as ground truth exist for the area. Analysis results from this site serve to act as a guide to state- 
of-the-art processing of hyperspectral data for geologic applications. 

described above: correction to apparent reflectance using “ACORN”, spectrayspatial compression using the MNF 
transformation and PPI, determination of endmembers using geometric methods, spectral identification, and 
production of mineral maps using SAM and MTMF. A true color Hyperion image is shown for reference in Figure 
2A. An endmember library (Figure 2B) defined using the n-dimensional visualization procedure was used with the 
Spectral Angle Mapper algorithm to produce a classified mineral map from reflectance-corrected Hyperion data 
(Figure 2C). This color-coded image presents the spectrally predominant mineral in each pixel as a distinct color. 
Mixture-Tuned Matched Filtering was also used to produce Hyperion mineral maps for the northern Death Valley 
site. Minerals identified using the Hyperion data by comparison to a spectral library and previously verified by X- 
Ray Diffraction include calcite, dolomite, muscovite (3 varieties), silica, and zeolite (Kruse, 1988, 2003). The 
Hyperion endmember library defined using the n-dimensional visualization procedure above was used in the 
unmixing process and abundance estimates were made for each mineral. These results can be presented in several 
ways. First, a set of gray-scale images stretched from 0 to 50% (black to white) provides a means of estimating 
relative mineral abundances. Selected results are shown in Figure 3A and 3B. Secondly, color composite images 
(not shown) can be used to highlight specific minerals and mineral assemblages. Pure colors in these images 
represent areas where the mineralogy is relatively pure. Mixed colors indicate spectral mixing, with the resultant 
colors indicating how much mixing is taking place and the relative contributions of each endmember. Finally, color- 
coded mineral maps can be formed by selecting the mineral with the highest abundance in each pixel (Figure 3C). 

Geologic Example - N. Death Valley, Californiarnevada 
A site in northern Death Valley, California and Nevada, at the extreme northern end of Death Valley National 

Processing conducted on the northern Death Valley Hyperion data followed the standard AIG approach as 
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u . Btightacss in grayscale images represents abundance, with brighter pixels corresponding to 
abimdances. A. Left image is the calcite abundance image. B. Center image is the muscovite#l 

abundance image. C. Combined MTMF mineral mapping results arc shown on the right. Color-coded 
pixels representing sgeoifc minerals overlain on Hyperion band 3 1 ( 0 . 6 6 ~ ) .  Color coding is 88 
follows: r&=calcite. yellow=dolomite, greea=muscovite#l, bhwmusc4wit&2, brown=musmvite#3, 
cyan=zeofite, purplmilica. Minerals were identified by comparison to a spectral libray. 

Figures 2 and 3 above demonstrate Hyperion's utility for mapping specific earth-surface materials ( m i n d )  
using AIG's s t a d d u e  ' d hyperspectral analysis methods. In thii case, the data allow separation and identification 
of several way similar spectral signanaes &d on absorption features near 2.2 - 2.3 pn. Comparison to airborne 
h~~ data indicates that Hyperion perfom with approximately 80-95% accuracy with respect to mineral 
maps produced using the same approach and verified utilizing field mapping and ground-based spectral 
measurements (Kruse et al., 2002,2003). %is provides the baseline against which to test hyperspwtral mapping of 
the near-shore marine environment. 
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5.0 

much attention and activity have been focused on coral reefs as dynamic ecosystems, and the common conclusion 
reached in these studies is that they are deteriorating world-wide (Dustan, 1977; Antonius, 1981; Dustan and Halas, 
1987; Edmunds, 1991; Porter and Meier, 1992; Bischof, 1997; Bruckner and Bruckner, 1998; Cervino and Smith, 
1997; Kuta and Richardson, 1996). Remote sensing technology has emerged as a tool for performing large-scale 
coral reef evaluations and monitoring. While multispectral, aircraft- and satellite-based observations have been 
available for some time (eg: Lyzenga, 1978, 1981; Bifia et al., 1979; Jupp et al., 1985; Jupp, 1986; Kuchler et al., 
1988; Bienvirth et al., 1993, Mumby et al., 1998a), only recently have reef-scale, long-duration studies been 
performed (Dunston and Halas, 1997). These examples illustrate the high potential of spectral remote sensing for 
coral reef mapping and monitoring, but also point out the requirements for higher spectral and spatial resolution. 
Hyperspectral data in particular offer high potential for characterizing and mapping coral reefs because of their 
capability to identi& and map individual reef components based on their detailed spectral signatures (Clark et al., 
1997, Holasek et al., 1998; Holden and LeDrew, 1999; Hochberg and Atkinson, 2000). Holden et al. (1999) show 
that a high spectral resolution in situ spectral library can be developed to differentiate between various coral types as 
well as bleached coral substrate. Hyperspectral remote sensing has also shown significant promise in distinguishing 
coral species and reef health. Holden and LeDrew (1998a) demonstrate differentiation between healthy and non- 
healthy corals based on their high resolution spectral signatures. Myers et al. (1999) describe how optical spectra can 
be used to differentiate between pigmented and bleached coral and between coral and macroalgae. Recent 
hyperspectral studies have demonstrated mapping of spectral differences attributable to bottom reflectance of corals 
and other substrates (Clark et al., 1997,2000; Holasek et al., 1998; Andrefouet et al., 2003; Joyce and Phinn, 2003) 

Most researchers also note, however, the significant effect of the water column on remotely sensed signals of 
coral reefs (Lyzenga, 1981; Maritorena et al., 1994; Mobley et al., 1993; Mumby et al., 1998b; Holden and LeDrew, 
1998b, 2001,2002). Several of the above works and other related publications demonstrate that the wavelength- 
specific nature of attenuation caused by the water should be removed using correction algorithms that are based on 
correction for depth and water optical attenuation and scattering, a correction to “remove the water” fiom the 
spectral signature (Dustan, 1985; Pratt et al., 1997; Mumby et al., 1998b; Holden et al., 1999; Holden and LeDrew 
2002). Such a model would treat the coral reef as a Lambertian lower boundary at a specified depth and perform 
corrections for the oceadatmosphere interface, marine aerosol conditions, and light attenuation by seawater. 
Several models exist (eg: Hydrolite), or are under development to perform such corrections, however, these are 
generally designed for analysis and modeling of single spectra not for full-image, per-pixel correction of 
hyperspectral data. Limited examples are available of the application of water column corrections to field or 
modeled spectra (Young et al., 1995; Clark et al., 2000; Holden and LeDrew, 2000,2001,2002; Kutser et al., 2003; 
Mobley et al., 2003) or directly to hyperspectral data (Gao et al., 2000; Goodman and Ustin, 2002; Goodman et al., 
2003). 

Virgin Islands both with and without water column corrections applied on a per-pixel basis. The baseline analysis 
uses a “standard” atmospheric correction and analysis methods described above for geologic applications. 
Refinements of the analysis using a first cut empirical water column correction based on comparison of field and 
Hyperion spectra are also described, along with a application of a prototype per-pixel radiative transfer model-based 
water column correction. 

Application to Coral Reef Mapping 
Extensive research has been conducted evaluating coral reefs and related marine environments. Recently, 

The research described here shows results from analysis of hyperspectral (Hyperion) data for a site in the U.S. 

5.1 Buck Island, USVI Site 

the north shore of St. Croix, was established in 1961. The island has white coral beaches and extends to an elevation 
of approximately 100rn. An elkhorn barrier reef extends around approximately two thirds of the island. Benthic 
habitat mapping for an approximately 23 square km area around Buck Island, USVI was completed by NOAA and 
the National Park Service during 1999-2000 using conventional color aerial photography. (Kendall et al., 2001) and 
on-line at (http://www.csc.noaa.gov/crs/bhm/buck is.htm1). This was part of a pilot project designed to test benthic 
mapping methods (see http://biogeo.nos.noaa.gov/benthicmap/caribbeadm~ual.shtml). Benthic habitats were 
visually interpreted on scanned orthorectified aerial photographs using a standardized classification scheme based on 
visual perception of color, tone, textures, and geographic context of features (Finkbeiner et al., 2001). Digital data 
are available fiom NOAA (hap://bioaeo.nos.noaa.8ov/products/benthic/htm/data.htm). 

Buck Island Reef National Monument, including and surrounding Buck Island approximately two miles off 
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A rasterized compilation of the NOAA mapping result8 produced fa this study f a  the Buck Island site is 
shown in Figure 4. These results are used as the baseline to evaluate and validate Hypaion mapping for the Buck 
Islaud site. A d d i t i d  supposing data available for the Buck Island site include bathymetric sonndings (R. Warner, 
personal communication 2002) and Digital Elevation Models @EM). The bathymetric data used in this study wme 
obtained from NOAA as irregularly spaced X-Y-Z meamreme& with positions in htiludehmgilude and 
soundings in meters. The data were gridded to a regular 3Om pixel size to match the Hyperion data and projected to 
WGS84 map c o o r d i i  (Figure 5). The DEM data used were from standard USGS 7.5 minute (1:24,000 scale) 
quadrangles, mosaicked to cover the Buck Island site and merged with the bathymetry (Figure 5). The DEMs were 
also used to gensrate a "land" mask for use in the HyperiOn moeesin~. 

Figure 4 Compilation ot N O M  Benthic Habiiat Mupping resultv for Buck lslruid Kee! hauoial .Monument, St 
Croix, USVI (From NOAA digital data). Black areas represent unclassified pixels. 

Figure 5: Combined NOAA bathymetry and USGS digital elevation for the Buck Island site. 
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5.2 Buck Island Hyperion -Standard Mapping Results 
Hyperion data were acquired for a 7.5 x 16% strip crossing Buck Island Reef National Monument on 21 

January 2002 as a target-of-opportnnity (Scene ID: E010030482002021 1 1  IKP, Level IB-I). While much of the 
data were cloud covered, the Buck Island area was essentially cloud-he. A small subset of Hyperion Data for the 
area mounding Buck Island was cut out of the larger dataset for furthet processing (Figure 6). 

Figure 6: A (le@. True eo 
Buck Island and 
USVI. 

0, and 10 (0.66,0.55,0.45pm) (RGB) showing 
Hypim wdmember speotnt for Buck Island 

e n b b e r s  for mapping (Figure 6B). The data were corrected to apparent reflectance using ACORN (no water 
column correction was appIied) and the corrected data were anal@ using the standardid geologic approach. The 
MNF promhe was used to reduce the spatial dime- of the data. The PPI procedure fimher reduced the 
dimens g those spectra most likely to be pure endmembers. Fignre 6B shows selcoted endmemher 
spectra the #ata. B e s t  Fit"benthic habitat names and colors similar Po those shown in Figm 4 were 
assigned to the specad based on their locations and Simitadty to spatial pattnns in NOAA mapping results fFigure 
4). The %and" spectrum in the plot is reversed to black for display purposes. 

These spectra, represeafmg . the relatively "pure" occm~etloes of 
spatial scale), were used to map the Buck Island site based on spectral 
Hyperion data. Figore 7 shows the combined results of 
data. Again, "Best Fit' benthic habitat names assigned 

As described for the geologic example above, the Hypion data we.re used to extract representative spectml 

(at the Hyperion 30m 
s exhncted directly fiom the 

is wing these endmembers on the Hyperion 
above were used to define class names. 

as the detailed character of 
in Figure 4 illustmtea some spatial 

is apparent that some classes 
hypespectraldataandtherem 
out drawbacks in the 

classilication scheme as well as the hypempwttal method The fsct that the two approaches map dBerent 
parameters is an important difference siemnun ' g h m  human observation of speotraVspatial associations on the 
aerial photographs versus the antomatic hyperspectral mapping of bottom composition based solely on spectral 
properties in the Hypion data For example, 8 "Patch Reef" environment is an interpreted combmtion of corals 
and sand m the aerial photograph, whereas the hyperspectral data individually and wparately map the coral and 
sand units at the 3Gm Hyperion pixel scale. 
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Figure 7. Spectral Angle Mapper (SAM) Hyperion analysis results using endmember spectra shown in Figure 68. 
“Best Fit” benthic habitat names and colors similar to those shown in Figure 4 were assigned based on 
similarity to spatial patterns in NOAA mapping results (Figure 4). Black areas represent unclassified 
and/or hardbottoduncolonized pavement. Note apparent depth dependence of some units when 
compared to bathymetry shown in Figure 5. Also note that not all classes mapped by NOAA were 
identified in the HSI data. 

Figure 8 further shows the capabilities of the hyperspectral data to map and quantify individual ecosystem 
components. The MTMF procedure was used on the ACORN-corrected (non-water-column corrected) Hyperion 
data with the same set of endmembers shown in Figure 6 to map the distribution and abundance of specific 
components. The individual distribution of a “sand” unit, a “Seagrass - Patchy 10-30% and one of the coral units is 
shown. 

I- I. .* 

. :. ,$. . 

Figure 8. MTMF (MF Score) results for the “Sand #I”, “Seagrass - Patchy 10-30%, and “Linear Reef #1” classes 
showing calculated abundances as color-coded images with 0-100% coded 6om black to white. A. Left 
image is “Sand #1”, B. center image is “Seagrass Patchy 10-30%, C. right image is “Linear Reef #1” 
abundance. 

5.3 

moderately successful, it is clear that further corrections for the water column are required to allow improved and 

Empirical Water Column Correction Hyperion Results 
While the results using the standard atmospheric correction and byperspectral analysis methods as above were 
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quantitative mapping of coral reef ecosystems. One method that has shown promise is a simplistic empirical 
correction d d b e d  by Goodman and Ustin (2002). This approach uses measused bottom spectra and their 
corresponding surface-leaving reflectance spectra measured by a hyperspectrsl instrument at various depths along 
with bathymetry to estimate correction coefficients for the hyperspectral data. Goodman and Ustin (2002) 
demonstrated both the hear case where: 

REs~h)=cYRA,(h)*A(h))*(e('~~~. 
Where b&) is the estimated bottom reflectance with wavelength b , ( h )  is the hyperspectral m h c e  leaving 
reflectance calculated using a standard atmospheric model, 2 is the depth eom bathymetric per-pixel measucements, 
and A, B, and C are estimated coefficients based on minimizing the error between multiple field measurements and 
their corresponding estimated HSI bottom reflectances. While accepted radiative transfer theory for water column 
effects dictatea that the water column should behave exponentially in accordance with Beer's Law (Holden and 
LeDrew, 2001 give a good overview of water column optical properties), Goodman and Ustin (2002) concluded that 
at least fortheir case (Kaneohe, Hawaii) that the liiear function performed substantially the same as the exponential 
function. 

For the Buck Island example, we used bottom-measured field spectra of Buck Island sands provided by 
Holden and Le- (2001,2002) (Figure 9A). ACORN-corrected Hyperion sand spectra (Figure 9B) were selected 
based on NOAA mapping (Figure 4) for areas at various depths determined @om the per-pixel gridded NOAA 
bathymetry descrihed above and shown in Figure 5. Minimization of both the h e a r  and non-linear eqnatiom 
descriied above was attempted, and agah, the h e a r  model produced the smallest estimation errors. Figure 1OA 
shows the estimated coefficients over the 0.45 - 0.68 pm range, while Figure 10B shows the corrected spectra for 
the various depths. Note that the estimates at wavelengths longer than about 0.64 pm have unacceptably high mom 

Figure 9 A. (Lett) ASD Field sand spectra measured by Holden and LeDrew (2001). Average spectrum is black 
with one standard deviation below (red) and above (green). B. (Right) Hyperion "sand" surfaceleaving 
reflectance spectra extracted &om ACORN reflectance-corrected data for various depths. 
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Figure 10  A. (he) Empirical water-column Mnrection linear coefficimts. B. Wt) Figure 9E ‘water-coumu 

Application of  the Wear equation and coefficients to the ACORN-& Hyperion data on a pet-pixel 

ita image shows the general effect ofthe correction (pigum 11A). It is easy to see tbet the sand mas are 

comet& HyperiOn “md”  bottom teflectanoe spectra for Various depths. 

basis results in a wslercoumn-corrected (bottom reflectance) hyperspectraI data cube. Display of a “true 

1 

behnprovad~compositiOn(saadands 
don’t nccessarly correspond as well as the 
classes. J.nefB&the 
e f f m .  Speciftcauy 
reflectanceareoonso 

I iiha 
Figure 11: MTMF (MF Score) results calculated from the empirical-water-column-corrected Hyperion data for the 

“Sand” and “Lmear Reef #1” classes showing calculated abundances as color-coded images with 0-100% 
coded from black to white. A. left image is water-column-corrected true color image, B. center image is 
water-column-corrected “Sand” abundance, C. right image is water-columnarrected “Linear Reef #1” 
abundance. 

In summary, implementation of an accurate water column correction appears critical to bottom composition 
mapping using hyperspectral data. The empirical linear correction ‘’works” to some extent and demonstrates the 
concept. What may apparently be sand mapped at different depths without the correction appears as one material 
after correction. While other classes of materials can be mapped, spectra for these materials, however, don’t appear 
“reasonable” leading to the conclusion that a more advanced correction is required. The two exponential models 
were also evaluated, but produced poorer estimates than simple linear model. 

I , ,  
J ‘  
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5.4 Model-Based Water Column Correction 
Hyperion Results 
Several radiative-transfer-based correction 

algorithms are under development for hyperspectral data 
(Gao et al., 2000; Acharya et al., 2002; Goodman and 
Ustin, 2003). The goal of these is generally to perform 
atmospheric conection, correct for air-sea interface effects, 
and to correct for the water column in support of bands-off 
(no a priori measurements required) littoral-zone 
quantitative remote sensing. 

The Acharya et al. (2002) correction (Figure 12) 
was applied to the Buck Island Hyperion data by Steve 
Adler-Golden of Specrral Science Inc. as a test case for this 
alnoritbm. The data were fiRt atmosoherially corrected to 

t 

s&ce reflectance using * l F L ~ S H - i ~ ~ ~ ,  a littoral zone 
version of the Fast Lineof-sight Atmospheric Analysis of 
Spectral Hypercubes (FLUSH) atmospheric correction 
code (Matthew et at, 2000). Snrface glint and foam 
components were derived using a spectral W i n g  
approach and removed by subtraction. This method then assumes uniform bottom characteristics and iteratively and 
simultaneously estimates water depth and bottom reflectance using a 3-D backward-propagation Direct MonteCarlo 
Simulation (DSMC) radiative transport algorithm (Richtsmeier et al., 2001). The outputs are an estimated depth 
(bathymetry) image and a data cube of hyperspectral bottom reflectances (Acharya et al., 2002). 

The Hyperion bottom reflectance data were analyzed following the previously described AIG analysis 
methods (MNF, PPI, n-D V i t i o n ,  MlMF mapping). This again produces a selection of endmember spectra, a 
bottom composition map, and abundance images for each endmember material (Figure 13). Results generated using 
this approach appear similar to those obtained using the empirically corrected Hyperion data (though somewhat 
noisier and less spatially coherent). Again, the sand unit and a low abundance seagrass unit mapped using the water- 
leaving reflectance are consolidated to one sand class by the model-based water column correction (Figures 13A and 
13B). One noted problem, however, was that not all depth dependencies were removed, particularly at greater 
depths. This can be seen principally in the “sand” abundance map, which clearly sti l l  has depth dependencies when 
compared to the N O M  bathymetry (Figure 5). Also, comparison of the bathymetry map generated from the 
HyperiOn data to the measured bathymetry reveals that the depth algorithm is only accurate at depths shallower than 
about 6m. 

Figure 12: Flow chart for water and bottom p r o p e ~  
retrievals (From Acharya et aL, 2002. 
Used with permissioa) 

Figure 13: MTMF (MF Score) results calculated h m  the water-column-model-cocted Hyperion data for the 
“Sand” and “Lmear Reef #1” classes showing calculated abundances as colorcoded images with 0-100% 
coded h m  black to white. A. left image is water-column-corrected true color image, B. center image is 
water-column-corrected “Sand” abundance, C. right image is water-column-corrected “Linear Reef #I” 
abundance. 

In summary, a prototype model-based method for atmospheric correction, removal of sea-surface effects, and 
water-column correction of hyperqmtml data demmtmtes that hands-off calculation of bottom reflectance may be 
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possible without supplemental field information. While demonstrating the potential, limitations imposed on the 
current model by incomplete knowledge of bottom reflectance properties result in unacceptably large errors of depth 
estimation and thus water depth corrections. Refinements to the method utilizing a simulation database of bottom 
reflectance properties are planned and may improve model performance (Achayara et al., 2002). 

6,,0 Discussion and Conclusions 

demonstrates the viabj lity of methods originally developed for analysis of geologic targets for analysis of littoral- 
zone hyperspectral data. Standard processing of Hyperion data for the Buck Island site produces usehl bottom 
composition information for benthic habitat mapping, however, limitations are apparent. Hyperion habitat maps are 
different from those produced using conventional methods. Hyperion produces detailed cornposition maps 
(including abumdance)i, while classic benthic habitat maps rely on aggregation of diverse materials by analysts. 
While there is some correspondence of these basic Hyperion mapping results to published benthic habitat maps, 
depth dependencies are apparent. Spectral “ground truth’’ at Hyperion scales is required for verification of 
similarities/differeiices. 

same composil ion, bult at different depths are consolidated after the water column correction. This approach, 
however, requires bathymetry and field spectra and thus is not applicable to areas without supporting ground 
information. Further study of empirical water column corrections is justified, but their reliance on in-situ 
measurements imposes significant limitations. 

A prototype radiative transfer model-based correction for littoral zone hyperspectral data removes the 
requirements for supporting data by simultaneously calculating the bottom reflectance and bathymeQ. Hyperion 
mapping results demonstrate that the corrected data can be used for successful extraction of bottom composition 
corrected for depth effects. The current assumption of bottom uniformity, however, imposes limitations on the 
approach and unacceptable errors in bathymetry estimation. Refinement of the algorithm is possible and in 
progress, but will require establishment of a simulation database of common bottom materials. 

These analyses show that hyperspectral separation and mapping of distinct near-shore bottom characteristics 
is possible. The mapping results, however, are not exactly what scientist are used to receiving. Thus WSI data for 
mapping littoral scenes should be assessed not according to how well they can reproduce the conventional mapping 
process, but in terms of what additional information they can provide. 

This case study using Hyperion data to map coral ecosystems at Buck Island National Monument 

Use of a linear Empirical Water Column Correction improves mapping for some units. Materials with the 
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HYPERION STUDIES OF CROP STRESS IN MEXICO 
David B. Lobell’,2 and Gregory P. Asner’,2 

1.0 HNTRODIJCTION 
Satellite-based measurements of crop stress could provide much needed information for cropland management, 
especially in developirig countries where other precision agriculture technologies are too expensive (Pierce and 
Nowak 1999; F:obert 2002). For example, detection of areas that are nitrogen deficient or water stressed could guide 
fertilizer and water management decisions for all farmers within the swath of the satellite. Several approaches have 
been proposed to quantify canopy nutrient or water content based on spectral reflectance, most of which involve 
combinations of reflectance in the form of vegetation indices. While these indices are designed to maximize 
sensitivity to leaf chemistry, variations in other aspects of plant canopies may significantly impact remotely sensed 
reflectance. These confounding factors include variations in canopy structural properties (e.g., leaf area index, leaf 
angle distribution) as well as the extent of canopy cover, which determines the amount of exposed bare soil within a 
single pixel. In order to assess the utility of spectral indices for monitoring crop stress, it is therefore not only 
necessary to establish relationships at the leaf level, but also to test the relative importance of variations in other 
canopy attributes at the spatial scale of the remote sensing measurement. In this context, the relative importance of a 
given attribute will depend on (1) the sensitivity of the reflectance index to variation in the attribute and (2) the 
degree to which the attribute varies spatially and temporally. 

In this study, we investigate the ability of spectral indices derived fi-om data collected by the EO- 1 Hyperion 
instrument to detect canopy stress in an agricultural region in Northwest Mexico. In particular, the objectives of this 
study were to: (1) determine the correlation between reflectance indices of canopy “structure” and “chemistry” 
within an agricultural landscape, and (2) quantify the extent to which information in chemical indices provide useful 
information for crop management. In essence, this equates to asking whether hyperspectral chemical reflectance 
indices provide any unique information on crop canopies, and, if so, whether thk information is potentially usefd 
for precision agriculture applications. 

2.0 DATA ArrTD METHODS 
2.1 Side Description 
The study was conducted in the Yaqui Valley, a region comprising roughly 225,000 ha of intensively fertilized and 
irrigated cropband on the west coast of Sonora, Mexico (Figure 1, after the references). A vast majority of this land is 
planted to wheat in November-December and harvested in April-May, with wheat yields among the highest in the 
world. Rising ffertilizer prices, concerns about environmental pollution, and diminishing water supplies has increased 
the need for methods t.0 improve nutrient and water use efficiencies of wheat production in this region. A 
particulady important time in the growing season is mid-January, when the frst post-planting irrigation and 
fertilization is performed. At this time, detection of canopy nutrient or water stress could guide the timing and 
amount of water and fertilizer applications. 

2.2 Data acquisition and processing 
Hyperion data was acquired on January 14,2002, one minute after an image was collected by the Landsat ETM+ 
sensor. The Hyperion image was roughly centered within the ETM+ image and covered a significant fi-action of the 
irrigation district (see Figure 1). An additional ETM+ image acquired on March 16,2002 was combined with the 
January image to estimate wheat yields using a previously validated methodology (Lobell, Asner et all. 2003). These 
yields were used lo evaluate the eventual growth of fields observed by Hyperion in January, as described below. 

Hyperion data were pirovided by the EROS Data Center (EDC) and processed to apparent surface reflectance using 
the ACORN 3 atmospheric correction model. A de-striping algorithm was then applied to correct for mis-calibration 
between cross track dietectors. This algorithm determines the average noise in each column by summing all 
reflectance values by column and applying a Lee filter to the resulting 256 values. The column sums are divided by 
the filtered reflectance values to approximate the necessary gains for each column, which are then applied to the 
image. After this step, a cubic spline is fit to the water bands at 940 and 1140 nm in each pixel to reduce the effects 
of mis-calibraition and modeling errors introduced by the atmospheric correction. 
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2.3 Reflectance Indices 
Several indices drawn from the literature and shown in Table 1 were computed from the Hyperion data. The first 
two indices (NDVI and SR) are based on combinations of red and near infrared (NIR) reflectance that are known to 
capture variations in canopy structural attributes, such as canopy cover and leaf area index (LAI). The rest of the 
indices were designed to measure aspects of leaf chemistry, including contents of leaf pigments such as 
chlorophylls, carotenoids, and anthocyanin (PRI, SIPI, PSRI, R-Gratio); nitrogen (NDNI); and water (WI, NDWI, 
MSI, NDII). Many of these indices were defined by leaf-level studies and have not been widely tested at the canopy 
or landscape scales. 

To determine the extent to which these indices provide unique information from each other in this agricultural 
landscape, Spearman’s rank correlation coefficient (ps) was computed for each combination of indices using all 
image pixels (n = 224,042). This non-parametric correlation was used to capture non-linear relationships between 
indices and to minimize sensitivity to extreme values. Two indices (PRI and WI) were judged to be too noisy using 
the Hyperion data and were therefore excluded from hrther analysis. 

Table 1. Vegetation Indices Employed in this Study 

Index Index Name Equation Reference 

SR 

NDVI 

RG-Ratio 

SG 

PRI 

PSRI 

SIP1 

NDNI 

WI 

NDWI 

MSI 

NDII 

Simple Ratio 

Normalized Difference Vegetation 
Index 

Red-Green Ratio 

Sum-Green 

Photochemical Reflectance Index 

Plant Senescence Reflectance Index 

Structure Insensitive Pigment Index 

Normalized Difference Nitrogen 
Index 

Water band Index 

Normalized Difference Water 
Index 

Moisture Stress Index 

Normalized Difference Infrared 
Index 

2.4 Quantile Mapping 

R800/R680 

(RSOO-R680)/(RSOO+R680) 

C(R600. ..R699)/ C(R500. ..R599) 

CR500 ... R599) 

(R53 l-R570)/(R53 1+R570) 

(R680-R500)/R750 

(R80O-R445)/(RSOO-R680) 

[lOg(l/ R15 lO)-log(l/ R1680)]/ 
[log( 1/ R15 1 O)+log( 1/ R1680)] 

R900/R970 

(R857-Rl24 1)/(R857+R1241) 

R1599/R8 19 

(R8 19-R1649)/(R819+R1649) 

Gamon and Surfis (1999) 

Gamon et al. ( 1  992) 

Merzlyak et al. (1 999) 

Pefiuelas et al. (1 995) 

Serrano et al. (2002) 

Pefiuelas et al. (1993) 

Gao (1996) 

Hunt and Rock (1989) 

Hardinsky et al. (1983) 

There are several approaches to evaluating the utility of information in the chemical indices. One possibility is to 
define a suite of leaf chemistry variables of interest, measure these properties in various fields simultaneous to 
image acquisition, and then statistically test the ability of each index to predict each variable. In this study, we use 
an alternative approach that utilizes image data taken at a later point in the growing season. We refer to this 
procedure as quantile mapping (QM), which is illustrated in Figure 2 and can be described as follows: 

1) To control for variations in canopy structure, which are shown to affect all indices (see below), we identify 
all pixels within a narrow range of NDVI values. 

2) For these pixels, we compute the distribution of values for a selected index (e.g. RG-ratio), and identify all 
pixels falling below and above defined thresholds. In this case, we select pixels below the 25-percentile 
(group A) and above the 75-percentile (group B). 
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3) An image collected later in the season is used to define the eventual growth of each pixel. In this study, we 
used the yield estimates derived fi-om Landsat ETM+, which rely on an image fi-om March 16 (two months 
after the Hyperion image). By comparing the eventual yields of pixels in group A and group B, which 
possessed the same shuctural attributes (NDVI), we can evaluate whether the additional information in the 
selected index was predictive of canopy growth, and therefore indicative of canopy stress. 

4) Steps (1)-(3) are repeated for each level of NDVI. 

This procedure is called quantile mapping because pixels above and/or below a specified quantile are mapped and 
tracked through the growing season. To determine the sensitivity of this approach to sampling uncertainties, step (3) 
is repeated a la.rge number of times (lO,OOO), each time with random subsets of group A and B used in place of the 
entire groups. This provides a bootstrap estimate of sampling uncertainty (Efi-on and Gong 1983). 

We see several advantages to this approach. First, it requires only image data and therefore can be used to test 
indices in any region where ground data is not available. Similarly, it can be used for retrospective studies of images 
acquired in previous years. Second, because it is based solely on image statistics, the entire process can be 
automated. For example, steps (1)-(2) effectively create maps of nutrient stress that can be quickly generated and 
potentially used for management applications. This is particularly important for agricultural applications, where 
quick turnaround times are essential. Third, the comparison of groups A and B is performed at various levels of 
MDVI, sa that the effect of canopy structure on the information content of the selected index cm be readily 
evaluated. For examplle, some aspects of leaf chemistry may only be retrievable at very high LA1 (Asner 1998). 

One drawback of this approach is that, because it relies on image statistics, it is only able to determine relative levels 
of stress within an image. For example, in cases where 50% of fields are stressed in reality, a procedure that selects 
only the top 25% will miss many fields. Alternatively, if only 5% of fields are stressed, then 20% will be falsely 
identified as stressed. However, by combining image statistics across several years, it should be possible to associate 
an absolute value with each quantile and therefore produce more robust measures of crop stress. 

3.0 RESULTS AND DISCUSSION 
Table 2 shows the correlation matrix for indices evaluated in this study. Given the high correlation of all indices 
with NDVI (ps > 0.9, p < 0.001), it is clear that each index is highly impacted by variations in canopy cover and 
slmcture across the landscape. This is true even for indices designed to be “structure insensitive.” Therefore, no 
single index should be considered as a measure of solely canopy chemistry. In general, high correlations between all 
indices indicated that no two indices provided independent measures of plant canopies. However, the fact that all 
clorrelations were less than unity implies that there is some information (or potentially noise) unique to each index. 

Figure 3 illustrates the result of the QM procedure for several of the indices. Some indices appear to provide little 
information beyond NDVI, implying that the only differences between the two indices are due to sensor noise or 
some attribute that does not measurably affect plant growth. However, several hdices exhibit the ability to predict 
fiiture canopy growth, implying that they provide a useful measure of canopy stress. 

The QM results clearly show that some indices, such as NDWI, provide information only at high values of NDVI. 
This is consistent with previous studies that showed the relationship between NDWI and canopy water content 
improved greatly when limiting the study to pixels with high canopy cover (Semano, Ustin et al. 2000). Other 
indices, such as RG-ratio, appear to provide useful information on canopy chemistry across a wide range of canopy 
structure. 

The difference between the upper and lower quartile provides a quantitative estimate, in terms of yield, of the 
potential value of using a given index for crop management. For example, if fields below the lower quartile of RG- 
ratio could be managed and raised to the level ofthe upper quartile, then a potential gain of roughly 0.5 ton ha-’ 
could be realized. Yield gains of this magnitude would represent a significant increase in f m e r  income and 
regional productivity. 
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Table 2. Spearman’s Rank Correlation Coefficients for Vegetation Indices in Jan. 14,2002 Hyperion Image. 

NDVI SumGreen SIP1 PSRI NDNI Ratio RG- NDWI MSI NDII 

SR 1 -0.85 -0.99 -0.99 -0.93 -0.98 0.9 -0.96 0.95 

NDVI -0.85 -0.99 -0.99 -0.93 -0.97 0.89 -0.96 0.95 

SumGreen 0.83 0.85 0.79 0.85 -0.74 0.77 -0.77 

SIP1 0.98 0.93 0.98 -0.89 0.95 -0.94 

PSRI 0.93 0.99 -0.88 0.95 -0.94 

NDNI 0.92 -0.83 0.91 -0.91 

RG-Ratio 

NDWI 

-0.87 0.92 -0.91 

-0.94 0.94 

MSI -0.99 

4.0 SUMMARY 
Reflectance indices derived from Hyperion data were highly correlated across an agricultural landscape, indicating 
that all indices were impacted by variations in canopy structure and bare soil extent. A procedure termed quantile 
mapping was developed to combine structural and chemical reflectance indices in an attempt to identify attributes of 
canopy chemistry associated with stress. Some chemical indices were successful in identifying stress, as judged by 
the ability to predict future growth estimated from late-season Landsat ETM+ imagery, while others were not. Of 
those successful in predicting future growth, R-G ratio was successful at various levels of NDVI (canopy structure 
and extent) while NDWI was useful only at high values of NDVI. Moreover, these indices depicted stress in 
different fields (not shown here), indicating that each index provides information on a unique aspect of canopy 
chemistry. Future work is needed to better quantify canopy stress from hyperspectral measurements, with careful 
attention to sources of reflectance variability other than canopy chemistry. 
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Figure 1. The Yaqui Valley study region. The satellite image is a color composite of Landsat ETM+ data (4-3-2) fhm 
January 14,2002. The yellow box shows the swath of the Hyperion image used in this study, while the picture inset 
shows a typical wheat field at this time of year. 
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Figure 2. Schematic representation of the quantile mapping algorithm. At each value of NDVI, all pixels below and 
above prescnid qumtiles of a selected reflectance index are identified and separated into two sets (high and low). The 
average states of these two sets later in the growing season, in this case as measured by Landsat-ked yield estimates, 
are then compared to determine the ability of the given index to predict future growth, and thereby indicate stress. 
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Figure 3. Average yield estimates for pixels in lower (red) and upper (black) qnartiles of selected indices at each value of 
NDVI in Jan. 14 Hyperion image. Average yield is based on Janumy and March Landsat images, and indicates the 
eventual growth of wheat. Width of line is a 95% confidence interval based on bootstrap estimates of uncertainty in 
average yield. Several indices appeared to offer little additional information beyond NDVI for predicting fume growth 
(e.g. SumGreen and SEI), while others were much more successful (RG-ratio and NDWI), with yield differences between 
the upper and lower quartile as high as 0.5 ton ha". 
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MEASUELING TRACE GASES IN PLUMES FROM HYPERSPECTRAL REMOTELY SENSED DATA 

Rodolphe Marion,''2 Remi Michel,' and Christian Faye2 

1. INTRODUCTlON 

Characterizing surface and atmospheric properties fiom hyperspectral imaging spectrometry is of major 
importance in earth sciences. It has been successfully applied to geological, aquatic, ecological and atmospheric 
research (Curran, 1994) (Goetz, 1992). 

Hyperspectral sensors (e.g., AVIRIS, HyMap, Hyperion) are passive earth-looking systems providing 
radiance images in the solar reflected portion of the electromagnetic radiation spectrum. Generally, they cover a 
spectral range included in the 400-2500 nm window with a few hundred contiguous bands about 10 nm wide. 
The nominal pixel size is about 20 m. Typical signal to noise ratios (SNR) are a few hundred. As an example, the 
AVIRIS spectral range is 400-2500 nm, the number of bands is 224, the spectral bands are about 10 nm wide, 
the slpatial resolution is about 20 m, and the SNR is between 300 and 800 for the year 1995. The images depend 
on sun irradiance, atmospheric conditions, ground conditions, and on the system's transfer fbnction in ;a complex 
way (scattering, absorption, reflection, averaging), leading to a strongly non-linear pixel equation (3). Fig. 1 
shows a diagram of the hyperspectral observational geometry. 

I -0- Atmosuheric effects T ( a ~ a i  
1 -absorption 

~ ~ ~ u n  (A) -scattering 

ground reflectance p(A) 
Figure 1. Hyperspectral data collection. Sun emitted electromagnetic wave L"" (A) interacts with atmospheric 
molecules and particles through absorption and scattering processes ( T(A) ). At-sensor radiance L(A) is the sum 
of ground reflected radiance LD'"" (A) and backscattered atmospheric radiance LPafh (A) . Radiance is band- 
averaged by the instrument, yielding measured signal (z), for spectral channel i . This signal includes spectral 
features of effluent plume np . 

concentrations and ground reflectance. It is essential not only for studying atmospheric properties but also for 
ground based applications requiring accurate atmospheric correction (Curran, 1994) (Goetz, 1992). Several 
techniques have already been proposed to measure the amount of a particular gas of interest (e.g., HzO, C02, 02, 
0,) including : narrowiwide ratio, N/W (Frouin et al., 1990a) (Frouin et al., 1990b), continuum interpolated band 
ratio, CIBR (Green et al., 1989) (Bruegge et al., 1990) (Kaufman et al., 1992), atmospheric precorrected 
differential absorption technique, APDA (Borel et al., 1996) (Schlapfer et al., 1996a) (Schlapfer et al., 1998), 
linear regression ratio, LPRR (a variation of the CIBR introduced by Schlapfer et al., 1996b), and curve-fitting 
procedures (Gao et al., 1990). These methods typically yield the total water vapor content with an accuracy of 
about 7% rms from AVIRIS data. Accuracy may decline to more than several tens of a percent when the ground 
reflectance varies non-linearly with wavelength within gas absorption bands (Borel et al., 1996) (Schlapfer et al., 
19981, or when other species than water are considered (Schlapfer et al., 1996b) (Green et al., 1996b) (De Jong 
et al., 1996). A more accurate estimation of gas amounts is generally required to investigate a wider range of 
phenomena including forest fires, volcanoes, and industrial pollution. 

Hereafter, we first present those principles of imaging spectrometry useful for yielding the equation of the 
image. We then discuss the potential and the limitations of the existing methods, especially when the unknown 
surface reflectance varies non-linearly with wavelength within gas absorption bands. Afterwards, we propose an 

One of the major issues of hyperspectral data processing is the joint retrieval of atmospheric gas 

' CEA-DIF-DASE-LDG-TSE, BP 12, 9 1680 Bruy6res-le-ChAtel Cedex, France (rodoluhe.marion@cea.fr) 
ENSEA-ETIS, 6 avenue du Ponceau, 95014 Cergy-Pontoise Cedex, France 
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enhanced method, named Joint Reflectance and Gas Estimator, JRGE. It is dedicated to the measurement of trace 
gases within a plume corresponding to variations relative to a given standard atmosphere model. This method is 
based on a cubic smoothing spline-like surface reflectance estimator and non-linear radiative transfer 
calculations. Finally, JRGE is applied to simulated data as preliminary results. An aerosol-free atmosphere 
(Rayleigh atmosphere) and standard ground temperatures are assumed. 

2. IMAGING SPECTROMETRY 

From the viewing geometry schematically shown in Fig. 1, the monochromatic radiance at the input of a 
downward looking sensor can be written in a simplified form as (Esaias, 1986) 

where A is the wavelength, L(A)  is the radiance at the imaging spectrometer, p(A) is the surface reflectance, 

L"""(A) is the solar radiance above the atmosphere; T(A)  is the total atmospheric transmittance, equal to the 
product of the atmospheric transmittance from the sun to the earth's surface and from the earth's surface to the 
sensor, according to the Beer-Bouguer-Lambert law (Liou, 1980); and L'"" (A) is the path-scattered radiance 
(i.e., the backscattered atmospheric radiance not reflected by the ground). 

L(A) = p(A)LSUn (A)T(A) + LPUth (A) (1) 

In the presence of a plume located just above the ground (typically in the first kilometer of the atmosphere) 
containing P gaseous species in addition to the standard atmospheric state, the at-sensor radiance becomes 

L(il,n, ,..., n p )  = p(A)Ls*n(n)q/2)exp -qCkp( j t )np  + L~~~*(A,U,,...,~,) ( 2 )  ( I 1  1 
where n p ,  p = 1, ..., P , is the integrated density over the plume height of the pth species, 77 is a known 

geometrical parameter depending on the viewing angles (i.e., sun and sensor locations), kp (A) is the known 

absorption coefficient (altitude-dependant) of the pth species, and exp(- qxI=l kp (A)np ) is the total plume 

transmittance. The path-scattered radiance L'"" is also a function of the unknown gas densities. The total 
atmospheric content in the pth species can be written NP = Nop + np where N O p  represents the standard 
atmospheric density and np is the unknown excess due to the plume. 

A hyperspectral sensor performs a band-averaging (E), of the incoming radiance field L(A) at each 
channel i ( i  = 1, ..., N , N is the total number of channels of the imaging system). This measure, corrupted by 
the additive noise b, is then equal to 

where Hi is the normalized instrument's transfer function for channel i . The spectral atmospheric features are 
typically tenths narrower than the instrument channel width (e.g., H20 absorption bands near 1 pm are about 10" 
nm wide and AVIRIS spectra1 channel width is about 10 nm). It is thus noteworthy that the multiplicative 
operator of monochromatic atmospheric terms in equation (3) does not commute with the instrument averaging 
operator. 

A, (A) = L"" (A)T(A) , the measured radiance of a pixel for channel i can be written 
According to the properties of surface reflectance spectra (see section 4.1) and by defining 

where p, is the mean ground reflectance over the channel i . Theoretically, L'"'* depends on np , drastically 
increasing the complexity of the model. In our approach, we determine an excess of gases due to the plume and 
not the total atmospheric content so that LPalh can be considered independent of np  . The measured radiance of a 
pixel for channel i can thus be written as 
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Hereafter, we propose a method to estimate the np , p = 1, ..., P , fiom equation ( 5 )  for which the 

p,, i = I ,... N , are unknown, 17 and k p ,  p = 1 ,..., P , are known, A, and Lpo,'"" are computed from a standard 
atmosphere model, and a noise model is available (see section 4.1). 

3. POTENTIAL AND LIMITS OF CONVENTIONAL METHODS 

Existing methods have extensively been applied to hyperspectral data, especially AVIRIS images, to 
retrieve the water vapor column (Green et al., 1989) and, with less accuracy, the ozone (Schlapfer et al., 1996b), 
oxygen (Green et al., 1996b), and carbon dioxide (De Jong et al., 1996) columns, For a comparison between 
these methods see e.g., (Carrbre et al., 1993 for N/W and CIBR) and (Schuapfer et al., 1998 for CIBR and 
APDA). Ratioing and curve-fitting techniques are shown to suffer from limitations including (i) the assumed 
linear variations of the surface reflectance within gas absorption bands, (ii) the assumption of non-overlapping 
gas absorption bands, and (iii) the need for a high SNR at each side of the gas absorption bands. These 
limitations may yield a typical error far greater than 10% in H20  column density retrieval over some ground 
materials (see (Bore1 et al., 1996) and (Schlapfer et al., 1998) for a validation of APDA over 379 reflectance 
spectra). 

3.1 Effect of Non-linearity of the Reflectance p within Gas Absorption Bands 

The reflectance spectrum of enstatite (sample IN-lOB, particle size 45-125 pm) was chosen as a reference 
(from the Jet Propulsion Laboratory (PL),  Pasadena, CA, spectral library) because it is frequently encountered 
on the eafib's surface and because of the high error of standard methods for this material. A radiance pixel was 
simulated using MODTRAN4 in the single scattering mode with the following entries: aerosol-fi-ee US 1976 
Standard Atmosphere Model with an excess of water vapor equal to 3500 ppm in the first atmospheric kilometer 
(to simulate a vapor plume), solar zenith angle of 40 degrees, target at sea level, and nadir viewing sensor 
located above the atmosphere. Noise was added to the computed signal using the radiometric characteristics of 
the AVIRIS instrument for the year 1995 (see section 4.1). We used the 3-channel optimal APDA technique 
(reference channels: 875.25 nm / FWHM = 8.86 nm and 1000.13 nm / FWHM = 9.01 nm, measurement channel 
: 942.49 nm / FWHM = 8.95 nm) applied to the 940 nm water vapor absorption band (Fig. 2) (FWHM is the Full 
Width at Half-Maximum). 

0.325 

0.085 

absorption band 
-! 

820 870 920 970 1020 10701 

Wavelength (nm) 

Figure 2. H20 retrieval around 940 nm absorption band (grey line) over enstatite (black line). APDA linear 
interpolation (black stars) yields overestimation of reflectance and 41% overdetermined H20 content. JRGE 
proposed method better fits parabolic enstatite shape (white circles) and reduces error on H20 to 6% (see text for 
details). 

Like other conventional methods, APDA first performs a linear interpolati.on of p within absorption bands. 
This assumption ,yields an overestimation of p reaching about 43% in the center of the 940 nm absorption band, 
leading to an estimated H2Q excess equal to 12,880 ppm instead of 3500 ppm. It corresponds to a relative error 
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in the first atmospheric layer equal to 268%. This error in the total atmospheric HzO content is about 41%. This 
overdetermined value is due to the parabolic shape of enstatite near 940 nm. This example illustrates that the 
usual assumption of linear variations of p within absorption bands may yield large errors. 

3.2 Effect of Overlapping Absorption Bands 

Conventional methods use the assumption of separated gas absorption bands and estimate each np 
separately. However, absorption bands may overlap (Fig. 3) so that one may be in need for a more 
comprehensive method of retrieving simultaneously the np . 

1 

0 
1860 1960 2060 2160 

Wavelength (nm) 

Figure 3. HzO and COz overlapping absorption bands near 2000 nm (white circles and black stars, respectively) 
yield a complex radiance pattern (grey line). Contrary to previous standard algorithms, JRGE addresses that 
point in a simultaneous gases retrieval procedure. 

3.3 Effect of Noise 

Conventional methods use a few reference channels located at each side of the absorption bands in order to 
interpolate the surface reflectance. The interpolation thus drastically depends on the noise in these reference 
channels. They do not benefit from the whole signal to minimize the influence of noise during the reflectance 
interpolation procedure. This point is generally negligible for HzO retrieval but may be of high importance for 
COz retrieval, with absorption bands located in low SNR spectral regions. 

4. JRGE : THEORETICAL DEVELOPMENTS 

In the following, we propose a method that overcomes the main drawbacks of the conventional methods 
listed above. It is based on a mathematical description of the physical characteristics of the signal. The developed 
algorithm is a two-step algorithm that first estimates the surface reflectance and then the densities of the plume 
gases. 

4.1 Physical Constraints and Assumptions 

We consider the following physical constraints and assumptions : 
From imaging spectrometry theory (Goetz, 1992), surface reflectance spectra generally do not include 
hyperfine absorption features. For current hyperspectral sensors (e.g., AVIRIS, HyMap, Hyperion), the 
surface reflectance can thus be considered as a spectrally smooth function of wavelength. This assumption 
allows (i) consideration of reflectance values at channel center in equation (4) and (ii) the construction of the 
proposed estimator. 
Estimates of the minimum and maximum values of np ( npmin and npmax, respectively) are available. As an 
example, the user may suggest that NOp represents N P  with an accuracy of 20,30, or 100%, or may give 
values depending on the studied phenomenon (e.g., forest fire, volcano, industrial plant). This requirement 
will allow the selection of the measurement (or absorption) channels (see section 4.2). 
A noise model is assumed to be available. The total noise on the measured radiance in channel i results 
from two independent noise contributions: (i) the inherent photon noise and (ii) the instrument's noise. The 
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total noise can be modeled by an additive gaussian white noise process b, with zero mean and a standard 
deviation equal to ob, ; the noises in the different channels are supposed to be statistically independent 
(Green et al., 1996a). The photon noise is estimated from the conversion factor of photons to signal, and the 
instrument's noise is defined as the standard deviation of the dark signal measured during the image 
acquisition ((Green et al., 1996a) and (Vane et al., 1987) for AVIRIS sensor specifications), so that an 
estimate of the noise standard deviation is available for each channel of each pixel. Typical SNR values are 
greater than 500 over much of the spectral range for 1995 AVIRIS data (between 300 and 800). 
The gases of interest are known and characterized by their absorption coefficient kp , calculated from 
spectroscopic data obtained in (Rothman et al., 1998). 
The terms A, and Lpafh are computed in standard atmospheric conditions using a line-by-line radiative 
transfer code before applying sensor averaging. 

0 

e 

4.2 Channel Selection 

The proposed method considers three types of channels (Fig. 4): 

4.2.1 Measurement Channels 

Measurement (or absorption) channels are the channels of the imaging system sensitive to variations in the 
amount of trace gases. First, an equivalent reflectance p,  is computed from the data [L(nl, ..., np)),  and equation 
(5) under the assumption ofzero np (Fig. 4) : 

3, = 

0.78 

0.58 

1740 1840 1940 2040 2140 

Wavelength (nm) 

Figure 4. Spectral1 channels definition and selection. Standard atmospheric parameters and physical assumptions 
(see text €or details) yield equivalent, minimum, and maximum estimates of reflectance from radiance signal 
(black stars and grey shape, respectively). (Prmm -PI-) variations below noise define reference channels. 
Radiance below noise yields saturated channels. Gas-dependant channels are referred to as measurement 
channels. JRGE interpolation (white circles) constraints depend on channel type. 

The associated standard deviation o, is related to the radiance standard deviation ob, by 0, = ob, /&), . 
Similarly, the minimum and the maximum values of the reflectance (p! , ,  and p,,, , respectively) are computed 
from the assumed variations nom and nomax of no and equation (5) 
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which represent the envelope of the possible values of the real reflectance (Fig. 4). The measurement channels 
are then defined to be those for which p,,,, - p,,, > q . 

4.2.2 Saturated Channels 

A channel is considered to be saturated if its radiance is below 3obi (a factor of 3 is introduced in order to 
diminish the number of outliers). Within the 400-2500 nm spectral region, saturated channels are generally 
located near 1400 nm and 1900 nm, where H20 strongly absorbs. 

4.2.3 Reference Channels 

The channels not selected as measurement or saturated channels are referred to as reference channels. 

4.3 Surface Reflectance Estimator 

This section describes the procedure used to estimate the surface reflectance from the radiance signal. In 
agreement with physical constraints and assumptions (see section 4.1), an estimator f i j  of the surface reflectance 
in channel i is computed as 

where a={ s : s E C2[a,b], S” E L2[u,b]}, s” denotes the second derivative of s , w, are weighting coefficients, 
a > 0 is a regularization parameter, and [a, b] contains all the A, values. The first term in equation (8) controls 
the fidelity to the data and the second term controls the global smoothness of the estimator. fi, is called a 
smoothing spline estimator and is known to be a natural cubic spline with knots at the observation points 
A,, ...,AN (Reinsch, 1967) (DeSoor, 1978) (Wahba, 1975) (Kimeldorf et al., 1970) (Wahba, 1978). A cubic 
smoothing spline with knots in A,,..., A, is a piecewise cubic polynomial s(A) where pieces join C2- 
continuously at the points AI ,...,A,, Le., s(A) and satisfies the conditions : 

On each interval [A,-l ,Ar], i = l,...,N + 1, where A, = a and AN+, = b , s(A) is a polynomial of degree 5 3 
s ( ~ >  is C2-continuous on [ab] 
In addition, s(A) is called natural if it is linear on the end intervals [a,Al] and [A, ,b ]  

The weights w, used to estimate the reflectance are given by: 
W~ = l/o, in the reference channels 
W~ = 0 in the measurement and saturated channels 

The weights allow the noise on p,  to be smoothed within the reference channels and to interpolate the 
reflectance elsewhere. 

(Green et al., 1994). Let S denote the vector [s(A,), ..., s(A,)lT (the superscript T is matrix transposition) and 
U the vector [s”(A,), ..., S”(A,-,)]~ (by definition, a natural cubic spline has ~“(4) = s”(A,) = 0). Define 
h, = AI+, - A, for i = 1, ..., N - 1 , and let Q be a tridiagonal matrix N x ( N  - 2) in size with entries q,,, = l/h, , 
q,,,,, = -(l/h, + l/h2+l) , q,+,,, = l/h,+l , and R a tridiagonal matrix ( N  - 2)x ( N  - 2) in size with entries 
Y,,, = (h, + h,+ , ) /3 ,  Y,,,+, = T+,,~ = h, / 6  . S and U specify a natural cubic spline if and only if the condition 

Q’S = RU is satisfied and then 

Equation (8) can be simplified if the natural cubic spline is represented with its value-second derivative form 

js”(u)”u = UTRU.  

By substituting U by R-’QTS in equation (9), equation (8) can be rewritten in matrix form as 

(9) 
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b(a) = arg min((p - S)' W(6 - S) + &'QR-'Q'S) 
S 

where =: [PI )..., P N l T  and W = diag[w, ,..., w , ~ ] .  Resolution of equation (10) yields 

By defining A, = diag[(x)l,...,(x),v], we can infer from equation (6) that 

L = [(.L(n, 9 . . . 9  nP):/, ,..., (.L(nl ,..., N ~ ) ) , ~ ] '  and LPath = [p), ,..., (,,),"I' . Then, by defining 
B = (W + @R-'Q')-' WA,' , the surface reflectance estimator p can be expressed as a function of the 
measured radiance and the path radiance by 

= A,'(L - LPatb) where 

p(a) = B(L - LPnth ) . 

We obtain a surface reflectance estimator for a given value of the smoothness parameter a . 
a controls the tradeoff between the fidelity to the data and the global smoothness of the reflectance 

estimator. If it is too small, the model fits the noise and if it is too large then some of the original signal may be 
damped. In our study, the noise level g is known and, therefore, the regularization parameter a can be 
determined using the discrepancy principle (Engl et al., 1996). A Newton's method is used to iteratively find the 
desired value of the parameter a .  

4.4 Gas Concentrations Estimator 

In this section, we compute simultaneously the estimates Y i p  of the P gases of interest as 

( G p )  = argmin(C(np)), 
nP 

where wb, = l/crb, in the measurement channels and w,, = 0 elsewhere. We use a Newton's method for 
minimization to solve equation (13) for the P x l  estimated vector I; =[GI ,  ..., 
particularly adapted because equation (13) is strongly non-linear towards the nP and because the P x 1 Jacobian 
and the PxP Hessian matrices (resp., J and H ) can be computed analytically. The Pxl  vector of increments 
An is given by 

Indeed, this method is 

where J and H are equal to 

An = -H-'J 

Starting with 6 = 0 ,  the process is iterated until convergence is reached, which is when the added increment 
An leads to variations in the concentrations of the gases lower than a specified tolerance. Note that in practice, 
only the measurement channels are retained in the calculation. 
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5. VALIDATION OF SIMULATED DATA 

Material 
CUMMINGTONITE-IN-6 A 
ENSTATITE-IN- 10B 
FAYALITE-NS- 1 A 
HEMATITE-FE2602 
MOLYBDENITE-S-1 1A 

This section describes the preliminary results obtained with the proposed method. JRGE has been compared 
with APDA for water vapor retrieval. For this comparison, the JPL and the Johns Hopkins University (JHU), 
Baltimore, MD, spectral libraries were employed. These databases consist of measured reflectance spectra for 
430 mineral samples (from JPL), to which we added 41 soil samples, 45 manmade samples, 4 vegetation 
samples, and 5 water samples (from JHU). Radiance spectra were simulated using MODTRAN4 in the following 
conditions : aerosol-free US 1976 Standard Atmosphere Model with an excess of water vapor equal to 3500 ppm 
in the first atmospheric kilometer (to simulate a vapor plume), solar zenith angle of 40 degrees, a target at sea 
level and a nadir-viewing sensor located above the atmosphere. Radiances were then averaged according to the 
AVIRIS instrument specifications for the year 1995 and related system noise was added to the computed signals. 
Retrieval of the water vapor content was performed both with the 3-channel optimal APDA technique (reference 
channels : 875.25 nm / FWHM = 8.86 nm and 1000.13 nm / FWHM = 9.01 nm, measurement channel : 942.49 
nm / FWHM = 8.95 nm) and the proposed JRGE method. For comparison with APDA, which estimates the total 
gas column, we define the retrieval error E ( p )  in the gaseous species p relatively to the total amount by 

APDA Error (%) JRGE Error (%) 
-6.18 -0.12 

-40.79 5.94 
-5.45 0.6 1 
11.47 -2.92 
19.71 1.06 

Results are reported in Table 1. 

SIDERITE-COS2002 
TRIPHY LITE-PdA 
Database 

4 
-31.81 4.45 
-42.13 -3.60 

APDA RMSE (“36) : 7.10 JRGE RMSE (“36) : 2.87 

For the seven materials yielding the largest errors for APDA, the spectral shape of the reflectance within the 
940 nm water vapor absorption band is fitted by the JRGE method (Fig. 2) with an accuracy of a few percent; 
the quality of the resulting determination of water vapor content is enhanced by a 8.4 average factor. For the 
whole database, the accuracy of JRGE for water vapor retrieval is 2.87%, yielding a 2.5 enhancement factor. 

6. CONCLUSION 

We have developed a comprehensive method to retrieve both ground reflectances and trace gas amounts 
from hyperspectral remotely sensed data. The method yields an enhancement factor equal to 2.5 in H,O retrieval 
accuracy in comparison with conventional methods. The method can thus be also used to enhance existing 
atmospheric correction techniques for ground based applications (e.g., geology). Improved accuracy should 
allow the monitoring of numerous geophysical phenomena with relatively low gas emission. 
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ECOSYSTEM IMPACTS OF WOODY ENCROACHMENT IN TEXAS: 
A SPATIAL ANALYSIS USING AVIRIS 

Roberta E. Martin,''2 Gregory P. A ~ n e r ~ ' ~  

1. Introduction 

documented in drylands of Texas as well as worldwide (Archer 1994, Harrington and Harman 1995, Moleele et al. 
2002). Over-grazing, fire suppression and climate change are implicated in the shift from open grasslands to 
ecosystems now populated by trees and shrubs (Scholes and Archer 1997, Archer et al. 2001), such as Prosopis 
glandwlosa war. glanddosa (honey mesquite) in north Texas (Teague et al. 1997, Ansley et al. 2001, Asner et al. 
2003a). Several studies have examined changes in ecosystem properties accompanying woody vegetation 
encroachment in the Southwest U.S., with research focused on increases in plant and soil carbon (C) and nitrogen 
@I) stores (Hoffman and Jackson 2000, Asner et al. 2003a), isotopic shifts in these pools (Boutton 1999, Archer et 
ai. 2001), and increases in N cycling rates (Rundel et al. 1982, Hibbard et al. 2001). However, little is known 
regarding the impact of woody encroachment on N trace gas emissions from dryland regions such as Texas. 

NOx is produced in the soil during the processes of nitrification and denitrification (Firestone and Davidson 
1989). The total N efflux from soils is most directly influenced by the internal cycling of N, which at a regional- 
scale, is controlled by the inputs and availability of N from vegetation via litterfall and subsequent decomposition 
(Robertson et aP. 1989). Although plot-scale studies are critical to understanding controls over N oxide emissions, 
regionalization of the measurements is impeded by spatial variation in the factors contributing most to N cycling 
processes: soil properties (affecting soil moisture regimes and N stocks) and vegetation cover (affecting litter inputs 
and N uptake). While broad patterns in ecosystem structure and vegetation composition co-vary with general 
patterns of trace gas emissions (Matson 1997), there is no easily measured index of N availability that can be applied 
for regional-scale studies of N oxide fluxes. 

elcosystern processes. More specifically, remotely detectable spatial patterns in the distal controls over soil N 
properties, such as ve,getation cover, land use and soil type (Robertson et al. 1989), should be exploited for regional 
studies ofN oxide emissions. The woody encroachment phenomenon provides an opportunity to test the strength of 
the relationship between N oxide emissions and those factors controlling the fluxes that can be remotely measured. 
If such linkages can be firmly established, and if the spatial pattern of distal controls is relevant, then the 
combination of field measurements and remote sensing offers to improve regional-scale N oxide estimates. 

The paper presents the utility of linking field based sampling of soil NOx emissions with very high resolution 
remote sensing estimates of woody vegetation cover from the NASA AVIRIS, Airborne Visible-Infrared Imaging 
Spectrometer {(Green et al. 1998, Asner and Green 2001) and automated spectral mixture analysis (Asner and Lobell 
2000, Asner and Heidiebrecht 2002) that provide a means to spatially extrapolate soil NOx emissions to the regional 
scale. 

Woody encroachment, the increase of woody plant density relative to herbaceous vegetation, has been 

Remote sensing is arguably the only approach available to develop a spatially-explicit understanding of 

2. Study site. 
The study site was located on the Waggoner Ranch in North Texas (33'50'N, 99 OO2'W; Figure 1). The region 

is temperate mixed -grass savanna with a mean annual temperature of 17 "C. Mean annual precipitaltion (640 mm) 
is bimodally distributed, with peaks in May and September. Topography of the region is gentle to moderately 
sloping (< 4%); elevation ranges from 355-370 m. Soils on lowland areas are fine, mixed thermic, Typic Paleustolls 
of the Tillman association, developed from Permian clay and shale parent material (SCS 1962). Upland soils are 
dominated by shallower Vernon series clay loams and intermittently exposed red-bed clays and shales. Vegetation is 
diorninated by a mixture of native grasses (both C3 and C,) and a P. glandulosa (mesquite) overstory comprising > 
95% of all woody cover and density (Hughes et al. 1999). While historical vegetation of the region was grassland 
and open savanna in {he 1950s, in association with an increase in cattle grazing, the density of P. glandulosa 
increased to the point where brush management efforts were employed throughout the region (Fisher et al. 1959, 
Teague et al. 1997, Ansley et al. 2001). These efforts have continued to the present (Teague et al. 49197), producing 
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Figure 1. Pasture and soil map for Kite Camp 
Research Area (KCRA), Vernon, TX showing 
two dominant soil types andthe riparian areas. 
Red circles mark locations where field 
measurements of soil NO fluxes were collected. 
Pasturesexperiencingprescribediireand 
herbicide treatments prior to airborne imagiag are 
hatched; non-hatched areas have no known brush 
mauagement since at least the 1950s. 

landscape mosaics of grassland, savanna (< 800 stems ha”) 
and woodland (up to 7,100 stems Id) (Hughes et al. 1999). 

3. Airborne Imaging Spectrometry. 
Airborne imaging spectrometer data were collected on 

September 29,2001 over a 140 km* region of Waggoner 
Ranch. The September time period afforded the greatest 
contrast between the woody Prosopis which were full and 
green and the herbaceous layer, which had senesced (Asner 
et al. 1998, Asner et al. 2003b). TheNASA Airborne 
Visible and In6ared Imagmg Spemmeter (AWUS) was 
flown onhard a Twin Otter aimaft at an altitude of 4000 
m, providing image data with a 3.3 m spatial resolution. 
The data were geo-recti6ed using an onboard global 
positioning-inertial navigation system (GPS-INS) and a 
post-processing algorithm developed by (Boardman 1999). 
Eleven fliightlines were then mosaicked using an algorithm 
developed by Asner et al. (2003b). AVIRIS data were then 
atmosphericdly corrected using the FLAASH algorithm 
(Matthew et al. 2000). 

4 Spectral Mixture Analysis. 
The spectral mixture model AutoMcu (Amer and 

Lobell 2000, Asner and Heidebrecht 2002) WBS used to 
calculate estimates of gnen photosynthetic vegetation (PV), 
senescent non-photosynthetic vegetation (NPV) and bare 
soil covers within each pixel, along with statistid 
unmtahty estimates for each cover type using an 
automated Monte Carlo nnwtah!~ analysis. AutoMCU 
uses three endmember “bundles” of PV, NPV and soil, 
derived 6om an extensive endmember database for North 
America drylands (Asner et al. 1998, Asner et al. ZOOO), to 
decompose each image pixel using the following equation: 

X e = l . 0  

where p is the reflectance factor, C is the cover 6action for each endmember, PV is photosynthetically active 
vegetation, NPV is non-photosynthetically active vegetation, and E is the errcr term. Equation (2) constrains the 
sum of the 6actions to one. On a pixel by pixel basis, the AVIRIS reflectance measurements were spectrally 
unmixed 50 times using PV, NPV and soil spectra randomly selected 6om each endmember hundle. The Monte 
Carlo approach was used to calculate both mean ktional wver values of PV, NPV and soil on a per-pixel basis, 
and to compote absolute eml~s in estimates of these cover types, reported as standard deviations. AVIRIS-derived 
estimates of PV were compared to field-based measurements of aboveground Prosopis canopy cover (from Amer et 
al. 2003a) to determine if this remotely sensed variable could be used to spatially extrapolate NO emissions moss 
the region (Figure 2). 

5. Field N Oxide Measurement and Extrapolation Incorporating AVIRIS predicted Woody Vegetation Cover 
Soil NO flux measurements are documented in detail in Martin et al., (m press). Briefly, six field campaigns 

were conducted approximately bi-monthly 60m May 2000 to June 2001 on nine 60 x 60 m plots spanning a range of 
landscape units that have been previously characterized for soil texture, plant canopy cover, and standing biomass 
through remote sensing and ground-based measurements (Asner et al., 1998; Hughes et aL, 1999). Fluxes were 
measured 6om six PVC chambers at each plot. Measurements were stratified at each site beneath tree canopies (n = 
3) and in grass interspaces between canopies (n = 3). 

1% 



Soil NO flux exhibited a strong linear relationship with Prosopis cover (Figure 3; Martin et al., in press). Based 
on this relationship, we extrapolated NO fluxes on a pixel by pixel basis as they related to the AVIRIS estimated 
Prosopis cover producing a spatially explicit map of NO flux. Error in the prediction of NO flux was calculated for 
each pixel as: 

Total Spatial Error = d(PV error)2 + (NO error) 

where, PV error is the uncertainty in estimation of the PV cover fraction derived fi-om Monte Carlo calculation in 
the spectral mixture analysis, and NO error is the standard error of NO relationship with Prosopis cover as: 

where cT2 is the standxd error in the regression estimate between field measurements of PV cover fixtion and NO 

emissions, ra is the nurnber of samples in the image, x* is the PV cover fraction of a given pixel, x is average PV 
cover measured in the field plots, and S, is the sum of squares of the error in the PV cover measured in the field 

- 

plots. 

6. Comparisaln of Regional Estimates 

of all field d&a, 2) averaging of only the summer field measurements assuming NO is not produced during the 
months with low temperatures, 3) spatially extrapolating NO fluxes using a woody vegetation map derived from 
innaging spectrometer observations. The covariance was calculated for each estimate so that variation between 
methods could be assessed independent of sample size differences. 

Estimates of NO emissions derived from the different calculation methods were compared: 1) simple averaging 

7. Results and Discussion 
Soil nitrogen oxides are a broad indicator of the overall N balance of an ecosystem (Davidson et al. 2000). 

Regional studies of N oxide emissions from savanna soils 

0.0 
0.0 0.1 10.2 0.3 0.4 0.5 0.6 0.7 

Field PV Fractional Cover (%) 

Figure 2. Relations hip between woody Prosopis 
cover in georeferenced 60 x 60 m plots estimated 
fi-om AVIRIS measurements collected in 2000 and 
field canopy measurements. Solid line shows the 
regression relationship used to adjust satellite 
estimates o ~ P V  cover (Estimated PV cover = 0.95 
* Field PV Cover + 0.08). Dashed line depicts 95% 
confidence interval in the prediction of the 
regression. Vertical error bars indicate uncertainty 
in Monte Carlo analysis and co-location O f  AVIFUS 
pixels within field plots. Horizontal error bars 
indicate variability in belt-transect cover estimates 
within field plots (Pisner et al. 2003a). 

0 1 2 3 4 

Field PPI Area (m") 

Figure 3. Relationship between NO flux and PV cover 
measured within field plots indicated in figure 1. Solid 
line show the regression relationship used to calculate 
NO emissions on a pixel by pixel basis as they relate to 
woody canopy cover across the region (NO flux = 0.23 
* AG Prosopis cover - 0.02). Dashed line depicts 
95% confidence interval in the prediction of the 
regression. Vertical error bars indicate standard error 
in NO field measurements. Horizontal error bars 
indicate variability in belt-transect cover estimates 
within field plots (Asner et al. 2003a). 

193 



are challenged by the great spatial and temporal heterogeneity in the processes regnlating these emissions. 
Numerous studies rep& increases in woody plant cover in savanna ecmystems, most of which focus on 
classification and quantification of vegetation structure (Buffinpton and Herbel 1965, Harrington and Harmaa 1995, 
Ansley et al. 2001, Moleele et al. 2002, Asner et al. 2003a). Many plot-scale studies suggest that changes in canopy 
structure are translated to biogeochemical changes in the soil, specifically m the C and N stores (Archer et aL 2001, 
Asner et al. 2003b). N oxide emissions are subsequently related to N capital, which can be linked to plant cover and 
growth (Aber and Melillo 1991, Vitousek and Howarth 1991). This study shed to capitalize on relationships 
between remotely sensed, spatially-dis&ibuted properties of vegetation and soil, and c l i i t i c  controls (temperature 
and precipitation), to provide estimated fegional Variations in NO emissions fiom rangeland soils. 

Spotal Patterm in Woo& Cover 

the past 100 y (Teague el al. 1997, Ansley et al. 2001, Asner et al. 2003a). The distribution and structure of 
Pmopis cover, and related biogeochemical properties, is a function of many of variables. Climate establishes the 
biogeopphical setting, with seasonal temperam variations and limited rainfaU promoting thc co-evolution of 
woody commnnities and grasses. Accurate prediction of woody canopy cover is the key step to understanding the 
regional distribution of soil NO emissions as they respond to these conlrolling factors. 

Fractional cover estimates of photosynthetic vegetation 0, non-photosynthetic vegetation (NPV) and bare 
soil derived from A W S  reflectance measurements varied substantially across the study region (Figure 4). 
AVIRISderived W o n a l  cover estimates of woody vegetation were well correlated to field measurements (8 = 
0.84, p 4.01; Figure 2). Woody Prosupis cover (shades of red) was higher on the desper clay loam soil than on the 
shallow clay soils, with values of 35 and 25%, respectively (p < 0.001, t-test). The a d  extent of these two soil 
types was similar throughout the region, approximately 56 and 59 km2 for shallow clay and clay loam, respectively, 
leading to an averaee reaional woody cover of 30%. The standard deviation in predicted PV cover was low (04%). 

Prosopis glandulosa occurs on more than 20 million ha of rangelaud in Texas, with documented increases over 

A v G e d  by soil &, &e ermr was-approximately 
10% of the cover lhction for both soil types, 
indicating high confidence in the detection of 
woody plants within the AVIRIS pixels. 

Remotely sensed NPV cover was slightly 
higher on clay loam than on shallow clay soils, with 
values of 57 and 5 1%, respectively. Areas of 
highest NPV cover (shades of green) were found an 
the upland clay loam soils, in the transition 
s e p r a t i q  was close to the riparian zones (in 
black) with high woody cover to the shallow clay 
areas with little cover (Figure 4). The standard 
deviation in predichg NPV was 0-100/4 similar to 
that for PV. The bare soil lhction was higher on 
the sballow clay (42%) than on the clay loam soils 
(3 1%) (p < 0.001, t-test). The e ~ w  in predicting 
the soil &action was lower than that of PV or NPV 
(&2%), indicating the clear detection of this land- 
surface component. 

Using Landsat 7 ETM+ data at 30 x 30 m 
spatial rwohtion, Asner et al. (2003a) showed 
similar areal distributions of woody cover, but 
averages by soil type differed (48% and 33% on 
clay loam and shallow clay soils, respectively). 
They estimated a 23% increase in woody cover 
across the region over a 63 y period (1937 to 1999), 
and indicated a trend towards increasing spatial 
homogeneity of woody cover. The current analysis 
quantilied similar heterogeneous distriiutions in 
woody cover in 1999. 

between the two studies is most likely do to 
The -10% difference in woody fractional cover 

I 

L 

r 

s o 2  0 8  

'igure 4. Regional mosaic of spectral umixing results 
lenved from AVIIUS measmmennts. Fractional swhx 
:over of PV, NPV, and bare soil are shown in shades of 
td, green and blue respectively. Riparian areas have 
)een removed. Fences enclosing pastures and the KCRA 
Youndary are shown with black lines. 
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variation in plant phenology caused by interannual variation in precipitation. The September over-flights were 
chosen in both studies to maximize senescence of the herbaceous canopy, while the woody canopies remained fully 
green at the time of imaging. However, differences in the greenness of both woody and herbaceous vegetation 
occurred due to differences in precipitation during the preceding months in each study. On average, precipitation in 
thle Waggoner Ranch region ranged from 400 to 900 mm over the last 10 y (NOAA, 2001). The 2001 season had 
extremely low rainfall (410 mm) and followed the summer drought of 2000 (no precipitation from Juky - 
September). In contrast, rainfall in 1999 during the Landsat study by Asner et al. (2003a) was average (620 mm). 
This suggests that our estimates of woody cover in this study are conservative, thus NO flux calculations incorporate 
woody vegetation cover may represent the lower limit for NO emissions in this region. Despite a di€ference in 
means, the slope and minimum value between field validation data and estimated woody cover were similar between 
the two studies (Figure 2 ;p  < 0.001; t-test). 

Spatial Variations in Soil NO Emissions 
Due to the intensive amount of field work involved in the collection of soil trace gas flux data, a true random 

sampling over the entire area of a given biome is not feasible. In an attempt to characterize the spatial variability 
within a biome, measurements are often divided equally across soil type, vegetation cover or landscape position. 
The linkages between woody fractional cover and biogeochemical processes offers a way to capitalize on the power 
of remote sensing (in lhis case airborne imaging spectroscopy) to extend a limited number of plot-scale 
measurements to a regional area. If the distal controls that are remotely observable can be linked to N trace gas 
emissions, then greater confidence in the overall emissions estimates from the region can be achieved. 

Our recent field study identified woody vegetation as the key spatial control over NO emissions following 
woody encroachment in North Texas (Martin et al. in press). A variety of NO emission rates associated with canopy 
cover types (woody versus herbaceous) have been documented in other studies. These range from small differences 
(-a 10%) in emissions imeasured under or away from mesquite canopies in southern New Mexico (Hartley and 
Schlesinger 2000) to ai doubling in NO emissions following an increase in aboveground biomass and a doubling of 
total soil IN from two savanna sites in South Afiica (Levine et al. 1996, Parsons et al. 1996). Similarly, higher litter 
quality from an N-fixing legume contributed to increased N cycling and higher NO emissions in a Puerto Rican 
forest (Erickson et al. 2002). 

modeled by AutoMCU, highlighted a high degree of spatial variability across the study region with emissions 
ranging from 0 to 2.5 mg m-' 6' (Figure 5a). The extremes in predicted NO flux were then obvious, with lowest 

Extrapolal.ion of soil NO emissions using the photosynthetic vegetation (PV) cover, measured by AVIRIS and 

0 2 km 

NOFlux m4 1 Standard Error in NO Flux 
0.0 2.5(mg m2 day') 0.1 0.2 (mg mz day') 

Figure 5. Regional map of NO emissions (A) and associated error (B). Brighter areas represent 
higher NO jlux values. Riparian areas, indicated in white, were not included in the analysis. 
Fences enclosing pastures and the KCRA boundary are shown with black lines. 
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NO values in areas of high bare soil fractions (shades of blue, Figure 4) and highest values closer to the riparian 
zones containing dense canopies (black regions). The total error of NO flux estimates varied between 0.2 - 0.6 mg 
m-2 d-'. Spatially, the error in estimation was higher at the extremes of woody cover values (Figure 5b). 

Remote sensing highlighted the stratification of NO emissions by soil type, with higher emissions from clay 
loam than from shallow clays soils (5a). NO emissions measured in the field and averaged by soil type followed the 
same pattern (Table 1). Soil texture affects the production and emission of NO by influencing both N availability 
(plant growth and subsequent litter turnover) and soil porosity (emission path length and water-holding capacity; 
(Firestone and Davidson 1989, Robertson et al. 1989). In this system, NO emissions co-vary with vegetation change 
across soil type. 

Evaluating regional NO emissions by soil type illustrates the benefit of incorporating remote sensing data in 
biogeochemical studies. On an area-integrated basis, the estimate for this region (120 km2), based on stratification 
by soil type alone, estimated NO emissions by approximately 4 Mg NO-N y'*. This value was nearly a third of the 
total annual flux calculated after accounting for the spatial variability of woody vegetation cover (14 Mg NO-N y-'). 
The largest difference appeared in the estimation of emissions from shallow clay soils, producing a 260% difference 
when spatial variability was included (Table 1). In contrast, there was little change in the 
estimation of NO flux from clay loam soils. This difference in calculated NO emissions by soil type arises because 
the PV cover measured in the field plots located on shallow clay soil was lower (8%) than that of the entire region 
(25%). This difference would remain undetected without the aid of imaging spectroscopy data, which extended the 
estimation of vegetation fractional cover to the entire region. 

8. Conclusions 
Our study demonstrates the advantage of using remote sensing to characterize the spatial heterogeneity in 

ITable 1. Estimated mean annual NO Flux for the entire region (120 km2) and divided by soil type. 
Means and coefficient of variation are given. 

Total Area Shallow Clay Clay Loam 

NO flux NO flux NO flux 

Calculation Method (mg m-2 y") cv (mg rn-* y-9 cv (mg m-2 y-') cv 

1) all chamber measurements 89.8 1.4 42.6 1.6 137.1 1.3 
2) summer chamber measurements (220 days) 86.1 1 .o 38.8 1.2 133.9 0.9 
3) AVIRIS vegetation map (220 days) 122.0 0.7 100.5 0.8 144.8 0.6 

ecosystem parameters at a scale (meters) commensurate with field-based measurements of these properties. Woody 
vegetation encroachment provided an opportunity to capitalize on detection of the remotely-sensible parameter of 
woody cover as it relates to belowground biogeochemical processes that determine N trace gas production. The fEst 
spatially-explicit estimates of NO flux were calculated based on Prosopis fractional cover derived from high 
resolution remote sensing estimates of fractional woody cover (< 4m) for a 120 km2 region of North Texas. 

climate variability were compared to estimates calculated using spatially-explicit information on woody vegetation 
cover derived from remotely sensed data. Incorporating spatial variability nearly doubled the mean annual NO 
emissions over those estimated from field measurements alone, yielding an annual emission rate of 122 kg NO-N 
km-2 y-' from the region. This emission rate is about half the total wet deposition rate (300-400 kg N km-' y-'; 
(NADP/NTN) and only a tenth of the estimated N fixed by Prospis in the region (600-3000 kg N kmm2 y-'; 
(Cleveland et al. 1999). 

The spatially distributed nature of the data revealed discrepancies in total estimated NO emissions by soil type, 
due primarily to limited sampling on shallow clay soils. Spatially-explicit data also permitted the evaluation of the 
long-term effects of brush management on estimated NO emissions, an otherwise extremely labor intensive process. 
These data revealed that brush management may significantly decrease NO emissions once short-term variations due 
to the initial disturbance have dissipated. 

Differences in regional annual NO estimates calculated from traditional extrapolation methods with and without 
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ATRIOSPHERLIC CORRECTION OF SPECTRAL IMAGERY: EVALUATION OF THE 
FLAASH ALGORITHM WITH AVlRIS DATA 

Michael W. Matthew,’ Steven M. Adler-Golden, Alexander Berk, 
Gerald Felde, Gail P. Anderson, David Gorodetsky, Scott Paswaters, and Margaret Shippert 

1. INTRODUCTION 

technology for remote sensing of the earth’s surface because of its combination of good spatial and 
spectral resolution. Elimination of atmospheric effects caused by molecular and particulate scattering and 
absorption from the measurements is desired for many applications, such as when comgariscins are to be 
made with data taken in the laboratory or under different atmospheric or viewing conditions. This 
pirocess, which transforms the data from spectral radiance to spectral reflectance, is known as atmospheric 
correction, compensation, or removal. 

A variety of meithods and algorithms for atmospheric correction are available. The “empirical line 
m~ethod,” consisting of a linear transformation derived from ground-truth spectra, remains a popular and 
accurate method where truth data exist. In other situations, a first-principles method is needed. ATREM, 
developed by Gao et al. (1996) using the 5s and, later, 6 s  radiation transport (RT) models (Vermote et 
a]., 1994), was for many years the industry-standard algorithm. Recently, more sophisticated algorithms 
have been developed, focusing primarily on land imagery. These algorithms, which incorporate more 
accurate RT models and improved methods for retrieving the atmospheric properties needed for the 
correction, include ATCOR (Richter, 1997), ACORN (Green, 2001), FLAASH (Matthew el al., 2000; 
Adler-Golden et al., 1998, 1999) and HATCH (Qu et al., 2001). 

In this paper we review the basic first-principles atmospheric correc*Lion methodology and present 
results from the latest version of FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes). FLAASH is an efficient correction code based on MODTRAN4 (Berk et al., 1998) that has 
been developed collaboratively by Spectral Sciences, Inc. and the Air Force Research Laboratory; with 
assistance from the Spectral Information Technical Applications Center (SITAC); FLMSH is available 
in the Research Sysitems Inc. ENVI software package. We show some comparisons of ground truth 
spectra with IFLAASH-processed AVIRIS data, including results obtained using different processing 
options, and with results from ACORN that derive from an older MODTRAN4 spectral database. 

Visible to near infrared (NIR) hyperspectral imaging from aircraft or spacecraft is a highly valuable 

2. ATMOSPHERJC COWRECTION METHOD 

2.1 Overview 

atmospheric parameters, most notably an aerosol description (the visibility or optical depth, and, if 
possible, an aerosol “type”) and the column water amount. Since current methods allow aerosol retrieval 
over a very limited set of surface types (water and dark land pixels), typically only an average visibility is 
obtained for a scene. On the other hand, the spectral signature of water vapor is sufficiently distinct that 
the column amount may be retrieved on a pixel-by-pixel basis. The second step in the correction is the 
solution of the RT equation for the given aerosol and column water vapor and transformation to 
reflectance. Finally, an optional post-processing step called spectral polishing has been shown to remove 
many artifacts remaining from the correction process. 

First-principles atmospheric correction typically consists of three steps. The first is the retrieval of 
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2.2 Radiance Equation 

wavelength range (neglecting thermal emission) from a flat Lambertian surface or its equivalent (Vermote 
et ul., 1994). Collecting constants reduces the equation to the form 

FLAASH uses the standard equation for spectral radiance at a sensor pixel, L*, in the solar 

L" = Ap/(l-p,S) + Bp,/(l-p,S) + L", 

Here p is the pixel surface reflectance, pe is a surface reflectance averaged over the pixel and a 
surrounding region, S is the spherical albedo of the atmosphere, L*, is the radiance backscattered by the 
atmosphere, and A and B are coefficients that depend on atmospheric and geometric conditions but not on 
the surface. Each of these variables depends on the spectral channel; the wavelength index has been 
omitted for simplicity. The first term in Eq. (1) corresponds to radiance that is reflected from the surface 
and travels directly into the sensor. The second term corresponds to radiance from the surface that 
scattered by the atmosphere into the sensor, resulting in a spatial blending, or adjacency, effect. 

by a single variable, resulting in neglect of the adjacency effect. This approximation, which is a user 
option in FLAASH, is satisfactory for homogeneous surface areas and under high-visibility conditions, 
but is less successful under hazy conditions. The importance of the adjacency effect in a forested scene 
with a visibility of around 25 km is illustrated in Figure 5 of Adler-Golden et ul. (1999), which shows 
FLAASH reflectance spectra of calibration panels retrieved with and without the adjacency correction. 
As another example, Figure 1 shows some spectra retrieved from an extremely hazy (-7 km visibility) 
AVIRIS image of rural N. Carolina taken on 7/22/93 as part of the Smoke, Clouds And Radiation 
(SCAR) experiment. Note that correction for the adjacency effect eliminates a chlorophyll residual in the 
soil spectra caused by strong scattering from the surrounding vegetation. 

In most other atmospheric correction codes (e.g., ACORN, HATCH, ATREM), p and pe are replaced 

2.3 Radiation Transport Calculations 

The atmospheric constants in Eq. (1) are calculated from an RT model, such as MODTRAN. These 
calculations usually represent the single most computationally intensive part of the atmospheric 
correction. For greatest efficiency, a look-up table (LUT) of these constants may be pre-calculated and 
interpolated as needed for the specific viewing geometry, atmospheric condition, and sensor channels of 

5000 I interest. A LUT for nadir viewing geometries 
is incorporated in ACORN. Other codes, 
including FLAASH, perform a custom RT 
calculation for the image at hand to permit 
coverage of a wider range of conditions (e.g., 
off-nadir viewing, all MODTRAN standard 
aerosol models). 

When using MODTRAN, for the most 
accurate short-wave correction (which is 
needed over water, for example) the DISORT 
(Stamnes et ul., 1988) discrete ordinate 
multiple scattering option is superior to the 
computationally much faster Isaacs 2-stream 
method. Another option that can be selected 
in MODTRAN is the band model spectral 
resolution. Results at different resolutions are 
compared in Section 3. 

2.4 Atmospheric Parameter Retrieval 
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Figure 1. Comparison of light soil spectra retrieved by 
FLAASH from a very hazy 7/22/93 AVIRIS image of 
N. Carolina. The MODTRAN rural haze model was assumed. 
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The values of A, B, S and L *a in Eq. (1) depend on the viewing and solar angles and surface and 
sensor elevations, as well as on the atmospheric parameters of column water vapor, aerosol type, and 
visibility. A number of methods are available for retrieval of column water vapor and visibility. Perhaps 
the most accurate, but also the most computationally intensive, method for water vapor retrieval is a 
smoothness optimization approach, used in HATCH (Qu et al., 2001). Other correction codes perform 
the retrieval from one or more water absorption features using a small number of in-band and out-of-band 
radiance values. FLAASH uses the combination of a radiance ratio and an out-of-band radiance to 
interrogate a 1MODTRAN4-generated 2-dimensional LUT for the column water vapor in eaclh pixel. The 
water band typically used is at 1.13 pm, with the LUT for this spectral region generated on-the-fly. 
Several correction codes also provide a means to retrieve an approximate scene-average visibility (Le., 
aerosol optical depth). In FLAASH this is done with a fast, adjacency-corrected implementation 
(Matthew et al., 2000) of the 660 nm to 2200 nm reflectance ratio constraint for dark land pixels (2200 
nm reflectance < -0.1) found by Kaufman et al. (1997). Shadow and water are excluded from the dark 
pnxel set by requiring that the ratio of 400-450 nm to 750-865 nm radiance is less than 1 (D. Miller and S. 
Sarlin, private communication). 

2,,5 

the image reflectance is straightforward using a method described in several papers (Richter, 1996; 
Vermote et al., 1997). The method involves computing a spatially averaged radiance image L*,, from 
which the spatially averaged reflectance p, is estimated using the relationship 

Solutiom of the Radiance Equation 

Once the atmosphere is adequately characterized and the Eq. (1) constants are derived, calculation of 

L”, (A+B)Pe/(l-PeS) + L*, (2) 

The spatial averaging is performed using a point-spread function that describes the relative contributions 
to the pixel radiance from points on the ground at different distances from the direct line of sight. 
FLAASH approximates this function as a nearly exponential function of radial distance. Since clouds can 
be a severe contaminant in the spatial averaging process for the L*, calculation, FLAASH automatically 
identifies cloudy pixels (Matthew et al., 2000) and replaces them with an average radiance. 

an approximation in which the convolved reflectance and water vapor are averaged within pixel groups 
(“superpixels”) and Eq. (1) is reduced to a simple linear form (Matthew et al., 2000). This method, 
implemented with 4x4 superpixels, is the default in FLAASH, and is suitable for sensors that have a 
slpatial resolution finer than the typical -100 m distance of the adjacency point spread hnction. 

As discussed elsewhere, up to an order of magnitude improvement in speed can be obtained by using 

2.6 Spectral Polishing 

Spectral polishing refers to a spectral smoothing process that removes consistent artifacts in an 
atmospherically corrected hyperspectral image using only information from the image itself. The 
original, stand-alone algorithm, called EFFORT, was developed by Boardman (1 998); others have been 
developed for particular atmospheric correction codes, including FLAASH (Adler-Golden et al., 1999). 
The basic assumption behind polishing is that the scene contains some spectrally smooth pixels, such as 
road surfaces or bare soil that can be identified by a variance or similar measure. By comparing their raw 
reflectance spectra with a smoothed (low-pass filtered) spectrum, these pixels are used to develop a linear 
correction for the entire scene. The correction typically consists of a spectral gain or transmittance factor, 
and (in EFFORT) may also include a spectral offset. In FLAASH the smoothing is accomplished by 
taking a running avlerage of N adjacent channels, where N is typically an odd number between 7 and 1 1. 

The key to successful polishing is the selection of appropriate spectrally smooth pixels. They must 
not only be free of consistent, true spectral features, but also must be bright enough for derivation of a 
meaningful gain factor for all wavelengths. Vegetation pixels, although quite smooth overall, are 
unsuitable because of their sharp chlorophyll edge and darkness in the visible. As shown in the FLAASH 
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results of Figure 2, using a ratio test to exclude 0 5  

vegetation firom the smooth pixel set eliminates 
a chlorophyll edge artifact in the polished O d  r 
spectra. 

] 
3. DATA FLAASFIRESULTSWITHAVIRIS E ! 0 3 1 , ,  I v ,  y, ,  

In October 1998, a set of images were taken 2 
by the JPL AVIRIS instrument at the NASA 
Stennis Space Center in conjunction with a set 
of “ground truth’’ surface reflectance 
measurements. The sensor was at 3 km altitude, 
the sun was reasonably high (zenith angle of 48 
deg), water vapor was moderate. (1560 atm-cm 
according to a radiosonde measurement), and 
visibility was high. Tbis data collection 
provides an exffillent opportunity to evaluate 
the accuracy of FIAASH with a well-calibrated 
sensor covering the 0.4 - 2.5 pn range. 

Figure 3 compares uear-“best” FLAASH 
results (1 om’’ resolution with Isaacs multiple scattering and polishing) with ground truth speotra for four 
materials: a black panel, white panel, grass and soil. The wavelengths have been shifted by a few nm 
from the aiginal speotrograph calibrations in order to optimize the results. The MODTRAN nnal haze 
model was assum4 the retrieved visibility was around 70 km. Agreement between the two sets of 
spectra is good; the differences may reflect some combination of radiometric calibration error, 
atmospheric correction emr, and eEects caused by material non-uniformity andlor non-lambertisn 
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the 1.13 w reflectance. The FLAASH mtieved average water vapor of 1570 atm-cm (derived from 
band) is remarkably (perhaps fortuitously) 010se to the radiosonde measurement. 
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Figure 4 compares unpolished spectraretrieved by FLAASH with Merent MODTRAN band model 
resolutions and with both the original and shifted wavelength sets. The shifted wavelengths yield a 
dramatic improvement in the unpolished spectra. The MODTRAN band model resolution has a smaller 
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effect. The 5 om-' results are very close to the 1 cm-' results at all wavelengths. The 15 cm" results are 
close to the othm at short wavelengths but are inferior at long wavelengths, where the resolution 
approaches the width of the instrument function. At all resolutions the polished results are similar to the 1 
cm-' spectra shown in Figure 3. 

Figure 5 quantitatively compares the FLUSH results with the ground truth reflectance spectra via 
the Spectral Angle Mapper. The smaller the spectral angle, the closer is the agteement in spectral shape. 
In general, spectral polishing and wavelength optimization yield comparable and substantial 
improvements in accuracy, with the best results usually obtained by combining the two. The 1 omd and 5 
cm-' results are very close and are virtually identical when polishing is used. 
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Figure 5. Spectral Angle Mapper Comparison of ground truth spectra with 
atmospherically corrected spectra from the AVlRlS Stennis scene (angle in 
radians). 

Also appearing in these comparisons are unpolished calculations from ACORN Version 3.12. Its 
LUT derives from older MODTRAN4 band model parameters that omitted collisional bands of 0 2  and 
contained a 940 nm water band strength from HITRAN 1996 (Rothman et al., 1998) that is around 12% 
too weak (Giver et al., 2000). At long wavelengths the ACORN and FLAASH results are similar, but at 
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short wavelengths the effect of the improved spectral parameters in FLAASH’s newer version of 
M0DTRAN.I. can bt: seen. Interestingly, the shifted wavelengths do not consistently improve the 
ACORN results, perhaps because they may exaggerate the water vapor overestimation that would result 
from the incorrect 940 nm band strength. We also tried ACORN’S artifact removal algorithms, but the 
results turned out to be much less accurate and are not shown. 

4. CoNcLusIopIJs 

The FLAASH results presented here, together with previous work by a variety of investigators, 
confirm that a state-(of-the-art atmospheric correction algorithm is capable of generating accurate surface 
reflectance spectra from hyperspectral imagery, at least under conditions of clear to moderate 
aerosolhaze, low to moderate water vapor, and nadir viewing from any altitude between the ground and 
the top of the atmoslphere. 

accuracy under more stressing atmospheric and viewing conditions. In addition to the surface visibility, 
detailed aerosoVhaze properties need to be retrieved for heavy aerosol conditions, for viewing at far off- 
nadir angles, and for achieving the accuracy needed for remote sensing of water bodies, including 
Ipi3thpe.t~ aind measurement of water composition and bottom properties. Knowledge of both the 
surface visibility and the single-scattering albedo is required for the simultaneous accurate correction of 
dark surfaces, which are sensitive to the backscatter term L *a, and of bright surfaces, which are sensitive 
to the transmittance factors in A and B. Possible uncertainty in the scattering phase function, which 
controls the ratio of forward to backward scattering, further complicates the analysis. A key test of 
aerosol and haze models is their ability to predict downwelling radiance. There have been reports of 
llower-than-expected diffuse downwelling radiance in clear skies (Kato et al., 1999), which has been 
ascribed to aerosol “anomalous absorption;” however, both the observations and explanation remain 
controversial (Charlock et al., 2001). Model refinements that address this issue should enable hrther 
improvements in atmospheric correction accuracy. 

Many challenges remain, including developing real-time processing capability and achieving high 
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DISCRIMI~ATIION AND BIOPHYSICAL CHARACTERIZATION OF BRAZILIAN CERRADO 
PHYSIOGNOMIES WITH EO-1 HYPERSPECTRAL HYPERION 

Tomoaki Miura, Alfred0 R. Huete,2 Laerte G. Ferreira; and Edson E. Smo4 

1. Introduction 

The savanna, typically found in the sub-tropics and seasonal tropics, are the dominant vegetation 
biome type in the southern hemisphere, covering approximately 45% of the South America. In Brazil, the 
savanna, locally known as “cerrado,” is the most intensely stressed biome with both natural environmental 
pressures (e.g., the strong seasonality in weather, extreme soil nutrient impoverishment, and widespread fire 
occurrences) and rapid/aggressive land conversions (Skole et al., 1994; Ratter et al., 1997). Better 
characterization and ldiscrimination of cerrado physiognomies are needed in order to improve understanding of 
cerrado dynamics and its impact on carbon storage, nutrient dynamics, and the prospect for sustainable land 
use in the Brazilian cerrado biome. 

Satellite remote sensing have been known to be a useful tool for land cover and land use mapping 
(Rougharden et al., 1991; Hansen et al., 2000). However, attempts to discriminate and classify Brazilian 
cerrado using multi-spectral sensors (e.g., Landsat TM) and/or moderate resolution sensors (e.g., NOAA 
A.WM NDVI) have often resulted in a limited success due partly to small contrasts depicted in their multi- 
band, spectral reflectance or vegetation index values among cerrado classes (Seyler et al., 2002; Franqa and 
Setzer, 1998). 

In this study, we aimed to improve discrimination as well as biophysical characterization of the 
B8razilian cerrado phlysiognomies with hyperspectral remote sensing. We used Hyperion, the first satellite- 
based hyperspectral imager, onboard the Earth Observing-1 (EO-1) platform. 

2. Materials and Methods 

Our study sites were located in the Brasilia National Park (BNP) in. the northern Federal District, 
Elrazil (S 15” 40’, W 48” 02’) (Figure 1). This preserved area contains several of the major “core” cerrado 
vegetation associatiolns (physiognomies), including cerrado grassland (camp limpo), shrub cerraclo (campo 
sujo), wooded cerraclo (cerrado ralo), cerrado woodland (cerrado tipico), and gallery forest (mata de galeria) in 
the order of increasing arboreous cover (Ribeiro and Walter, 1998). 

The first four major cerrado physiognomies described above were structurally characterized using 
ground transect surveys. At each site (physiognomy), landscape were vertically stratified into an arboreous 
(shrubdtrees), overstory layer and herbaceous understory layer dominated by grasses, in addition to a 
background soil/litter layer. Component cover fractions of each layer were then measured using a pin-point 
technique along a randomly-chosen 100-m transect. The landscape components considered in the 
measurements were: photosynthetic vegetation (PV), woody materials, and crown covers for the overstory; PV 
and standing litter for the understory; and soil and surface litter for the background surface layer. 
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Figure 1. Location of the study area (Brasilia National Park). 

Hyperspectral Hyperion data were acquired over the field sites on July 20, 200 1 during the field 
measurement campaign. Hyperion collected full range spectral data (400-2400 nm) in 1 0-nm intervals (full- 
width at half maximum = 10 nm) at a 30-m ground spatial resolution. The data were preprocessed and 
radiometrically-calibrated into a Level 1A product at the TRW Hyperion data processing facility. The data 
were further processed to correct for several known artifacts in the Level 1A products and then converted to 
ground reflectances using a MODTRAN4-based atmospheric radiative transfer code (ACORN4, 
http://www.imspec.com/). The atmospherically-corrected Hyperion data were compared to airborne 
spectrometer (Analytical Spectral Devices, Inc., Boulder, Colorado) data collected at a large dry pasture field 
in the north of BNP near the Hyperion overpass time, but on the next day. An aircraft was flown “below the 
atmosphere” at 150 m AGL. The airborne data were calibrated to ground reflectances by taking a ratio to the 
readings made over a calibrated Spectralon white reference panel before and after the flight. The Hyperion 
and airborne spectrometer data were statistically similar, indicating good accounting of atmospheric 
constituents in the Hyperion correction. 

Three optical measures of surface biophysical conditions which took a full advantage of hyperspectral 
remote sensing were employed and applied to the atmospherically-corrected Hyperion data. First, the 1 st- 
order derivative-based green vegetation index with a baseline correction (1 stDGVI) which measures the 
amplitude of the red-edge feature and thus the amount of PV was computed as (Elvidge and Chen, 1995; Chen 
et al., 1998): 
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e=1 

where p'(h,) is the 1 sit-order derivative reflectance (approximated by the reflectance difference) at the 
wavelength, A,, p:(h,) is the local baseline value at the cut-on wavelength, 3al. The cut-on and cut-off 
wavelengths were empirically determined to be -640 nm and -800 nm, respectively. Elvidge (1988) proposed 
the ligno-cellulose vegetation (absorption) index to map spatial variability of NPV using 1987 AVIRIS data, 

plied and computed as the reflectance difference between 2200 nm and 2330 nm. Finally, 
we applied the shortwave infrared (SWIR) spectral unmixing to capture spatial variability of PV, NPV, and 
sails simultaneously in the Hyperion scene (Asner and Lobell, 2000). Details of these methods were provided 
in the corresponding references. 

Pixels over tlhe field sites were extracted from the atmospherically-corrected Hyperion image. GPS 
coordinates of the sites and low-altitude aerial photos were used to locate the sites in the image. In addition, 
another set of pixels were extracted over gallery forest, cultivated pasture, and lake water (Santa Maria Lake at 
the center of BNP) fair comparisons. 

3. Results 

3-1. Field Measrareinents 

Measured landscape component cover fractions of the four cerrado physiognomies as well as the field 
site locations are summarized in Table 1. The herbaceous layers were dominated by senescent tissues, while 
the shrub/tree layer were still green at the time of this field campaign. As used for the basis on many cerrado 
classification schemes (e.g., Ribeiro and Walter, 1998), the crown cover fractions increased from the cerrado 
grassland to cerrado .woodland sites with a discrete increase between the shrub cerrado and wooded cerrado 
sites. There was a general increase (decrease) in the PV (NPV) cover fractions with an increase in the crown 
covers, except for the wooded cerrado site. Two of the four sites, the wooded cerrado and shrub cerrado sites, 
were dominated by the species that grow quickly after burnings and that remained green, which resulted in a 
larger green cover in the wooded cerrado site than the cerrado woodland site. Nearly no soils were exposed at 
any of the sites. 

Table 1. kandscapie component cover fractions of the cerrado physiognomies measured in the field sites 

Green ('v NPV (YO) soil ("/.I 
( Y O )  

Crown (YO) Site Name Site Location 
(Physiognomy) (Lat./Lon.) 

Cerrado Grassland N15"39'55"/ W4S001'52" 1 18 82 < 1  
Shrub Cerrado N 15"35'20"/ W4S000'25" 3 23 76 < 1  
Wooded Cenado N15"36'26"/ W4S0O1'47" 10 34 63 3 
Cerrado Woodland N15"43'58"/ W4S"OO'll" 13 30 69 < 1  

Y I  

3-2. Hyperion Reflectance Data 

The Hyperion hyperspectral signatures clearly depicted the differences between pasture, gallery forest, 
and the other four cerrado physiognomies (Figure 2). Spectral signatures in the visible and near-infrared (NIR) 
regions for the cerrado physiognomies showed small differences, but with the red-NIR reflectance contrast 
corresponding well with green cover fractions (Figure 2, Table 1). The reflectance values at the shortwave- 
infrared (SW[R) region (1400 - 2500 nm) and the ligno-cellulose absorptions at 2090 nm and around 2330 nm 
wavelengths showed larger differences among the cerrado physiognomies (Figure 2). The cerrado 
physiognomies with less crown cover (and, thus, more NPV cover) showed higher SWIR reflectances and 
deeper ligno-cellulonse absorpotions (Table 1). 
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Flgnre 2. Mean Hyperion reflectance spectra for the four cerrado physiognomies: cerrado grassland 
(CG), shrnb cerrado (SC), wooded cerrado (WC), and cerrado woodland (CW). Mean Hyperion spectra 

for lake water @W), gallerg forest (GF), and cmltiv.ted pasture field (PA) were also plotted for 
comparisons. 

3-3. Correlative Analysis with Biophysical Data 
10 l l ( , l I ( l l  

In order to more quantitatively analyze these CG 

A W C  
spectral signatures, we focused on two spectral regions that 9 -  0 sc 

namely, (1) the red-NIR transitional region (650-800 nm) 
corresponded well to relative differences in physiognomies, 

8 -  
and (2) the SWIR2 spectral region (2000-2400 nm), and 
performed a correlative comparison of the three optical 
measures described above with cover fractions. 

- 
In Figure 3, the 1st-DGVI values were plotted 

against the green cover fractions. me Ist-DGVI and green 
(PV) cover fractions correlated very well. 

- 

- 
Similarly, the ligno-cellulose absorption index for Hypenon: July 20,2001 

2330 nm was correlated well with the NPV cover fractions 
(Figure 4). The ligno-cellulose absorption index, however, 16 18 u) 22 24 26 28 30 32 34 36 
had large standard deviations (Figure 4) due most likely to 
the low signal-to-noise ratios of the Hyperion sensor in this 
wavelength region (< 301). 

3 I I I I I I I I I  

PV Cover Fraction (%) 

Fipare 3. 1st-DGVI plotted against 
field estimates of PV cover fractions for 

cerrado physiognomies Fmally, the SWIR nnmixing results from the Hyperion 
image were compared to an existing vegetation map for BNP. 
The regional fractional estimates were consistent with the vegetation map (Figure 5). The largest values of 
green vegetation fractions corresponded well to the occurrences of gallery forest along stream limes. Similarly, 
relatively large values of green vegetation fractions corresponded spatially well with wooded cerrado and 
cerrado woodland, while c d o  grassland and shrub cede areas were consistent with large NPV fractions. 
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4. Conclusions and Discussions 

In this study, we evaluated the utility of 
hyperspectral m o t e  sensing in biophysical 
characterization and discrimination of cerrado 
physiognomies by taking an advantage of a newly 
available satellike-based imaging spectrometer, EO-1 
Hyperion. The atmospherically-corrected hyperspectral 
reflectance of Hyperion clearly depicted such diagnostic 
absorption features of vegetation as the red edge, red- 
NIR transition, and ligno-cellulose absorptions. 
Likewise, these spectral features were found to be 
corresponding well with biophy8ical characteristics (is . ,  
lmdscape compomnt cover fractions) of cerrado 
physiognomies. As the cerrado physiognomic classes 
are based on differences in the proportion of a grass 
understory and tredsbrub overstory layer, the cover 
component fktional estimates of green vegetation, 
NPV, and soil with the SWIR spectral unmixing 
resulted in not only biophysically characterizing, but 
also discriminating cerrado physiognomies. These 
preliminary analyses showed a great potential of 
hyperspectral remote sensing in biophysical 
c h a r a c e o n  as well as discrimination of the land 
covers in the Brazilian cerrado. 
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Figure 4. Ligno-cennlose absorption index 
plotted against field estimates of NPV cover 
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Figure 5. Color composite of green Vegetation (red), total litter (preen), and bare soil (blue) fractions in 
comparison to a field-based vegetation map (M. Ferreira, Universidade de Brasilia, personal 
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ANALYSIS OF AVIRIS DATA FROM LEO-15 
USING TAFKAA ATMOSPHERIC CORRECTION 

Marcos J. Montes,* Bo-Cai Gao,? Curtiss 0. Davis,* and Mark Moline5 

1 INTRODUCTION 

data from aircraft and satellite platforms. The algorithm allows quick atmospheric correction of hyperspectral data 
using lookup tables generated with a modified version of Ahmad & Fraser’s vector radiative transfer code. During 
the past few years we have extended the capabilities of the code. Current modifications include the ability to account 
for within scene variation in solar geometry (important for very long scenes) and view geometries (important for 
wide fields of view). Additionally, versions of Tafkaa have been made for a variety of multi-spectral sensors, 
including SeaWiFS and MODIS. In this proceeding we present some initial results of atmospheric correction of 
AVIMS data firom the 2001 July Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) at LEO-15. 

We previously developed an algorithm named Tafkaa for atmospheric correction of remote sensing ocean color 

2 BACKGROUND 
Over the past two decades, atmospheric correction algorithms for application to case 1 waters (Le., clear, deep 

ocean waters) have been developed by Howard Gordon’s research group at the University of Miami, Florida. The 
complexity of these algorithms has increased greatly with time- fiom the early single scattering algorithm used for 
CZCS (Gordon, 197831 to the present more complete multiple scattering algorithm for SeaWiFS (Gordon & Wang, 
1994). For the operational SeaWiFS algorithm, a simplified two-layer atmosphere system, Le., aerosols being 
confmed in the bottom boundary layer and atmospheric gaseous molecules being located in another layer above the 
aerosol layer, is assumed. An aerosol model and an aerosol optical depth are derived fi-om channels located centered 
at 0.76 and 0.87 pm by assuming water-leaving radiances to be zero in that spectral range. A sophisticated lookup 
table procedure is used for the aerosol retrievals. The atmospheric path radiances in the visible are predicted based 
on the derived aerosol information. The difference between the measured radiances above the atmosphere-ocean 
system and the predicted path-radiance is the water-leaving radiance transmitted to the top of the atmosphere. 

However, this approach does not work for some ocean environments. Over a bright sand bottom, a turbid 
coastal environment, or a coccolithophore bloom the water-leaving radiances in the 0.66-0.87 pm range are typically 
not close to zero. In thie former case, reflectance by bright ocean bottoms in optically shallow water causes much 
more water-leaving radiance at these wavelengths than is measured in open oceans with similar water types. In the 
latter cases, this is due to scattering by suspended materials. Under these conditions, the channels in this spectral 
region have very limited use for the retrieval of information on atmospheric aerosols. The algorithms of Gordon 
( 1  997) and Fraser et al. (1997) derive aerosol infamation fiom channels in the 0.66-0.87 pm spectral range. These 
algorithms cannot be easily adapted for the retrieval of water-leaving radiances over coastal waters. In view of this 
situation, we have designed a different retrieving algorithm that can use channels in longer wavelengths, in addition 
to these channels, to derive aerosol information. 

Since the liquid water absorption increases rapidly as a function of wavelength (Wieliczka et al., 1989), one can 
assume that the water-leaving radiance is zero at long enough wavelengths, even in turbid waters or aver bright, 
shallow bottorns. In this case, one can use two or more of the atmospheric transmission window regions near 0.865, 
I .04, 1.24, 1.64, andor 2.25 pm in order to determine the aerosol type and optical depth. Ow Tafkaa aerosol lookup 
tables include all of those wavelengths, in addition to several in the VNIR portion of the spectrum. The tables were 
calculated with Ahmad & Fraser’s (1982) radiative transfer code that includes all orders of scattering, and 
components of polarization. The lower boundary condition is a rough ocean surface with capillary wave distribution 
as described by Cox Cz Munk (1954), as well as the effects of foam. The tables were calculated at 14 wavelengths 
and 3 wind speeds. There are 10 aerosol optical depths, 5 overall aerosol models, each of which has 5 size 
distributions (Le., relaitive humidities). The geometrical grids have 9 solar zenith angles (eo), 17 view zenith angles 
(19, and 17 relative azimuth angles (A@).  The calculations were output at 9 sensor altitudes, and all thie calculations 

* Remote Sensing Division, Code 7232, Naval Research Laboratory, Washington, D.C. 20375 (corresponding 
author: Marcos.Montt:s@NRL.Naw.mil) 

Remote Sensing Division, Code 7232, Naval Research Laboratory, Washington, D.C. 20375 
1: Remote Sensing Division, Code 7203, Naval Research Laboratory, Washington, D.C. 20375 

Biological Science Dept., California Polytechnic State University, San Luis Obispo, California 93407. 
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assume a surface at sea-level. A thomugb description of our algorithm may be found in Gso et al. (ZOOO), and 
modifications are descriid in Montes ef al. (2001) and Montes et al. (2003). 

3 OVERVIEW OF THE LEO-15 SITE 
The study site was the area in and around the Long-term Ecosystem Observatory in 15 m of water (Le., 

LEO-15). This site is in the middle ofthe Middle-Atlantic Bight, off the coast ofNew Jersey, as shown in Fig. 1. 
The principal moorings are in abrvut 15 m of water, and are about 22 km northeast of Atlantic City, New Jersey. The 
presence of the moorings and other underwater instmmentatiOn led to LEG15 becoming one of the diagnostic data 
sites used by the SIMBIOS project Mnch of the of the area is very shallow, with depths of z < 10 m even a few 
kilomf~ers offshore, as can be seen in Fig. lb. The river outflow, tidal action, and the shallow water lead to the 
ubiquitous presence of suspended sediments throughout this area. Fmthermore, high nutrient conceutmtions from 
river outflow and frequent episodic upwelling in the shallow system, allows for the rapid growth and accnmulation 
of phytoplanktoa in this rn 

Figure 1. a) A map of New Jersey, with an inset showing the m t e  
to the right. b.) A bathymettic map showing the IoCatiOn of the LEO-I5 research area in 
relation to various geographic locations. 
Obswration Lab, Institute of Marine and Coastal Sciences, Rutgers Univmily.) 

image i s  courtesy of the Coastal Ocean 

In July and August 2001, as a part of the HyCODE, a mult-iastitutiion collaboration measured owan Properties 
with a number of instruments dcployed in the space, air, on the water's mfiw, and in the water in and around 
LEO-15. On July 31,2001, hyperspe&al and multispectral observations were obtain4 as well as measuTBment8 
from 5 mead vessels and a number of in-situ autonomous system. Imaging data at vtnying GSD was obtained 
from the multi-spectral sensors SeaWSS and MODIS (-1 Ian GSD), as well as the hypaspectral insttuments 
AVIRIS (-17 m GSD), PHIUS-2 (-9 m GSD), and PHILLS-1(-2 m GSD). The varions in-water and shipboard 
measurements provide us with the tools to perform closure experiments. In-water depth profiles of absorption and 
scstteriag allow us to compute fofward models to compare with the water-leaving radiance measurements derived 
with Tafkaa, as well as allowing us to compare. with shipboard meaSurementS of remote-sensing reflectance. 

The MODIS and SeaWSS apparent reflectance images Wig. 2) present a snapshot overview of the region 
around LEO-15 at -1624 and 18:OO GMT (Le., about 40 minutes before and 55 minutes after local solar noon at the 
LEO-I5 site), respectively. For this subsection of the MODIS w e ,  geometries were 21.8" < 6 < 23.8' and 
33.3'< B < 42.3O. Likewise, for the subsection of the SeaWSS image, geometries were 23.4' < 6 < 25.V and 
49. lo< B < 55.4". Both land (at the left) and clouds (lower right corner) have been masked in these images. 

makes up only a small portion of the images in Fig. 2. The AVIRIS data consists of six runs during the local 
morning, Le., from 13:47 GMT to 1449 OM" (~l0731tOlp03-~[2-71). During tbat time, the solar zenith angle 
wied from 46.7' to 36.2O. For the mostly level flight of the ER-2, the AVIRIS images had the typical -30° wide, 
nadir-oriented field of view. Figure 2 shows five of the six runs; run 103 evenly overlaps runs 102 & 104, and is 
omitted from the mosaic. The start and stop times, as well as the values for the solar zenith angle, solar azimuth 
angle, and headiog at the center of the flight lines are listed in Table 1. The AVIRIS flight lines were planned to 

The July 3 1,2001, AVIRIS apparent reflectance mosaic shown in Fig. 3 covers the entire region of Fig. Ib, but 
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Figure 2: MODIS (left) and SeaWiFS (right) images of similar areas of the New Jersey coast around the LEO-I5 
site. Both images show observed reflectance, i.e., nL0d(&l$ from 2001 July 31. The MODIS image (channels 13, 
12, and 9) was obtained about 1624 GMT, and the SeaWiFS image (channels 6,5 ,  and 2) was obtained about 18:OO 
GMT. Delaware Bay and Cape May, N.J., are easily recognized in the mid-lower left portion of each image. Neither 
image has been geometrically corrected. 
overlap at the edges, to be mostly parallel, and to fly into or out of the sun to reduce the specular reflection of the 
direct solar beam &om the ocean surface. Additional AVIRIS flights were obtained beginning 24 hours later on 
August 1,2001 (rOlOSOltOlpO3~rO[2-7]), along essentially the same flight paths. The August 1,2001, data set bas 
some offshore clouds in it, and was not studied for this paper. This area was also previously imaged in 1998 using 
AVIRIS (f980712tOIp02-rO3) along a ilight lime with very similar parameters to f010731tOlp03-rO3. A close 
examination of the AVIRIS mosaic shows that the features on the land do not quite overlap in neighboring runs. The 
georectifcation will be improved once we obtain the lOHz navigation fies for each of the flight lines, and will be 
necessary for some comparisons with data obtained from instruments in the ocean. 

In comparison with Fig. 2, the MODIS and SeaWiFS images present a snapshot of the whole region, and allow 
for very uniform lighting conditions across the image since& and 0 change very little across these sub-images, and 
even less over the smaller area spanned by the AVWS mosaics. In the AVIRIS mosaic one can easily see the 
lighting variations on the different runs, and even cross-track lighting variations withi  a run. On the other hand, the 
much smaller GSD of the AVIRIS image allows us to see many features in the coastal waters, estuaries, and bays 
that are not resolved in the MODIS and SeaWiFS images. The hyperspectral nature of AVIRIS allows researchers to 
determine aerosol parameters, as well as the promise of being able to derive in-water parameters such as bottom 
classification and bathymetry (Mobley et al. 2002; Lee et al. 2001), work that typically cannot be done with large- 
GSD multispectral imagers. 

4 ATMOSPHERIC CORRECTION OF THE AVIRIS SCENES 

latest version of Taflraa, wbicb allows for more exact corrections of solar and view geometry, as described in 
Montes et al. (2003). We assumed the pixel-to-pixel angular separation was 0.8715 milliradians, and that AVIRIS 
was mounted so that the center of the scan was nadir viewing. There are small deviations in roll and pitch that affect 
the pointing of the sensor (and therefore the view geometry); these have been ignored at this point. The solar zenith 
angle was computed for the center of each 614 sample line of data using the 1 Hz updated values of the latitude, 
longitude, and time, and assuming a flat surface, so the solar zenith angles change only every 12 limes, which is 
sufficient for a scene this size. 

We are in the process of correcting the AVIRIS scenes for atmospheric effects. For this work, we are using the 
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Figure 3. A mosaic of the AVIRIS data tiom 2001 July 3 1, excluding run rO3 since it overlaps parts of runs 102 and 
rO4. The times, headings, and solar geometry for each flight lme are listed in Table. 1. This RGB is made from 
apparent reflectance [p,=.~(j&J] maps at 664,548, and 442 nm. The colors have been stretched to emphasize 
the features in the deep water. The georectification for this image used the AVJRIS provided *.igm files. 

Table 1. The times and geometric information for the AWNS runs over the LEO-I5 site on 2001 July 31. 6, is 
the mean solar zenith angle, $ais the mean solar azimuth angle, and @,is the mean heading for each run. 

As mentioned previously, we must assume that L, = 0 for certain wavelengths in order to derive the aerosol 
parameters 60m the data. False-color RGB images constructed from combinations of the aforementioned channels 
can assist in the choice. Ideally, we choose 3 or 4 c h e l s  in which there is no variation in radiance that can be 
associated with in-water features, as well as being the bluest channels available (since the solar irradiance, and hence 
the measured signal, decreases as the radiance increases in the NIR and SWIR). 

For this example, we show the results 60m run 4, scene 5 (~1073ltOlpO3~rO4~s05), a region associated with 
the konts east-southeast of Great Bay in run 04 (see Figs. 1 & 3). The images both before and after atmospheric 
correction are shown in Fig. 4. The ER-2 was flying from the top of the image to the bottom of the image, and the 
sun was about 8' to the right of the plane (Le,, on the left side of the image). In both images, it is easy to see a wave 
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pattern due to swells, and it is more prevalent on the sunward side of the image. In this example, we use a version of 
Tailt8a that determines aerosol properties at each pixel, using the NIR/SWlR windows. The output image is on the 
left side of Fig. 4., output spectra t b m  the labeled areas are shown in Fig. 5. The output image shows wave features 
that am more prominent than in the input scene. The reason for this is quite simple: the hrighter swells are 
interpreted as heing a different aerosol, usually one that is more optically thick. Suhtracting this (wrong) aerosol 
!2om the observed spechum give a result where because of the large swell pattern, much of the output spectrum is 
negative. In this w e ,  the best approach is to either input the aerosol type from measurements made at the time of 
the overflight, or to determine the aerosol parametus from select pixels in clear water that avoids the swells. Either 
approach may be used with Tafkaa 

Figure 4. Apparent reflectance image of non-georectified m04, scene05 before atmospheric correction 
(left), and the same image after atmospheric correction (right). In both cases, the bands used to construct 
the RGB image are the same as in Fig. 2. The land has heen m k e d  in each image. Slopes of swells are 
ohvious in both the uncorrected and corrected images, and are discussed in the text. 

Having said that, there are many regions that return quite reasonable water-leaving reflectance &) spectra, as 
shown in Fig. 5 .  The chlorophyll fluorescence peak is apparent at about 0.685 )rm in all the spectra, indicating a high 
level of phytoplankton. The brightest spectrum (B) shows a small featme at about 0.810 pn that is due to a local 
minimum inthe liquid water absorption spechum and theeefm indicates the presence of very W o w  water or 
extremely high levels of suspended sediments in the top few meters of water. 

5 DISCUSSION 
Atmospheric correction of aquatic scenes is quite challenging since we must subtract most of the observed 

signal in order to obtain the water-leaving reflectance. Indwd, in the NIWSWIR spectral regions we subtract all of 
the ohserved radiance since we assume the ohserved signal in this portion of the spectrum is entirely due to the 
atmosphere and specular reflection due to *light Stringent requirements for spectral and radiance calibration 
become very important in this environment. At such low light levels we see artifacts from the sensor, as well as 
artifaas in the method (Le., improperly corrected swells). Research is ongoing in determining the best treatment of 
swells. Masking swells is an option, but might remove too many pixels from some scenes. Applying a uniform 
aerosol o w  the scene avoids selection of the wrong aerosols over swells, but it does not comctly account for the 
varying specular reflection over the swell's slopes. 
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Introduction 

At a very small scale the Earth’s surface is heterogeneous, but the spatial resolution of current 
satellite and airborne sensors gives the appearance of homogeneity. This is an artifact of digital sensors 
that integrate the signal over well-defined instantaneous angular fields of view and spectral ranges. 
Because of limitations in spatial resolution, cursory examination of remotely-sensed imagery data leads to 
the conclusion there is a significant amount of redundant information, i.e., there are many similar pixels 
(picture elements) representing homogenous materials. Because so many pixels have similar spectra, 
finding anomalous pixels is a non-trivial problem. 

to group spectrally similar pixels together to the exclusion of anomalous pixels, i.e., separate the many 
from the few, Most Classification methodologies do not easily lend themselves to the extraction of 
ainomalous pixels. The reason for this is that these general classification algorithms address the relatively 
simple problem of analyzing the majority of the pixels. Nonetheless, it is useful to examine general 
classification approaches in the context of the method detailed here for anomaly detection. 

The goal of anomaly detection is to find pixels that are significantly different from the majority of the 
pixels in an image, Le., separate the few from the many. The definition of anomalous is rather arbitrary, 
but it can be expressed statistically, i.e., 20, or standard deviations, from the mean of a population with an 
assumed distribution, or merely as a proportion of the whole dataset, Le., representing only <<1 % of the 
whole, etc. 

Local anomaly detectors generally consider only the surrounding pixels to determine the nature of a 
pixel and are susceptible to noise, e.g., RX anomaly detection (Yu, Reed, and Stocker, 1993; Yu, et al., 
1997). Global anomaly detectors evaluate each pixel in comparison to the entire image. The global 
approach generally alleviates problems associated with local variations in data values. 

The purpose of this paper is to explore methods for finding anomalous pixels in AVIRIS imagery. 
Toward this end several approaches are described in detail beginning with the simplest and progressing to 
more complicated techniques. For completeness, a brief overview of finding anomalies using 
conventional supervised classification is also presented. Histograms are introduced first, followed by 
simple statistical measures, and concluding with the use of Self-organizing Maps. 

Significant effort has been spent on classifying pixels in imagery. The goal of image classification is 

Location of Study Area 

The Jet Propulsion Laboratory’s Airborne Visible Infrared Imaging Spectrometer (AVIRIS) was 
flown over the Copper Flat (CF) porphyry copper deposit in the summer of 1998. The CF mine is 8 km 
PJNE of the hamlet of Hillsboro in south-central New Mexico (Figure 1). The CF mine is in the Animas 
Hills and is part of the Hillsboro mining district of Western Sierra County, New Mexico. CF is one of the 
older Laramide porphyry-copper deposits in the Arizona-Sonora-New Mexico porphyry-copper belt 
(McLemsre, et al., 1999). The Animas Hills consist of a horst block just west of the axis of the Rio 
Grande rift underlain by a circular body, nearly four miles in diameter, of andesite. Andesite is a fine- 
grained volcanic igineous rock extruded on the Earth’s surface. The thickness of the andesite and circular 
shape suggest that the andesite is a remnant of a Cretaceous (144-65 million years ago) caldera or 
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collapsed volcano. A relatively small body of quartz monzonite intruded the andesite forming the entire 
CF deposit. Monzonite is a coarse-grained intrusive igneous rock. CF is predominately a low-grade 
hypogene (hydrothermal fluids carrying minerals up from below) deposit with thin veneer of supergene 
(meteoric water percolating from above) enrichment at the surface. The numerous latite dikes radiating 
from the CF quartz monzonite also show significant mineralization. The CF mine produced large 
quantities of gold, silver, and copper since the late 1800s. 

-109 

Santa Fe 

Figure 1 - Location of Copper Flat porphyry copper deposit in New Mexico. 
The deposit is located 15 km west of the town of Truth or Consequences. 

Gypsum (CaS04 * 2(H20)) is an anomalous mineral occurring only in close proximity to the pit filled 
with water at the center of the mine and along some of the streambeds in the Hillsboro district. Gypsum 
occurs as coatings of precipitate on the rocks surrounding the pit and comes from the pit waters. As such, 
gypsum was selected as the target to test the anomaly detection algorithms. 

Finding Anomalies Using Supervised Classification Techniques 

In general, supervised image classification is the process by which a classifier is presented with pixels 
of “known” contents that are used as a guide(s) for classifying other pixels in an image. The classifier 
function is “seeded” with a priori information about particular material types. The classification 
algorithm then determines which pixels are most like the “seed” pixel based on a similarity condition. 
Examples of supervised classification techniques include minimum distance, parallelepiped, mahalanobis 
distance and maximum likelihood. Set membership for these supervised classification techniques is based 
on Euclidian distance, standard deviation values, etc. A major assumption for these types of classifiers is 
that the data is linearly separable, Le., the data is arranged such that a line (or plane or hyperplane) can be 
situated between different data classes. 

Using apriori information for target identification is a useful but awkward method of finding 
anomalies because it is not based on set membership, but the logical negation of set membership. The 
premise of this approach is to classify every known spectrum and tag as anomalous any pixel that is not 
recognized. 

Using a supervised classification approach to identify anomalies requires possessing a spectral 
library. Assuming the spectral library is well-populated, any pixel’s spectral absorption features not 
found in the library are classified as anomalous. The U.S.G.S.’s Tetracorder operates in this manner. 
Tetracorder contains an extensive library of mineral spectra. If Tetracorder is unable to classify a pixel’s 
spectrum, the classification is left blank. This pixel is then considered anomalous. 

Unfortunately, this approach is has shortcomings. For example: if the number of material types 
within an image are not correctly identified prior to processing, then there can be a large numbers of 
pixels omitted because a class was not properly identified. The result is significant uncertainty in 
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determining whether a pixel is anomalous or merely incorrectly selected as a member of a larger group of 
pixels in the image. It is for this reason that unsupervised classification is more appropriate for anomaly 
detection. 

Unsupervised Anomaly Detection 

Global Histogram Technique 
Histograms are graphs describing the frequency of occurrence for members of a dataset. In the 

context of imagery, a histogram graphs the digital number on the abscissa and the frequency on the 
ordinate sxis. Histograms are a central concept in remote sensing because they enable image analysts to 
compress the information in an image into a simple format. One significant use for histograms is to 
enhance digital images through the use of various contrast stretches, Le., linear, 2%, Gaussian, square 
mot, etc. Often, as is the case with the linear and 2% stmtehes, the digital numbers @Ns) with the 
highest and lowest values are linearly translated to the largest and smallest radiometric values, Le., for 8- 
bit data the lowest value is set to 0 and the highest value is translated to 255 with the remaining values 
linearly mapped between these two values. 

For the purpose of anomaly detection, histograms are used in a slightly different manner. The two 
tails of the histogram are the extremes of the imagery DN population with the lower end representing the 
darkest pixels and the upper tail representing the brightest pixels. Pixels that repeatedly occur at the tails 
of histograms represent anomalies. A simple procedure is used to identify these pixels. 

each band is generated and each pixel falling above or below a population threshold is recorded. The 
result is a two-dimensional array corresponding to the image with counts for high and low ends ofthe 
histogram. These images are then further constrained to show the highest number of counts for eacb tail 
of the histogram and a colorcoded image is generated (Figure 2). In the CF imagery, there are known 
anomalous areas of gypsum near the mine pit. Figure 3 shows results of applying the histogram anomaly 
detection for the pit and surrounding pixels with an aocompanying average spectra for surface materials 

First a threshold is arbitrarily selected to mark a pixel as anomalous (< 2%). Next, a histogram for 

adjacent 

Figure 2 

to pit lake. 

- Results of applying global histogram anomaly detector to AWRIS imagery data. Red pixels are anomalously bright, 
blue pixels are anomalously dark. Water in the pit is Mue, gypsum is found in pixels adjacent to pit lake. 
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Figure 3 - Image of mine p l  with average specba for area of red pixels to the right of lake in middle. The absnption feature at 
2208 nm resuits from owtones ofthe sulfate ion restrahlen bands at longer wavelengths. Other red pixels are anomalously 
bright, but contain no gypsum. Red pixels are anomalously bright, blue pixek are anomalousiy dark. 

Simple Statistical Teehniquea 

simple statistics. Most familiar statistical models are based on Gaussian or normal distribution, i.e., a 
bell-shaped curve. The assumptions for a normal distriiution are: 1) most samples for any particular 
dataset are evenly distributed about the mean, or average, for a dataset with proportionately smaller 
numbers of members occurring progressively f d e r  from the mean; and 2) the mode (greatest number of 
samples) and the mean for a dataset are the same. This is the basis for variance and standard deviation (a) 
calculations. If the assumption of a normal distribution is not true, then basic statistical assumptions may 
not be vaIid. Nevertheless, the assumption is u s d y  made that the data have a normal distribution and 
simple statistics such as variance and standard deviation are applicable. This a p p s  to be a reasonable 
assumption for satellite and airborne images of the earth. 

When working with standard deviation calculations it is necessary to know how much of the area 
under the curve (percentage of the sample population) is encompassed by various stan- deviations. 
Values ocourring*la h m  the mean include 68.3% of all the samples; S a  and *3a include 95.4 % and 
99.7% respectively. If an anomalous pixel is described as 1% of a population, then it should have a value 
that deviates more than S a  h m  the mean. 

Using this approach, the difference between pixels with values less than 2a below the mean and those 
values greater than 20 above the mean are separated. The result of applying this approach to imagery is 
shown in Figures 4 and 5. 

A common technique for fmding anomalies in a dataset is to examine the data h m  the perspective of 

Local Anomaly Detertors 
Both the histogram and stand deviation techniques can be applied to an entire image. These 

approaches distinguish global anomalies, but some features can be globally typical yet locally anomalous. 
The way to address these types of anomalies is to constrain comparisons between each pixel and its 
surrounding neighborhood. The process of comparison is achieved by using the standard deviation 
criteria outlined above to the local environment around the pixel of concern. The results of this approach 
are shown in Figure 6. In general the larger anomalies were found by differing kernel sizes, but as 
expected anomalies are scale dependent. Also, the larger the kernel size, the greater the resulting 
anomalies are smoothed. 

bright and dark pixels. Another approach for comparing pixels is to treat p t r a  as vectors in n-space 
and use the Cauchy-Schwarz Inequality (1) to determine the angular distance between spectra. This 
approach has the additional benefit of ignoring differences in illumination 

One of the reasons for color-coding the results in the previous examples is that there are anomalous 
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(1) 
(U,V) mse=--- 
114 1lv11 

Once again kernels of differing sizes are used to adjust compare to the center pixel. Figure 6 
contains the results of this processing. Figures 6 and 7 show a significant decrease in the number of pixels 
considered anomalous with increasing kernel size. 

Figure 4 - Output results from standard deviation with threshold at 2.5 u. Red pixels 
are those with values > 2.5 u: blue pixels have values < -2.5 u. 

Figure 5 -Magnified image of mine pit lake (blue pixels) with surrounding red pixels. 
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Figure 6 - Standard deviation anomalies. A) Resub of performi& local anomaly detection using 3x3 kernel with r2.5u; 6) 
Results of performing local anomaly detection using 7x7 kernel with t2.50. This appmach involves looking at each band and 
accumulating standard deviation information. Another approach to local anomaly detectbn uses daferences in spectral angle to 
compare adjacent pixels. 

Clustering Techniques 
The most common form of unsupervised classification utilizes clustering techniques. Clustering is a 

non-statistical method for grouping similar data. Clustering methods complement supervised 
classification. Most unsupervised classification techniques evaluate the entire image data set and assign 
each pixel to a cluster. There are generally no predetermined limits on the number of clusters. A benefit 
of this approach is the reduced likelihood of missing a coherent group in the classification process. 

Two of the most common unsupervised classification methods are the Iterative Self-Organizing Data 
Analysis Technique (ISODATA) (Tou and Gonzalez, 1974) and K-Means. ISODATA iteratively 
evaluates imagery data based on spectral distance &om predefined nodes. These nodes are treated as 
cluster centers and pixels am included in the clusters based on user specified thresholds defined primarily 
by Euclidian distance or standard deviation values. Afler each iteration, a new cluster mean is computed 
based on the actual spectral locations of pixels. These new means are used as the basis for the subsequent 
iterations. The process continues until change between cluster means falls below a set threshold value. 
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A 
F y e  7 - specbar angles used to compare pixel with su 

threshold& to 1%. pixels at the bottom 

B 
unding neighbors. A) 3x3 kernel threshold& to 1% B) 7x7 kernel 
zoom images correspond to gypsum precipites. 

K-Means calculates initial class means evenly diskibuted throughout the data space. The process 
then assigns each pixel to the closest cluster. Once all the assignments are made, new cluster means are 
calculated, followed by the assignment of all pixels to the nearest cluster mean. This process is repeated 
until the number of user-defmed changes fails to occur. 

Another clustering technique based on neural networks is Kohonen Self-Organiziig Maps (Kohonen, 
1986). A Self-Organizing Map (SDM) is an array (1 or more dimensions) of nodes. Each node is 
composed of a unit vector pointing in a random direction in n-dimensional space. After in-band 
normahtion, multi-dimemional data are presented to each of the individual nodes (Figure 8). 

Using a "winner-take-all'' learning strategy, the node whose vector most closely matches the input 
data is found. This winning vector incorporates, ot adjusts, its vector coefficients (weights) to match the 
input data. As part of the learning strategy, vectors in the nodes nearest the winning node are modified to 
look less like the input vector. In this manner, each node in the SOM internally develops the ability to 
recognize vectors similar to itself. This technique is a form of self-organization, i.e., no extemal 
information is supplied to lead to a classification. 

probabilities for a dataset. Topology preserving means that the original relationships between the data 
Two useful features of a SOM are its topology preserving capability and the automatic generation of 
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points remain intact after processing, This is the desired result when working with hyperspectral data 
because it maintains the spectral relationships between pixels. Secondly, as a SOM evaluates the data it 
spontaneously builds a statistical model, or probability distribution, of the dataset. SOMs perform this 
statistical modeling, even in cases when no closed-form analytic expression can describe the distribution 
(Caudill, 1988). The SOM approach is similar to ISODATA, but it operates in a much more flexible 
manner. Cluster centers move around dynamically to account for topological relations in the dataset. 
Output from the SOM is a series of spectra containing the mean spectra for each cluster group. 

-. . , , . . . . . . r o-c+c-o 

Figure 8 - Kohonen SOM presented with single spectrum input and the resulting 
spectra developed while processing various input spectra. 

During SOM classification the cluster centers constantly adapt themselves to accommodate the 
spectra presented to them. The end result is a cluster center point representing an average spectrum for 
the spectra presented to the SOM for classification. The cluster centers are discretely located in n-space 
such that they can be projected into 2-d space (Figure 9). The actual data points lie on the n-plane at a 
distance from the cluster centers forming a cloud or convex hull (or zonatope enclosure) around the 
cluster centers. Those spectra closest to the cluster center are those that are most abundant while those 
located farthest away are the least abundant. 

Figure 9 - SOM output for unknown dataset projected into wavelength axes11 and 12. Data is arranged around the cluster points 
in a cloud. Anomalous points lie on the edge of the gray-shaded area indicating least amount of similarity to cluster points. 
Lines between cluster centers added for emphasis. 
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After the SOM is built, the spectra are again presented to the SOM for classification. A 2-d map is 
generated with the distance from the nearest cluster center stored in the location for each pixel. A density 
slice of the 2-d map is then created and those points farthest from a cluster center are identified. Those 
pixels with the largest values, i.e., greatest distance from a cluster center, are the anomalous pixels. 

Data Compression via Minimum Noise Fraction 

AVIWS imager~y contains a huge amount of data. A typical AVIRIS data cube contains 614 pixels, 
5 12 lines, and 224 channels totaling slightly more than 170 Megabytes of data. This amount of data 
presents a significant computational challenge even to the fastest computer. It is possible to compress this 
amount of data into a manageable form by employing a Minimum Noise Fraction ( m F )  transform 
(Boardman and Kruse, 1994). An MNF transform is a cascade of manipulations including a translation, 
rotation, scaling and1 another rotation (essentially an affine transform) of the data. 

Stated another way, an h4NF is a series of two cascading principal component (PC) transformations 
rlesulting in a change of basis for the vector space as defined by the number of bands for each pixel in an 
image. The high band-to-band correlation inherent in the original data is what makes the MNF so 
effficient. The net effect of the MNF transform is to compress the variation within the dataset from 224 
bands down to 10-20 bands. Reducing the size of number of bands presented to a SOM for Classification 
significantly increases its sped of operation. The results of applying a SOM to an MNF image to find 
anomalies is shown in Figure 10. 

Alternate Hyperspectral Approaches for Anomaly Detection 

The most widely known anomaly detection algorithm for hyperspectral data is RX (Reed and Yu, 
1990; Yu, Reled, and Stocker, 1993; Yu et al., 1997). The RX algorithm is a variant of the algorithm for 
generating the Mahalanobis distance and is considered a local anomaly detector. Another way to view the 
RX algorithm is as the complement of a Principle Components Analysis (PCA), Le., instead of 
p’erfoming a basis c:hange to maximize the variance into major components emphasis is placed on the 
finding targets in the minor components. Since SOMs are applied to Minimum Noise Fraction (MNF) 
bands to generate statistical models, there are significant similarities between these techniques. 

Discussion 

For hyperspectral imagery, variations of unsupervised classification are possible because methods 
exist for extracting relevant end-members automatically from imagery based on spectral unrnixing (Smith 
et al., 1985; Barnard and Casasent, 1989; Smith et al., 1990; Roberts et al., 1993; Settle and Drake, 1993; 
Foody and Cox, 1994; Van der Meer and de Jong, 2000; Penn, 2002). The basic assumption of spectral 
unmixing is the existence of “pure” pixels (end-members) from which all other pixels in an image can be 
derived by linearly (combining the end-member pixels. While this statement is accurate to a first 
approximation, the uniqueness of end-member pixels is a function of the method of deriving end- 
members. Hnasmuclh as the uniqueness assumption is valid then, based on the method of identifying end- 
members, there is no guarantee that end-members are homogenous pixels for reasons cited previously. In 
all probability each end-member pixel is a combination of materials producing a relatively unique 
integrated signature at the particular resolution of the sensor. 

M-FINDR (Winter, 1999), ORASIS (Bowles et al., 1995), and Aspect-Sentinel and OSP (Harsanyi, 1993; 
Harsanyi and Chang, 1994). These programs generally transform the data into various n-spaces and fit a 
convex hull around the dataset. The apices of the hull are treated as the end-members from which all 
other spectra in the data volume are derived. The logical method for detecting anomalies using this 
approach is to determine which pixels appear not to fit within the hypervolume generated by the 
algorithms. ‘These approaches, while automatic, can generate numerous false-alarms especially with the 
presence of anomalous pixels. 

Several tools exist for automatically finding end-members in hyperspectral imagery datasets including 
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F w  10 - ResuLs of applyiq SOM M copper Flat hnagery. The threshdd is set M 0.01% of 
the output. The most anomakus pixels m rocnd adjamtto the pit We. 

Validation of Anomalia 
Once anomalies are detacted their uniqueness can be validated using supervised classification 

'on (CEM) and Spectral Angle methods. Two such methods include Constrained Energy Mmmuab 
Mapper (SAM).  This verification process is accomplished by providing proposed anomalous spectra to 
both CEM and S A M .  This is nccessaty because both techniques require apriori information to fmd 
q. An average spectrum from the. identified momalous pixels was provided to both ala;orithms. 
CEM and SAM then analyze the image to determine the presence of particular mineral spectra Both of 
these approaches comborate the effectiveness of using SOMs to find anomalous materials (Figure 11). 

. .  . 

Conelmions 
Several methods for anomaly detection including using Self-Or- Maps (SOW) were applied 

to the. AVIRlS imagery of the Copper Flat porphyry "pper deposit to extract anomalies. Copper Flat 
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was selected because it has been mapped extensively and there are several known anomalous occurrences 
of gypsum (CaS04*2(H*O)) near the pit lake in the center of the mine. 

The methods employed include both global and local methods of anomaly detection. These methods 
included using histograms and standard statistical approaches for global analysis. Local anomaly 
detection methods included standard deviation and spectral angle calculations to ascertain whether a pixel 
was anomalous compared to neighboring pixels. Each of these approaches was applied to 
atmospherically corrected data. 

The final method used to look for anomalies involved a Self-Organizing Map (SOM). The results 
from the SOM were slightly more accurate with less clutter as compared to the other approaches. The 
improved accuracy inay have resulted from applying the SOM to data that bad a Minimum Noise 
Transform applied before processing. 

The practical use of SOMs to detect anomalies is clearly demonstrated and has been verified by 
fieldwork. This technique is relatively simple and yields good results. The one drawback is that SOMs 
are not able to separate out different anomalies. A number of anomalous pixels found using SOMs did 
not contain any measurable gypsum instead they were dominated by other minerals. The best practical 
approach is to iteratively use SOMs to locate potential anomalies and use the resulting spectra to classify 
the image. I n  this manner the desired anomalies could be found and less desirable anomalies could be 
eliminated from the processing. 

a b 

Figure 1 1  - Results of applying spectral signatures of anomalous pixels using: 
a) Constrained Energy Minimization (CEM) and b) Spectral Angle Mapper (SAM) 
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THE USE OF AVIRIS IMAGERY TO ASSESS CLAY MINERALOGY AND DEBRIS-FLOW POTENTIAL 
IN CATARACT CANYON, UTAH: A PRELIMINARY REPORT 

Lawrence Rudd' and Erzskbet Merenyi2 

1.0 Introduction 

extensive property damage and loss of life there is a pressing need to go beyond just describing the nature and extent 
o E debris flows as they occur. Most of the research into debris-flow initiation has centered on rainfall, slope angle, 
and existing debris-flow deposits (Costa and Wieczorek, 1987). The Factor of source lithology has been recently 
addressed by studies in the sedimentary terranes of Grand Canyon (Webb et al., 1996; Griffiths et al., 1996) and on 
the Colorado Plateau as a 
significantly more likely to be recent producers of debris-flows than are shales rn which smectite clays d~minate .~ 

Worldwide debris flows destroy property and take human lives every year (Costa, 1984). As a result of 

On the Colorado Plateau shales dominated by kaolinite and illite clays are 

Establishing the location of shales and colluvial deposits containing kaolinite and illite clays in sedimentary 
terranes on the Colorado Plateau is essential to predicting where debris flows are likely to occur. AVIRIS imagery 
can be used to distinguish between types of clay minerals (Chabrillat et al., 2001), providing the basis for surface- 
materials maps. The ultimate product of this study will be a model that can be used to estimate the debris-flow 
hazard in Cataract Canyon, Utah. This model will be based on GIS overlay analysis of debris-flow initiation factor 
maps, including surface-materials maps derived fiom AVIRIS data. 

2.0 Debris-Flow Initiation 

particularly silt and clay, that serves as debris-flow matrix. In Grand Canyon this material is provided by the Hermit 
Shale, a terrestrial shade containing mostly (95%) illite and kaolinite clays (Griffiths et al, 1996). Kaolinite and 
illite-rich shales that have been identified as debris-flow source areas on the Colorado Plateau also have relatively 
high concentrations of exchangeable K' and Mg'' cations and low amounts (<15%) of Na'  cation^.^ Smectite clays 
have the capacity to absorb large amounts of water. One possible mechanism by which smectite clays reduce the 
likelihood of debris-flow activity involves rapid absorption of water during initial wetting. Smectites that have 
absorbed water will swell and seal off underlying areas, effectively stabilizing colluvial deposits by preventing 
further water absorption. 

The rnobility and transport competence of debris flows depends on a source of fine-grained material, 

When a debris flow occurs, sand and smaller-sized particles occupy interstitial spaces in the debris-flow 
s luny ,  increasing the density of the matrix and the buoyant forces that contribute to the suspension of larger particles 
(]Beverage and Culbertson, 1964, Hampton, 1975, Rodine and Johnson, 1976). The clay constituents of Grand 
Canyon debris flows, which provide 2-5 % of the total particles, are 60-80 % illite and kaolinite by weight, 
reflecting the source materials of terrestrial shales and colluvial wedges (Griffiths et al., 1996). Debris flows are 
responsible for creating virtually all of the rapids in Grand Canyon (Webb et al., 1988). Debris flows that travel 
significant distances in Grand Canyon occur most often when the Hermit Shale, or its associated colluvial wedges, 
outcrop at a height of 100 m or more above the river (Griffiths et al., 1996). This association between the Hermit 
Shale and debris flows in Grand Canyon indicates that lithology is an important factor in identifying debris-flow 
source areas. Other factors identified by Griffiths et al. (1996) include drainage area, channel gradient, and aspect of 
drainages that produce debris flows. 

The relationship between the presence of terrestrial shales and an increased probability of debris-flow 
a~ccmence that was established in Grand Canyon has been observed in several other canyons on the Colorado 
!Plateau, notably Cataract Canyon (Fig. 1) and Desolation Canyon in Utah4. Conversely tributaries of the San Juan 
River generally do not produce debris flows because terrestrial shale units have been eroded from the top of the 
Monument Upwarp (Baars et al., 1991). 

Department of Geosciences, University of Arizona (lrudd@geo.arizona.edu) 
Electrical and Computer Engineering Department, Rice University (erzsebet@rice.edu) 
Rudd et al. (unpublished data) describe debris-flow initiation factors on the Colorado Plateau. 
Webb et al. (unpublished data) have studied debris-flow initiation factors in Colorado Plateau bedrock canyons. 
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3.0 Site Description 
Ending more than two hundred miles north of the start of Grand Canyon, Cataract Canyon’s rapids rival 

those of Grand Canyon in steepness and intensity (Belknap, 1996). Forming the sides of Cataract Canyon are late 
Paleozoic sedimentary rocks (Fig. 2). The oldest outcrops found in Cataract Canyon are evaporates of the 
Pennsylvanian Paradox formation. Gypsum outcrops of this formation appear initially at Spanish Bottom and 
become increasingly more visible along the Colorado River between Cross Canyon and Gypsum Canyon. As much 
as 400 feet of Paradox Formation gypsum is exposed in Cataract Canyon (Baars, 1987). 

Approximately 1000 feet of interbedded limestone, shale, sandstone, and chert of the Honaker Trail 
Formation overlay the Paradox Formation at the start of Cataract Canyon (Belknap et al., 1996, Baars, 1987). The 
Pennsylvanian Honaker Trail Formation forms cliffs and steep slopes throughout Cataract Canyon (Fig. 3). These 
cliffs are often covered with aprons of colluvium, composed of debris fi-om rocks closer to the canyon rim. These 
colluvial wedges provide source material for the short-runout debris-flows responsible for creating rapids throughout 
the Cataract Canyon. 

The Permian system in Cataract Canyon starts with the complicated, interfingering Elephant Canyon 
Formation and Hailgaito Shale. These formations unconformably overlay the Honaker Trail Formation in 
Canyonlands and are composed of near-shore marine limestones, dolomite, shale and sandstone (Baars, 1987). 
Shales in both formations contain a high percentage of kaolinite and illite clays (Table 1) and are positioned at a 
sufficient elevation above the Colorado River to give debris-flows originating at this point sufficient gravitational 
potential energy to deliver large rapid-forming boulders to the river. 

Table 1 Semi-quantitative mineralogy by weight percent of clays included in the clay-sized fi-action of Cataract 
Canyon surface materials. 

YO Y O  YO YO YO YO 
Sample Type Illite Kaolinite Montmorillonite Quartz Calcite Other 
Shale - Honaker Trail Formation 14 15 55 2 3 11 

Shale - Hailgaito Shale 35 50 0 7 2 6 
Colluvium 24 48 0 6 1 21 
Debris-flow matrix 21 30 5 9 16 19 

Shale - Elephant Canyon Formation 5 1 10 0 20 12 7 

The Cedar Mesa Sandstone of Permian age forms the capstone on the walls of Cataract Canyon. Cedar 
Mesa Sandstone is a generally light-colored, fine to very-fme grained quartz-rich sandstone generally believed to 
have been deposited in a near-shore marine environment (Baars, 2000). Outcrops of Cedar Mesa sandstone extend 
for five or more kilometers northwest and southeast of the Colorado River in the study area, creating an uneven 
surface of relatively uniform lithology. To the southeast of Cataract Canyon the Cedar Mesa Sandstone is fractured 
by northeast - southwest trending normal faults, creating the Grabens Fault Zone. The proximity of Cataract 
Canyon to a zone of fractured and slumping rocks such as the Grabens Fault Zone is believed to be instrumental in 
providing much of the rapid-forming debris (Baars, 1987) that has been transported to the river by debris flows. 

Debris flows in Cataract Canyon reach the river in one of two ways. First is the occurrence of short-runout 
debris flows that develop in steep chutes cut into the Honaker Trail Formation and overlying Hailgaito Shale and 
Elephant Canyon Formation. Although these debris-flow chutes are relatively short and generally within the 
immediate confines of the canyon, they are nonetheless clearly caused by debris-flow activity and are the main 
source of the debris which is responsible for the formation of rapids in Cataract Canyon (Fig. 3). The role of debris 
flows in the creation of rapids in Cataract Canyon has been questioned (Baars, 1987). Direct observation of source 
regions for the material responsible for the creation of rapids in Cataract Canyon reveal that the majority of rapids 
in Cataract Canyon result fiom the transportation of debris relatively short distances from canyon walls to the 
Colorado River. Long runout debris-flows also occur in Cataract Canyon and are responsible for the formation of 
large debris fans and rapids at the mouths of larger tributaries (Fig 3) ,  such as Range Canyon and Imperial Canyon. 

4.0 Spectra of Surface Materials 

approximately northeast-southwest trending flight lines composed of nine individual images. Samples of the major 
AVIRIS data of Cataract Canyon was collected on November 9,2001 (Fig. 1). This data consists of two 
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clay-containing surface materials in Cataract Canyon were obtained in late-May of 2001. These samples were 
analyzed at Brown University’s RELAB. Figure 4 shows the lab spectra plotted with spectra ofmontmorillonite, 
kaolinite, and illite from the U.S. Geological Survey’s Spectral Library. An obvious feature on the spectra of the 
shale, colluvium and debris-flow matrix materials found in Cataract Canyon is the 1.9 pm water absorption band, 
which matches well in placement and depth with the water absorption band in the illite USGS Spectral Library 
sample. The characteristic double-absorption feature at 2.2 pm readily visible on the Spectral Library sample of 
kaolinite is difficult to see in the RELAB samples (Fig. 4). 

The materials; sampled in Cataract Canyon were dry and very iliable. IIt was not possible to obtain these 
samples in one piece in order to maintain a surface that would accurately match the ground surface exposed during 
the AVIRIS flights. All shale, colluvium and debris-flow matrix samples obtained in Cataract Canyon and sent to 
RELAB were composed of clay, silt, fme sand, and a wide variety of sizes of clay aggregates. Handling and 
transporting these samples changed the nature of their surfaces considerably, which may also have had an effect on 
the usefulness of the lab spectra obtained from the samples. 

The clay mineralogy of the surface materials samples taken in Cataract Canyon was determined by semi- 
quantitative x-ray diffraction at the U.S. Geological Survey in Denver, Colorado. The x-ray diffiaction data 
(Table 1) shows that t’he samples’ clay mineralogy is dominated by kaolinite and illite. Only the Honaker Trail 
Fiormation sample contains significant amounts of montmorillonite. Figure 4 shows that the sample spectra have 
some similarities with the spectra of illite and kaolinite at 1.9 and 2.2 pm. There is also a significant dip in the 
sample spectra. between 2.3 and 2.4 pm, a possible indicator of chlorite. The dip in the 2.3 to 2.4 pm region is also 
shown in the kaolinite and illite spectra. 

5 0  Atmospheric Correction 

ATREM and FLAASIH. The results of the application of both atmospheric correction algorithms are shown for 
diebris flows, colluvium and gypsum in Figure 5. The spectra produced by ATREM show extreme spikes and dips in 
the curves that make the spectra much more difficult to use and necessitate additional corrections. The FLAASH 
corrected data is much more readily used without additional manipulation and is easier to compare directly to lab 
spectra. The differences between the spectra of pixels analyzed using ATREM and those corrected using FLAASH 
were significaint, making the choice of using the FLAASH corrected data obvious 

Atmospheric correction of the AVIRIS images both Cataract Canyon flightlines was performed using both 

6.0 Spectral Classification 
CBassificatioin of the AVIRIS images to map the various clays of interest, is in progress. The class map will 

be one of the GI$ layers that constitute the decision-making model for the assessment of landslide hazard. Training 
sites were chosen in the second AVIRIS image of the frst  flight line flown over Cataract Canyon. The average 
spectra for traming siles containing gypsum, debris flows and colluvium (with kaolinite content), [shale of the 
Honaker Trail Format ion (for montmorillonite content), and shale of the Elephant Canyon Formation (for illite 
representation)] are shown in Figure 6 .  In this figure the spectra are compared directly to USGS library spectra of 
similar materials. Gypsum associated with the Paradox Formation in Cataract Canyon compares very favorably to 
the library spectrum of gypsum. Both spectra show features due to OH stretching modes or H-0-H bending modes 
near 1.0, 1.2, 1.45, 1.55, 1.9 and 2.2 pm (Hunt et al., 1971) that are characteristic to gypsum. Debris-flow deposits 
and colluvium in Cataract Canyon display the double-absorption feature characteristic of kaolinite at 2.2 pm in the 
AVINS spectra. This feature is more pronounced in colluvium than in debris-flow matrix, consistent with the 
measurements shown in Table 1, and with the observation that the total clay content of most debris-flows is smaller, 
and the particle size dlistribution of debris-flow deposits is even more heterogeneous than that found in a typical 
colluvial wedge found in Cataract Canyon. For clay contents, the debris-flow and colluvium spectra are very similar 
to each other, a fact that supports the cause and effect link between these two types of surface materials. The failure 
of colluvial wedges in Cataract Canyon provides the raw material, including clay minerals, necessary for debris-flow 
initiation. 

Debris-flow deposits and colluvium in Cataract Canyon tend to display the double-absorption feature 
characteristic of kaolinite at 2.2 pm and a chlorite signature between 2.3 and 2.4 pm. The fact that the kaolinite 
absorption feature is pronounced in colluvium is consistent with the mineralogy data in Table 1. This absorption 
feature is more pronounced in colluvium, perhaps because the total clay content of most debris-flows is small and 
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the particle size distribution of debris-flow deposits is even more heterogeneous than that found in a typical colluvial 
wedge found in Cataract Canyon. 

7.0 Conclusions 

flow activity at Grand Canyon and elsewhere on the Colorado Plateau. In this physiographic province an abundance 
of clays rich in kaolinite and illite and lacking in smectite, high relief between the Colorado River and a shale- 
containing unit, and a river-corridor aspect that is aligned with the dominant storm track have been shown to 
increase the likelihood of debris-flow activity (Griffiths, 1996). The purpose of this study is the application of 
hyperspectral remote sensing technology to the assessment of surface material clay content in Cataract Canyon. To 
this end AVIRIS imagery of Cataract Canyon has been obtained, atmospherically corrected and preliminarily 
analyzed for patterns in the clay content of the surface materials. 

classification procedure have been found to compare favorably to library spectra of the minerals in the training sites. 
A goal of this study is the production of a map showing the composition of surface materials in Cataract Canyon 
based on the classification of both AVIRIS flight lines of this area. Areas containing kaolinte and illite clays will be 
considered to be at increased risk for debris-flow activity. The combination of a surface materials map and maps 
showing the relief and tributary-stream aspect of Cataract Canyon will provide the basis for a model of the debris- 
flow potential in this area. 

The occurrence of debris-flow activity in Cataract Canyon is believed to have the same cause as debris- 

At this stage the results of the study are promising. The spectra of training sites chosen for the image 
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Figure 1 Color composite of the study area flight l i e s  
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Figure 2 Stratigraphic section of the Canyonlands National Park area. Formations in Cataract Canyon extend from 
the Paradox Formation at river level to the Cedar Mesa Sandstone at the canyon rim (from Hintze, 1988). 
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Rgme 3 VieWftom he east across me ~oioraao mver toward the mouth of Teapot (calf) canyon WIUI Rapid 22 
(Upper Big Drop) in the foreground. The Honaker Trail Formation is exposed ai river level while the top 
one-third of the inner canyou consists of inte.rtonguing Haigaito Shale and Elephant Canyon Fomtion. 
Caprock is Cedar Mesa Sandstone. Note debris fan m Teapot Canyon and colluvial wedges ai base of cliff 
downatream fiom rapid. (Photo Courtesy of Robert Webb) 
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Figure 5 Representative AVIRIS spectra of classification training sites. Plots compare the results of FLAASH and 
ATREM atimospheric correction. The FLAASH correction is noticeably better. 
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bottom of the second column) compared to USGS Spectral Library spectra (second column) for samples 
of gypsum, kaolinite, montmorillonite, illite, colluvium and debris-flow matrix. 
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l,, Introductiom and Summary 

This paper introduces a method for detection of subpixel targets in image spectrometer data cubes. It is based on 
the premise th& we know what the target is and can characterize it in terms of its reflectance spectrum r (A) . 
Furthermore, we assume the target may exist at spatial scales such that it will present itself as a fi-action of a pixel 
and that it may exist i n  a significant number of pixels (more specifically we can't assume that we can insure that a 
significant region of tlhe scene does not contain any targets). We desire a data processing approach that can mitigate 
atmospheric and illurnination effects such that atmospheric correction is not a required prerequisite for the method. 
The approach presented here iiivolves defming a target spectral subspace that is common across the wide range of 
aitrnospheric illumination and viewing conditions that might exist in the scene (i.e., the target subspace is invariant to 
environmental changes within the scene). The target may be manifest at different locations within the subspace but 
is not expected to appear outside the subspace. We then introduce a method to characterize a background subspace 
using the same convex hull geometry used to def ie  the target subspace (i.e., the target subspace and background 
subspace are defied in a common spectral space but ideally there is little or no overlap between the two subspaces). 
We then introduce a subpixel target detection algorithm that is based on how well each pixel spectrumn can be 
described by either a #jet of background basis vectors or a combination of target and background basis vectors. The 
result is a subpixel target detection algorithm that only requires the target spectrum and a radiance image cube (i.e., 
an image spectrometer data set calibrated into sensor reaching radiance). The performance of the resulting algorithm 
is shown for both a HYDICE image and an AVIRIS image. These initial results demonstrate the potential of the 
approach showing vevy good background suppression (low false alarms) and a high degree of target detection. 

21. Approach 

This section presents an overview of the background theory on which this algorithm is based, as well as the 
advances needed to implement a subpixel version of the invariant algorithm. 

2.1 The Invariant Aqproach 

The subpixel algorithm developed here is built on the invariant method for fully resolved target detection 
described by Healey and Slater (1999). The invariant method is based on the assumption that an individual target 
may be manifest over a wide range of spectral values in an image due to illumination and atmospheric variation 
within a scene:. However, even though a target may take on many spectral values the total range of those values is 
small compared to the entire scene spectral space. The goal of the invariant method is to define the subspace of the 
entire scene space that the target may occupy in terms of a relatively small set of basis vectors that span the target 
subspace. The range of possible target vectors can be generated by using the MODTRAN radiation propagation 
model (c.f. Berk et al., 1989) to predict the sensor reaching spectral radiance for the target reflectance vector. By 
changing the inputs to MODTRAN over a range of variables representing the range of atmospheric, illumination and 
viewing eondiitions thiat might occur under imaging conditions, a wide range of potential target spectral vectors can 
be generated. We cam define a set of basis vectors that will predict these target vectors (ie., span the spectral space 
they occupy) according to: 

N 
xi = Tai +ei = x t j a i j  +E; 

j=1 

where x, is the i" MODTRAN generated target vector for the sensor under study, produced by convolving the 
MODTRAN spectral radiance with the spectral response function of each of the k bands, T is a matrix made up of 
N target basis vectors t, , t, is the j" basis vector, a, is a vector of N weights particular to the ith target vector 
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and 
of basis vectors that minimize the sum-squared error expressed as: 

is the residual error. Healey and Slater (1999) used Singular Value Decomposition (SVD) to solve for the set 

C 

SSE = c ( x i  -Tai)* 
i=l 

where c is the number of MODTRAN runs (I 7,920 for the Healey and Slater (1 999) studies). Slater and Healey 
(1998) demonstrated that for a wide range of targets imaged by a 200+ band sensor (e.g. HYDICE or AVIRIS), the 
subspace spanned by variation in atmospheric and illumination variation could be spanned by a small number of 
basis vectors (typically 9 or less). 

For any radiance vector x in the image we can solve for the basis vector weights (a)  according to: 

(3 ) a = T-'x = TTx 

Where we take advantage of the fact that the SVD derived basis vectors form an orthonormal set such that T-' = TT . 
Slater and Healey (1999) used the residual error fi-om this process as a target detection metric for fully resolved 
targets according to: 

E=x-Ta=x-T(TTx)  (4) 

1 

Pixels with small magnitudes of E (ie., ( E ~ E ) ?  ) are well fit by the model (i.e., they look like linear combinations of 
target basis vectors) and can be identified by thresholding an image expressed as the magnitude of the e vectors 
fi-om Equation 4. This method showed very promising results for fully resolved pixels, significantly out performing 
simpler approaches (e.g. the Spectral Angle Mapper (SAM) trained on sunlit targets) for targets in partial and full 
shadow. Regrettably, subpixel targets are not a good match to the model expressed in Equation 4 and an approach 
involving characterization of the background is required. This subpixel detection approach was the goal of Lee 
(2003) and is summarized below. 

2.2 The Maximum Distance (MaxD) method for Basis Vector Selection 

Lee 2003 suggests an alternative method to the SVD for basis vector selection that maintains the basis vectors in the 
native spectral space (i.e., the basis vectors all look like image spectral radiance vectors). This was motivated by the 
need to separate out target from background basis vectors as discussed in the next section (c.f. Section 2.3). The 
range of spectral values a target may assume in the image is again generated by using MODTRAN to predict the 
range of atmospheric, illumination and viewing conditions under which the target might be observed in a particular 
image. For this study only those conditions relevant to the particular image under analysis were included in the 
generation of possible target radiance values. The goal was to push the limits of how the target might appear in the 
particular image but not to exceed those bounds. This should generate a subspace large enough to contain the target 
but hopefully small enough to reduce false alarms. Typically 840 MODTRAN runs were used (compared to the 
17,000 runs used by Slater and Healey (1998) to span the entire possible target subspace (e.g. all seasons, altitudes 
and water vapor, illumination and view angle ranges). The MODTRAN generated radiance vectors were then 
converted into discrete radiance vectors corresponding to the imaged radiance vectors for a particular imaging 
spectrometer by convolving the MODTRAN spectral radiance with the response fractions of the sensors k spectral 
bands. These target spectral vectors can be thought of as occupying some subspace in the scene spectral radiance 
domain (c.f. Figure 1). We seek a simplex that encloses these spectral vectors and postulate that such a simplex can 
be constructed from the extrema of the available data (note this is essentially the same conceptual problem as that of 
finding extrema or end members in an image cube). The largest magnitude vector ( v1 ) is one vertex of the simplex 

and we postulate that the smallest magnitude vector (v2) is another candidate vertex. Note, that rigorously 
speaking, the smallest magnitude vector may not be a vertex of the simplex, however, empirical evidence suggests 
that real data form a cone in spectral space with the apex near the dark point or point of lowest magnitude (c.f. 
Ifarraguerri and Chang, 1999). Thus, we will tentatively use the darkest pixel (v2)  as a vertex of the simplex. If we 
assume the target subspace spans f dimensions, a minimum of f + 1 vertices are required to encompass the 
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siibspace. Lee (2003) .shows that the vertices of the C + 1 element simplex will also be vertices of the C element 
simplex formed by projecting all the data onto the subspace orthogonal to the difference vector between v, and v, 
(Le., the projection that places v, on v,) as shown in Figure 2. Furthermore, the point v, most distance fiom the 
point v,, ( i e ~ ,  the point in the projected space jointly occupied by v, and v,) in this new space must be a vertex of 
~e simplex. By projecting the transformed data onto the subspace perpendicular to the difference vector between v, 
and v,, , the vertices of the simplex in I dimensions will be vertices of an C - 1 element simplex in the new 
subspace. This process can continue until all the vertices of the subspace are located Le., projected to a common 
point. This begs the question of determining how large (Le., what is the dimension C ) is the target subspace. One 
way to determine the dimension is to use the SVD to estimate the dimension C and then find C + 1 vertices. Another 
approach is to find more than enough vertices and then use a method that eliminates any vertex that is a linear 
combination of earlier vertices (Lee, 2003 suggests using a stepwise linear regression (described by Gross and 
Schott, 1996) on the vector made fiom the mean of the target vectors to separate out excess vertices). It is important 
to remember that evert though we select the latter vertices of the simplex in the projected spaces they are merely 
samples fiom the MODTRAN generated target set and once selected we can express the spectral vector in the image 
space units for use as the basis vector. At this point we have simply solved for a set of N target basis vectors in the 
native space and could solve the hlly resolved target detection problem described in Equations 3 and 4. Note that in 
Equation 3 we would need to use the pseudo inverse of T (Le., T#) not TT since our native basis vectors do not 
form an orthonormal set. To solve the subpixel problem we still need to solve for a set of basis vectors to span the 
background subspace. 

.. . .  f .  
. * .  . .  . . . . .  

...... ..... 
. . . . . . . . . .  ..... 

Y' .  .., . . . . .  *. . 

I 1  I 

.... 
*.;.i: .. ..- . .I .... 

:: 

Figure 1. Illustration of potential target spectral radiance values: (a) plots of spectral radiance for the same reflectance spectrum 
viewed through different atmospheres, (b) a Plot of three bands of the data from figure a showing how the target radiance data is 
spread over the radiance: space, (c) a plot of the same data as a and b illustrating that the subspace occupied by the target radiance 
values is actually a small subset of the entire spectral space. 

c 

( 4  (b) 
Figure 2. Illustration of (a) The preservation of vertices of a simplex through projection of a data set onto the difference in two 
vertices of a simplex and (b) the concept of maximum distance determination and sequential projection to find the vertices of a 
simplex spanning the data space. 

243 



2.3 Selectiin of Backgmmd Basis Vector8 

The method for selection of background basis vectors is very Similar to the method used to solve for target basis 
vedors. However, because the data set to be processed is so large (Le., the entire image) the analysis is often more 
manageable Xwe first rednce the dimensionality of the data. First any bands that don't carry information of interest 
are m o d  (e.&, high noise or high atmospheric absorption). Second a trsnsfamaton into a more information rich 
setoffewerbatids is~edusinganapproachliketheMinimMlNoiSeFraction~transformWithhigher 
order bands m a t e d  (cf. Green et al., 1998). This might reduce our data dimensionalities for an A W S  scene 
h m  224 bands to 180 bands, by band rejection, and to 32 transformed bands using the MNF transform. If we m 
the MaxD algorithm de.sCtibed in W o n  2.2 on the transformed image we wuld define a set of basis vectors that 
span the image space. However, there is a good chance that one or more of the. basis v&ors could be contaminated 
by the target signatme. S i e  OUT goal will be to use these basis vectors to effectively snppress the background, 
having background basis vectors that include target chamckmb ' 'cs would be counter produaive. To overwme this 
limitation, we angment the image data set with the native target vectors generated in Section 2.2 a3er transfixming 
them into the MNF space (in practice, it is often easia to also perform the target space MaxD calculations on data 
that has beentransformed into the image MNF space to reduce data dimmionality). The output of this second 
MraD process is a set of basis vectors that span the wmbicd target-background space. As ihtrated m Figwe 3 
any mixed target-backgound pixek should Wl inside the convex hull dasaibed by these basis vectors and will not 
be idedfied by MaxD as a vertex. We thm remove any target vertices h m  the vertices found by the MaxD of the 
wmbii imagetarget data set. This leaves us with a set of vertices ulat should only include background pixels and 
which should span the background subspace. 

Figure 3. Simplex shapes before and after adding target basis vectors b illushates a background vector, t a target vector, and m a  
mixed target-background vector. 

2.4 Snbphel Target Detection Algorithm 

The 6nal detection algorithm uses a g e n e d i d  likelihood ratio to compare how well a spedral vector (pixel) 
can be modeled as a lmear combination of background basis vector to how well the spectral vector (pixel) can be 
modeled as a linear wmbination of target and background basis vectors. A simplified form of this can be express as: 

where i is the MNF transformed version of the pixel under test, B is the matrix made up of background basis 
vectors as c o w ,  b is the vector of best fit weights obtained by modeling 2 as a background, B' is the pseudo 
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inverse of B (i.e.? B# := (BTBr' BT ), M is the matrix made up of combining the target and background basis 
vectors as columns (i.e., the concatenation of B and T) and c is the vector of best fit weights obtained by modeling 
2 as a mixture of target and backgrounds. The numerator of Equation 5 will be small and the dominator large when 
th'e background model is a good fit and vice versa when the target-background model is a good fit. Thus a threshold 
on L that isolates large values can be used as a target detection mask. 

3. Results 

The MaxE:, method of selecting vertices to span the data subspace is essentially the same as the end member 
selection process. To test the method 50 SWIR bands of a reflectance corrected AVIRIS cuprite scene distributed 
with ENVI were analyzed with the ENVI PPI routine (c.f. Boardman et al., 1995) to select candidate end members, 
followed by a matched filter with a reflectance library to find final end members. These results were compared to 
the MaxD results. The results are shown in Figure 4. The slight differences are due to the fact that MaxD was totally 
scene derived and PPI was used with a matched filter applied to the reflectance library with the best-fit library value 
used as the final end member. The two methods show comparable performance, however, the MaxD processing is 
fiilly automated (PPI could be) and faster. One potential limitation of the MaxD approach is that some vertices may 
be extremes because of anomalies or noise in the data set. Meaningful extrema will generally have other points in 
close proximipj. To avoid selecting isolated points the entire first set of vertices can be removed from the analysis 
and the MaxD repeated to generate a second set of vertices. For data with many anomalies this process could be 
repeated until sequential vertices are essentially the same. For the data sets we have studied we have never needed to 
go beyond a second pass. Figure 5 shows an example of how closely several first and second pass vertices compare 
(for non anomalous vertices). Note that slight changes in magnitude are not critical to this process and that the 
spectral shapes are veiy well reproduced (Le., the correlation between the first and second pass spectr,a is very high). 

1% t- ' I  

Figure 4. Comparison o Fvertices selected by MaxD of PPI and a matched filter on library spectra. The original data were 50 
bands of an AVIRIS image of Cuprite, Nevada corrected for atmospheric effects. 
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Figure 5: Comparison of first and second pass MaxD for non-noise pixels 

The overall subpixel target detection was tested against three data sets of increasing complexity. The first test 
used synthetic data. Seven background spectra and one target spectrum from the USGS library were sampled into 
224 AVIRIS like bands and 992 background and eight target background mixtures were produced using a uniform 
random number generator to produce fraction weights. The 8-target pixels had two pixels each of 25, 10,5 and 1 YO 
abundance. The reflectance spectra were converted to sensor reaching radiance using MODTRAN with one pixel at 
each target abundance propagated through a significantly different highly turbid atmosphere. Finally, noise was 
added to each radiance vector to simulate noise observed in an AVIRIS dark field image. The target and 
background subspaces were then generated using the methods described above and the GLR detection algorithm 
applied. The results shown in Figure 6 should show target pixels at locations 100, 150,350,400,600,650,850 and 
900. The second 5% pixel is missed due to the very turbid atmosphere and neither of the 1 % pixels are detected. 
Note, there were no false alarms. 

Figure 6: Detection result for the synthesized mixed pixel data set. Note the high level of background rejection. 
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A more rigorous test was applied to HYDICE imagery of the arm test site containing a number of target panels. 
The imagery was degraded to make the target panel of interest snbpixel (cf. Figure 7). The results show complete 
success for the fow-subpixel target pixels and no false alarms (cf. Figure 8). The ARM site was, however, not very 
stressing since the scene was not very clnttered and the target had a fairly high contrast. 

Figure 7: Original HYDICE image and target panel spechwn (top) and degraded image and fill factor estimates for the target 
panel (bottom). 

Figure 8: Detection image and scan profile of the detection metric for the HYDICE image in Figure 7. 

Finally, an AVIRIS image of a cluttered urban area was used, with the target a reddish brown paint used for 
basketball courts (cf. Figure 9). The reflectance spectrum used was acquired for the single known target using a 
field spectrometer. The scene had a wide range of natural and man-made c h r  including a mixture of 
commerciaVwarehouse and residential neighborhoods to add a wide range of spectral diversity. The results showed 
two target sites. High-resolution air photos were used to evaluate the detections as shown in Figure 9. The first site 
was the basketball conrt where the ground truth data were acquired approximately one year &r the AVIRIS 
overpass. The second detection site was at a tennis court where the perimeter of the court appeared to be painted 
with the same paint used on the basketball court. Also shown in Figure 9 for reference is the approximate sample 
Size for a nominal 2Om AVIRIS pixel. 
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Original AVIRIS 

.e- 

Basketball Court Spectrum 

Figure 9 AVIRIS Results 

4. Conclusions and Recummendations 

The resub shown in the previous section are quite encouraging. They indicate that the MaxD method shows 
potentid as a simple, rapid and ef€iive method for selection of native basis vectors. Note this is the same as an 
end member selection problem so that the MaxD approach could also be used for rapid selection of end members. 
Furthermore, the subpixel invariant method presented here shows pod perfommce against an initial range of data 
sets with high detection rates and low false alarms over the range of targets and backpunds tested. The method i! 
particullarly amactive because the only r e q M  inputs are a known target reflectance spectrrrm and an image cube 
expressed @a spectral radiance. The effects of ahnosphere and ilhnnination are accounted for by the invariance 
process. From one perspective, this simplicity of inputs and the high level of automation of the process are 
signiscant advantages. On the other hand, the current implementation of this approach is limited to detection of 
targets whose reflectance spectrum can be defined in advance and to image sets that can be reasonably calibrated 
into specaal radiance. For the sensors used here (HYDICX and A W S ) ,  the nominal sensor calibration data to 
convert counts to spectral radiance appeared adequate for the targets studied 

Future work in this area needs to address methods to more my automate the process and to test the approach 
against a wider range of targets and backgrounds with aparticular emphasis on low contrast target8 and targets more 
directly influenced by the surround (e.g., partial shadow and tree shine). Ongoing w k  on this approach at RIT is 
concen-g on a more explicit treatment of noise in the algorithm to deal with sensors with signhicant noise 
levels. We itre also investignhgbeaer ways to define the variabiiity in the target space. This effort is focused on 
trying to define the full range of ways the target is likely to appear in the scene to improve target detection without 
generating too large a target space, which is likely to lead to false alarms. Finally, we are investigating methods to 
hybridize the original LWy resolved invariant method and the subpixel method presented here to determine if higher 
pe&amance can be achieved with a hybrid version. 
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1. INTRODUCTION 

Absorbing the electromagnetic radiation in several regions of the solar spectrum, C02 plays 
an important role in the Earth radiation budget since it produces the greenhouse effect. Many 
natural processes in the Earth’s system add and remove carbon dioxide. Overall, measurements 
of atmospheric carbon dioxide at different sites around the world show an increased carbon 
dioxide concentration in the atmosphere. At Mauna Loa Observatory (Hawaii) the measured 
carbon dioxide increased fkom 315 to 365 ppm, in the period 1958-2000 [Keeling et al., 20011. 
While at tlne large scale, the relationship between C02 increase and global warming is 
established [IPCG, 19961, at the local scale, many studies are still needed to understand regional 
and local sciurces of carbon dioxide, such as volcanoes. The volcanic areas are particularly rich 
in carbon dioxide; this is due to magma degassing in the summit craters region of active 
volcanoes, and to the presence of fractures and active faults [Giammanco et al., 19981. Several 
studies estimate a global flux of volcanic C02 (34 k 24)106 tsns/day from effusive volcanic 
emissions, such as the tropospheric volcanic plume (Table 1) [McClelland et al., 19891. Plumes 
are a turbulent mixture of gases, solid particles and liquid droplets, emitted continuously at high 
temperature from summit craters, fumarolic fields or during eruptive episodes. Inside the plume, 
water vapsur represents 70 - 90% of the volcanic gases. The main gaseous components are C02, 
S02, HCI, 142, HzS, HF, CO, N2 and CH4. Other plume components are volcanic ash, aqueous 
and acid droplets and solid sulphur-derived particles [Sparks et al., 19971. Volcanic gases and 
aerosols are evidences of volcanic activity [Spinetti et al., 20031 and they have important 
climatic and environmental effects [Fiocco et al., 19941. For example, Etna volcano is one of the 
world’s major volcanic gas sources [Allard et al., 19911. New studies on volcanic gaseous 
emissions have pointed out that a variation of the gas ratio C02/S02 is related to eruptive 
episodes [Caltabiano et al., 19941. However, measurements and monitoring of volcanic carbon 
dioxide are difficult and often hazardous, due to the high background presence of atmospheric 
cC02  and the inaccessibility of volcanic sites. 

Hyperspectral remote sensing is a suitable technique to overcome the difficulties of ground 
measurement. It permits a rapid, comprehensive view of volcanic plumes and thieir evolution 
over time, detection of all gases with absorption molecular lines within the sensor’s multispectral 
range and, in general, measurement of all the volatile components evolving from craters. The 
molecular and particle plume components scatter and absorb incident solar radiation. The 
integral of the radiation difference composes the signal measured by the remote spectrometer. 
The inversion technique consists of retrieving the plume component concentrations, hence 
decomposing the signal into the different contributions. The accuracy of remote sensing 
techniques depends primarily on the sensor capability and sensitivity. 
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Table 1. Volcanic C02 Emissions [McClelland et al., 19891 
Volcano 
Mt. Etna 
PoDocateDetl 

C02 (T/d) 
11000-70000 
640040000 

Oldoinyo Lengai 
Augustine 

7200 
6000 

Mt. St. Helens 
Stromboli 

4800 
3000 

I Vulcano I270 I 

Kilauea 
White Island 
Erebus 

2. KILAUEA VOLCANO-HAWAII 

2800 
2600 
1850 

The Kilauea volcano system, called Hot Spot, has been active for 300,000-600,000 years, 
with no known prolonged periods of quiescence. Hot Spot means that magma penetrates the 
plate and rises up to the surface, leaving a string of volcanoes. The Hot Spot is merely an 
anomalous concentration of heat that is transferred constantly from the Earth’s interior to the 
surface. Beginning in 1983, a series of short-lived lava fountains built the massive cinder and 
spatter cone named Pu’u ’0’0 vent. This eruption of Kilauea is the most voluminous outpouring 
of lava in the volcano’s east rift zone in the past five centuries. 

Kilauea emits more than 700,000 tons of C02 each year, less than 0.01% of the yearly global 
contribution by human sources. For instance, this is about the same amount of C02 emitted by 
132,000 sport utility vehicles [USGS, 20021. 

Redoubt 
Grimsvo tn 

3. DATA SET 

~ ~ 

1800 
360 

An airborne study was performed on Kilauea volcano with the Airborne Visible Infrared 
Imaging Spectrometer (AVIRIS) at the end of April 2000. 

Spring is the ideal time to acquire high-quality images because of the relatively low humidity 
in this tropical region WOOA, 20001. Several flights were performed in order to acquire 
different views of the site. On the day of acquisition over the Pu’u ’0’0 vent, some clouds 
obscured the target and only one clear image of the degassing plume was acquired (Figure 1). 

Weather conditions presented some clouds at the cone altitude during the morning. A 
temperature mean value of (13.8 f 0.5) “Cy a height relative humidity of 80% * 5%, a pressure of 
(884 5 3) Wa, a wind speed about 10 knot and wind direction of about 70 degree North were 
measured during the radiosounding at the cone altitude. 

Ground-based measurements of different volcanic gases were performed at the same time as 
the AVIRIS flight. The USGS Volcano Observatory analysed gas samples of SO2 and C02 using 
a Cospec Correlation Spectrometer and Li-Cor system [Gerlach et al., 19981. In addition, 
instrumentation installed near the Pu’u ’0’0 vent periodically measures the air quality with 
chemical sensors, as well as wind speed and direction. The data from this station are transmitted 
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to the observatory every 10 minutes, providing near-red-time data on degassing h m  the Pu'u 
'0'0 vent [Sutton et al., 19921. 

Figure 1. Pu'u '0'0 vent plume image acquired by AVIRIS 4/26/2000. 

4. INVERSION TECHNIQUE 

The hyperspectral sensor measures the solar irradiance reflected by the surface in its view 
angle, using contiguous bands at a high-spectral resolution. The algorithm was developed in the 
wavelength range fiom 1.9 to 2.1 pm, where the COZ molecules have absorption lines partially 
overlapped by the water vapour absorption lines. The near-2000-nm COZ absorption range has 
been selected because the AVIRIS spectra are more sensitive to different amounts of carbon 
dioxide than in the near-1600-nm COz absorption range [Green, 20011. 

The inversion algorithm to calculate volcanic COz concentration is based on a differential 
absorption technique, which assumes that the absorption deep in the atmospheric spectrum curve 
is related to the volcanic COz concentration in the column. Following the CIBR 'Continuum 
Interpolated Band Ratio' remote-sensing technique [Canere and Conel, 19931 used to calculate 
water vapour columnar abundance, the COz concentration is retrieved by solving the following 
equation: 

ClBR = exp-a. [C02 1") 
Where: 

- CBR is given by the following ratio: 

- L is the band interpolated radiance; 
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- a and b are the weighing coefficients (a + b = I ) ;  
- LI and L2 the continuum radiances. 

- [CO2] is the C02 columnar abundance; 
- a and ,Ll are parameters related to the model variables. 

5. RESULT 

In order to invert equation (1) on C02 concentration, a and ,Ll have been estimated. To this 
purpose, the MODTRAN radiative transfer code [Berk et al., 19891 was used to simulate the 
radiances acquired by the AVIRIS sensor in the Pu’u ’0’0 vent image. In order to accurately 
represent the atmosphere and the measurement conditions, the input information for the model 
reflects the following conditions: 

- atmospheric vertical profile (Pressure, Temperature, Humidity and Wind Speed), as 
measured at the Hilo site during the AVIRIS flight; 

- atmospheric C02 concentration equal to 371.59 ppmv, as derived from in situ air samples 
collected at Mama Loa Observatory [Keeling et al., 20011; 

- surface reflectance equal to 0.1 for basaltic lava rock in the IR wavelength range, as derived 
from the USGS reflectance database; 

- geometrical parameters, i.e. , flight altitude, sensor view angle, volcano altitude; 
- rescaling factors for carbon dioxide. 

The radiance simulated at different C02 concentrations at AVIRIS spectral resolution is 
reported in Figure 2. The depth of the absorption bands is mathematically represented by the 
CIBR (2). Each CIBR corresponds a value of C02, as reported in Figure 3. The calibration curve 
follows equation (1) with parameter values of a = 3,7 1 * 10-3 and p= 0.804, and a fit correlation 
of 95%. 

Replacing the values of parameters a! and ,By equation (1) has been inverted in order to 
calculate the volcanic C02 abundance in the scene. The CIBR has been calculated using the 
radiance measured on each pixel by the AVIRIS sensor. 

In Figure 4, the result of the inversion is reported. In the crater zone the value is a maximum 
reaching value of 350 ppmv of C02 concentration. Where the plume is dispersed in a large area, 
the C02 concentration is rather low. In the plume area over and near the crater zone, where the 
C02 concentration is expected to be much higher, the algorithm is not able to give reliable 
results. A possible explanation is the high emissivity of these zones partially overwhelming the 
CO2 absorption. The contribution of the emissivity amount is probably due to either the hot 
ground in the crater area under the plume or the hot components of the plume coming out from 
crater, or a combination of both. This hypothesis explains why the low concentration of C02 is 
retrieved only in the central part of plume (ideally following the plume axis). 
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Figure 2. MODTRAN simulations at different carbon dioxide concentrations. 
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Figure 4. Volcanic plume carbon dioxide spatial distribution. 

6. CONCLUSIONS 

A remote-sensing technique based on a differential absorption technique has been developed 
in order to retrieve the tropospheric volcanic plume COz abundance, using AVIRIS data acquired 
over the Kilauea volcano (Hawaii). 

The atmospheric model MODTRAN has been tuned to the atmospheric carbon dioxide 
concentration measured at the ground during the AVIRIS measurements campaign. 

This approach retrieves the volcanic CO2 concentration in the Pu’u ’0’0 vent plume area; the 
values retrieved are in agreement with ground-based measurements. Otherwise, the technique 
needs improvements in order to expand its validity to the entire plume area, and to retrieve the 
concentration of the plume in areas where the results are not reliable, probably caused by the 
high emissivity of these zones. 
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AVIRIS AND ARCHAEOLOGY IN SOUTHERN ARIZONA 

Devin Alan White' 

Arizona is a state that is experiencing unprecedented growth in both its economy and its population. Cities 
like Phoenix and Tucson are expanding at exponential rates, converting open space to tract home communities and 
stxip malls. Underneath both Phoenix and Tucson, and extending out far into the Sonoran Desert, are tens of 
thousands of archaeolc+ical sites associated with the prehistoric culture known as the Hohokam (Crown and Judge, 
1991; Ciumerman, 1991). While archaeologists do not like the fact that dozens of Hohokam sites are destmyed 
every day in the name of progress, we do take some small comfort in the federal legislation that mandates that we 
get to find, document, excavate, and report on those sites-thereby preserving some of Arizona's rich cultural 
haitage4mfore they are destroyed. The most expensive and time-consuming aspect of this work, known as 
Cultural Resource Management (CRM), is survey. 

importance. The most important of these. sites are either excavated (last resort) or avoided entire.1~ (preferable), 
depending on the fiexibility of the developer. If archaeological sites in southem Arizona were easily seen on the 
surfaw, as they generally are in other parts of the Southwest, survey would be relatively straightfmwad and 
inexpensive. However, Hohokam sites exhibit little to no surface expression that we can detect with the naked eye. 
The results of this dilemma have been disestrous. Construction cre.ws find or destroy sites archaeologists missed 
and archaeolopists sometimes end up digging in locations that yield no information. 

re& to as sitefonnarionprocarsar (Schif€er, 1987). The Sonoran Desert, due to its complex geology and bimodal 
rainfall patt~m, allows for a great de- of biotic diversity. The landscape is literally blanketed with vegetation 
ranging &om sage brush to saguaro cacti to mesquite, greatly redwing site visibiti Brom the ground or the air 
(Figure 1). Site formation procasses, which are natnral and cultural processes that affect an archaeological site once 
it hm been abandoned by its prehistoric occupants, are perhaps the most devastating with respect to site visibii.  
The effects of natural processes snch as erosion, weathedug, sedimentation, and Aeoliaa deposition on an 
archaeological site over hundreds of years produce a fairly Uniform result throughout the Sonoran Desert region: 
Sites are almost entirely invisible &om the surface. Over time, sediments fill in all but the most prominent and large 
archaeological features until the ground surface uppears completely flat (Figure 2). It is actually quite easy to walk 
over an entire Hobokam village and not know it is there, 30 cm beneath the surface (Figure 3). 

Most projects involve surveying a large piece of land on foot. Sites are reconled and ranked by perceived 

The main contributing factors to the relative invisibility are dense vegetation cover and what archaeologists 

Figure 1. Typkal vegetation cover m the Sonoran Desert that results in low site visibility. 

' University of Colorado, Boulder (devin.white@colorado.edu) 
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Figure 2. Typical stratigraphic profile from a Hohokam site. Archaeological features like canals 
(right of center) are often filled in with sediments until they are completely level with the modem 
ground surface, rendering them invisible to the naked eye and, potentially, remote sensing systems. 
(Haury, 1976) 

d 

.... 

Figure 3 .  The Pre-Classic Hohokam site Snaketown, before excavation. Surface expression of 
archaeological features is minimal, even at a site as large and as important as this one. 
(Gladwin et al, 1938) 

Spectral remote sensing holds a great deal of potential for archaeologists, especially now that advances in 
technology have moved spatial and spectral resolution into the range that is useful to us. The reasons that 
archaeologists working in southern Arizona have not embraced airborne and satellite remote sensing so far are that 
( I )  the high spatial resolution systems (IKONOS) only cover the visible and near-Infrared portion of the spectrum, 
one in which sites are invisible, and (2) systems that cover more portions of the spectrum (Landsat) tend to do so 
only broadly and have large pixels (30 m or greater). while using thermal Infrared remains a possibility, it is still 
worthwhile to explore the utility of remote sensing that takes advantage of high spectral resolution, for it has not 
been tried before. 

mixtures of materials that when seen as whole by a hyperspectral remote sensing system could be differentiated 
It is my belief that certain types of archaeological sites in southern Arizona may contain within them 
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from surrounding soils and rocks using a wide array of image processing techniques including the standardized 
“hourglass processing” regime available in ENVI. This study uses hyperspectral remote sensing data for southern 
Arizona obtained by AVIRIS, combined with ancillary data from the USGS and the Arizona State Historic 
Preservation Office (SHPO), in an effort to find a solution to the problem of site invisibility. After a thorough 
discussion of the methods used in analysis, the results of this study are presented. These results, as the reader will 
soon see, are indeed promising, but I must caution that they are only preliminary. Much additional research, 
including fieldwork, is required in order to validate the findings of this study and prove the utility of hyperspectral 
remote sensing €or archaeological site detection in southern Arizona. 

Methods 

The first step, in my analysis was finding the appropriate AVIRIS data. Candidate data sets had to (1) cover 
some part of southern Arizona, (2) contain within them areas that were not impacted by urban sprawl, and (3) 
contain within them regions where archaeological sites were known to exist. The coordinates for each candidate 
data set were plotted on a map and checked against known archaeological site locations, which was done via 
additional maps and personal communication with other archaeologists who work in the region. Out of the archived 
data sets examined, only one met all of the established criteria. 

Each of the nine AVIRIS radiance-calibrated scenes were subjected to atmospheric correction and 
conversion to apparent reflectance using HATCH (Figure 4), a program still currently under developrnent within the 
Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder. Several parameters within 
the HATCH input file had to be modified in order to ensure an accurate correction and conversion. Date, time of 
day, surface elevation, location (latllong), visibility, and aircraft altitude all had to be changed to match local 
clonditions at the time the data were acquired. HATCH was directed to use the Full Width Half Maximum (FWHM) 
file that accompanied the data and to weight the seventh water vapor band (0.86, 1.25). The Z-profile of each scene 
was examined and ary bands that exhibited a high degree of noise, were overlapping, demonstrated severe over- 
correction by HATCH, or did not contain data were thrown out. Out of the 224 bands on the AVIRIS system, 58 
bands (1-7,32-35,96, 105-1 17, 151-172,213-224) were removed due to one or more of these problems. The 
remaining 166 bands were used extensively throughout the rest of this study. 

Figure 4. Example of atmospheric correction and conversion 
of radiance (left) to apparent reflectance (right) using HATCH. 

The next step in my analysis was to obtain relevant ancillary data. 1 : 100,000 scale digital line graphs in 
Option Format were downloaded fiom the USGS WebGLIS server to aid in registering the AVIRIS scenes to a 
IJTM map projection. Digital elevation models (DEMs)-accurate to within 30 meters-were downloaded to aid in 
data interpretation and presentation, as well as to increase the accuracy of the atmospheric correction carried out by 
HATCH. By far the most important ancillary data set needed for this study was a relational database that contained 
accurate locations for and information about known archaeological sites in the region. The State Historic 
Preservation Office for Arizona, in cooperation with Arizona State University and the University of Arizona, 
maintain just this kind of database (AZSITE). While AZSITE mainly functions as an archive to be used by Cultural 
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Resource Management firms and other government agencies, it can also be accessed by individual researchers who 
have the proper clearance. Getting access to this sensitive data was not easy and required the acceptance of a non- 
disclosure agreement with respect to accurate site locations if I ever decided to present the findings of this study in a 
public forum. In accordance with this agreement, I have gone to great lengths in this paper to avoid making any sort 
of reference to exactly where in southern Arizona these data derive from. However, all delineated sites presented in 
the images below are exactly where they should be, even though geographical references and scales are not present. 

Once clearance to AZSITE was granted, I instructed the database administrator to search the extent of my 
entire AVIRIS flight lline for known archaeological sites. When the total number began to exceed 3000, we both 
thought it wise to limit the search to the types of sites that would be ofparticular interest to me. A new search was 
conducted that only looked for sites that were prehistoric (before Spanish contact, containing no modern man-made 
materials) and exhibited some form of surface expression. I knew that sites with surface expression were rare 
(.hence the need for this study), but if any existed within the study area I might he able to increase the success of my 
analyses due to the fact that reflected light only penetrates the upper few microns ofthe earth’s surface. Buried 
archaeological sites would not do me much good. A list of candidate sites was compiled and the database 
administrator generatad a geo-referenced ArcView shape file (UTM projection) that contained both their locations 
and site type. The imparlance of this shape file for my study cannot be overstated. Once the AVIRIS scenes were 
warped to a UTM map projection, this file could be accurately overlaid on each scene, thereby providing exact site 
locations within an image and allowing for comparison between known sites and predicted sites. 

I next selected three adjoining scenes that covered an area of interest (Figure 5) .  This area was chosen for 
its “pristine” condition-where native vegetation and archaeological sites are still relatively intact. I took each 
scene (unwarped) and performed several standard “hourglass processing” analyses in ENVI (MNF, PPI, n-DV, 
Identification, MTMF, Mapping location and abundance) focusing on different parts of the spectrum (especially 
NIR and the 2-2.5 pni region). My thought was that archaeological sites might show up as an endmember in 
portions of the spectrum not detectable to the human eye, where differences in vegetation and soil composition show 
up more clearly. These initial analyses were focused on deriving archaeological site locations from the data 
themselves. Candidate Regions of Interest (ROIs) were made into masks, and the resulting images were warped to a 
UTM map projection using 20-30 Ground Control Points (GCPs). The warped masks were thresholded hack into 
ROls, now geo-referenced. The AZSITE shape file was overlaid on a warped version of each scene and the 

Figure 5.  The three adjoining AVIRlS scenes draped on a DEM. 

Unfortunately, standard hourglass processing techniques produced negative results. If archaeological sites 
dre indeed endmembers, they are very subtle ones that are most likely overshadowed by endmembers associated 
with vegetation and mineralogy. Even setting the PPI iterations to maximum (32,767) failed to yield any pure pixels 
Lhat matched with known site locations. Part of the problem extends from the fact that by focusing on only small 
portions ofthe spectrum the resulting data dimensionality is low (7-10 endmembers). In a last ditch effort to stick to 
standard processing techniques, 1 tried Maximum Noise Fraction (MNF) color composites and ratio images, as well 
as Spectral Angle Mapper (SAM) supervised classification (based on average spectra derived from sites within the 
oark). Both of these methods produced disastrous results. Known archaeological sites were still invisible in the 
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MNF images and the SAM, set to a very narrow threshold, still classified the bulk of each image as an 
archaeological site. 

I was initially very disheartened by the results of standard hyperspectral image processing. Instead of 
giving up, I decided to try something a little unusual. It is clear that archaeological sites are mixtures of several 
different materials, afffected by the elements over hundreds of years, and hence they would never show up as pure 
pnxels in a PPI image. But what if archaeological sites are predictable mixtures? That is, perhaps the mixtures of 
mLaterials that compose sites are fairly constant in this region. As such, they could be classified as an coherent 
endmember, albeit one that hourglass processing would never find on its own. If average spectral profiles from 
hiown archaeological sites in the region were fed into a Mixture Tuned Matched Filter (MTMF), if it was given 
some direction, ENVI might be able to find archaeological sites because it would know what to look for. 

In order to test the hypothesis that a directed MTMF should find archaeological sites, I chose one scene out 
ofthe three selected that I knew contained many archaeological sites of different types. The scene contains a 
mixture of urban sprawl and protected open space. As such, there are sites in the AZSITE database that still existed 
on the surface as well as some that were destroyed shortly after they were recorded and mapped. I also decided to 
increase the spiectral range of the MNF rotation to include the entire spectrum. Since the “archaeological 
endmember,” if it exists, is subtle, having more dimensions to work with will allow for a more accurate 
representation of that endmember. The MNF rotation produced 30 endmembers, which is not too surprising 
considering thie mixture of man-made and natural materials in the scene. 

using 20 GCPs. The ,4ZSITE shape file was then placed on top of the image. The same shape file was opened in 
AxcView and ilhe regiton covered by the scene was analyzed to glean site types for each delineated site. Ultimately, I 
focused on two site types for my analysis: pithouses and mounds. Each has surface expression and each would 
oontain a human-induced mixture of various materials ranging ii-om sediments to organics. I located three intact 
pithouses in the warped MNF image and turned each one into a member of a Region of Interest (Figure 6). A mean 
MNF spectra was then derived for this ROI. The same procedure was carried out for mounds, of which there was 
only one in the image, unfortunately. These two mean spectra (Figure 7), which I believed represented two distinct 
archaeologicall endmembers, were then fed into a MTMF analysis of the unwarped MNF image. The pixels that had 
the highest MF score and the lowest infeasibility for each site type were selected and turned into members of an 
ROI. Both ROIs were then converted to masks that were subsequently warped using the same methods applied to 
the MNF image. Each warped mask was then thresholded back to an ROI and overlaid on the warped MNF image, 
upon which was also overlaid the AZSITE shape file containing known sites for the area. MTMF-predicted site 
locations for each site: type (pithouses and mounds) were then compared to the locations of the known sites (see 
Figure 8). The results of this analysis were both surprising and encouraging. 

The MNF image was then polynomially warped with Nearest Neighbor interpolation to a UTM projection 
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Figure 6. Warped MNF image with known sites delineaad (teal). Red rapmmts 
the ROI created for pithouses, Green the ROI created for m o d s .  

t 
Pithouse i 

1 

Figure 7. Examples of the two site types used in this study and 
their average MNF spectra as derived &om the AVIRIS scene. 
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Results 

The success of the directed Mixture Tuned Matched Filter analysis varied between the two site types. I was 
able to relocate all three pithouses used to create the average MNF spectrum for that site type (see Figure 8). 
Accuracy ranged from dead-on (center of bounded area in the AZSITE file) to within 70 meters. The MTMF also 
classified a handful of smaller rockpile sites as pithouses and pointed out a few additional locations for sites that are 
not included in the AZSITE file. This suggests that (1) perhaps the mixture of materials I attributed solely to 
pithouses might encompass a broader range of archaeological site types and (2) all of the archaeological sites 
contained within the scene are either not recorded in the AZSITE database or were missed in my search of the 
AZSITE database for sites that exhibited some form of surface expression. The MTMF missed the mound by 
approximately 140 meters. What is interesting to note, however, is that the AZSITE location for the mound contains 
within it three different modern roads. This suggests that the mound was either bulldozed to make way for the roads 
or the mapped location of the mound is inaccurate. If the mound was indeed bulldozed, the green pixels produced 
by the MTMF that show up near the mound might represent material from that mound that was relocated prior to 
road construction. If the mound itself is inaccurately mapped, the green pixels might represent the true mound. 
Ground truthing would greatly aid in clearing up this inconsistency. The green pixels that occur far away fkom the 
mound demonstrate one big problem with trying to locate mounds using an MTMF: Mounds are essentially large 
“bumps” composed of the surrounding soil. It is logical that other locations that are not mounds would look veky 
similar, if not identical, to mounds if their soil composition was similar. These “stray” green pixels, though, occur 
very close to predicted pithouse sites or within other known sites. As with pithouses, perhaps the average MNF 
spectra for mounds encompasses more than just this one type of archaeological site. 

One apparent problem with the MTMF analysis of this scene is the lack of predicted sites within the large 
semi-rectangular bounded area (Figure 8). While one green and one red pixel appear within the boundaries, the vast 
majority of it shows up site-free. At first this puzzled me greatly, since I knew that the area was full of sites. What 
is interesting is that the preserve contains sites that are fundamentally different (no pithouses) and much older than 
the ones I am looking for. A cultural tradition known as “Trincheras” built terraces and houses on the hill slopes 
contained within this area long before the Hohokam ever showed up in the region (Cordell, 1997). The Hohokam 
did not build their houses or mounds on slopes; instead they preferred flat areas (Haury, 1976; Crown and Judge, 
1991; Gumerman, 1991). This type of cultural behavior could help explain why all of the MTMF-predicted 
pithouses and mounds occur only in the flat areas surrounding the hill, not on the hill itself. If predicted sites did 
show up on hill slopes, then I would have to completely rethink my methods. The fact the nom showed up on hill 
slopes is indeed encouraging. If the AZSITE database was more accurate and delineated specific sites within the 
area, I might be able to create average MNF spectra for Trincheras sites-anes that are perhaps different than those 
associated with Hohokam sites-and look for more of them in the AVIRIS scenes. 

introduced during the analysis phase. While great care was taken to use a large number of GCPs and to keep the 
RMS well below 0.500 when warping the AVIRIS scenes, MNF images, and masks, the warps were not perfect. It 
is quite possible that all of the warps are “off’ by a few pixels. While nearest neighbor interpolation was used to 
preserve as much radiometric accuracy as possible, the technique is not perfect and some slight error was most likely 
introduced. On top of error introduced by the analyses I undertook, it is also quite possible that site locations 
recorded in AZSITE are not entirely accurate due to errors in field recording or data entry. Having said all of this, 
however, the results of the analysis presented here are still encouraging and €urther research is warranted to see if 
accuracy can be improved and if the techniques can be applied on a much broader scale than one AVIRIS scene. 

An additional factor that may play a role in the apparent accuracy of this study is the amount of error 

Conclusions and Directions for Future Research 

The initial results obtained using standard hyperspectral image processing techniques were not good. I 
believed that archaeological sites exhibited enough individuality as a coherent endmember that a Pixel Purity Index 
would detect them with no outside assistance. I was wrong. No matter what portion of the spectrum I focused on, 
no matter how high I set the iteration number, ENVI could not find the archaeological sites in my flight line on its 
own. Instead of throwing in the towel, I decided to rethink my methodology. If archaeological sites are indeed 
endmembers, they must be very subtle ones for ENVI to miss them. I went to known sites of different types and 
derived their average MNF spectra-now ENVI knew what to look for. A Mixture Tuned Matched Filter analysis 
focused on these average spectra produced some interesting results. While the accuracy could still be greatly 
improved through a further refining of techniques, the MTMF did a reasonable job of finding known sites once it 
was given some direction. 
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In what ways could the detection of archaeological sites using hyperspectral imagery be improved? What 
directions should h twe  research take? There are two potential directions at the moment, both of which require 
fieldwork. The first would be to ground truth both the known site locations in the AVIRIS scene as well as the 
predicted ones from the MTMF analysis. This would very quickly establish which analytical steps, if any, 
introduced the most error. If the known sites are exactly where AZSITE says they are, then the image processing 
methods need to be refined. If the sites are where the MTMF analysis predicts them to be, including the additional 
ones not included in the database, then the techniques used here would be validated. The second would be to 
compile a spectral library for archaeological materials and site types in this region using lab and field spectrometers. 
This library could then be fed into an MTMF analysis or used in conjunction with continuum removal and 
Tetracorder to c l a s s i ~  AVIRIS scenes within the flight line. The results of these analyses would hopefully be much 
more accurate than those presented above since ENVI would have examples of “pure” archaeological materials to 
work with. 

detection in southern ,4rizona. This study is the fxst of what I hope will be many more sophisticated uses of spectral 
remote sensing data in archaeology. If the techniques outlined above can be refined and their usefulness proven at 
larger and larger scales and across multiple AVIRIS flight lines, it could revolutionize how archaeologists conduct 
business in this part of the world once the technology becomes more widely available, affordable, and understood. 

On the whole, I believe that hyperspectral remote sensing holds great potential for archaeological site 
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1.0 INTRODUCTION 

Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential 
on the spectra general shap and albedo (Stoner and Banmgardner, 1981). Without moisture, the intrinsic or matrix 
reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, 
mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be 
isolated by conqming similar soils in a study of the effects that small differences in moisture content have on 
reflectance. However, without prior ImowIedge of the soil physical and chemical constituents within every pixel, it 
is nearly impossible to accuBtely attribute the reflectunce variahility in an image to moisture or to differences in the 
physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use 
h- imagexy for determining minerals md organic matter abundances of bare agricultural soils. Accurate 
soil mineral and organic matter abundance maps firom air- and space-bane imagery ean improve GIs models for 
pmision farming prescription, and managing irrigation and mhity. Better models of soil moisture and reflectance 
will also improve the selection of soil endmembers for spectral mixture analysis. 

moisture based on wate absorption bands. Unforhmtely, light is absorbed by water in the atmosphere, preventing 
the use of many of these bauds in image specha. In laboratory studies, it is common to relate soil moisture to 
specisc water absorption overtones at 1.1, 1.4, 1.9 pm (Liu et al., 2002; Lobell and Asner, 2002). For image spectra 
it is necessary to utilize the general shapes of the spectra, properiy calibrated for the atmosphere, excluding the 
individoal absorptions of the water overtones. 

Consistent with previous investigators, we noted the loss of reflectance with increasing water content (Bowers 
and tianks, 1965); our spectra showed the same decline of albedo in Figure 1. The shape of the continuum in the 
VIR and SWlR responds, in a large par€, to the water fhdamental absoqtion in the 2.8 pm region (Biiop, 1988). 
The fundamental absorption of water affects the soil spectrum by spreading the absorption with increasing water 
bulk content (Bishop et al., 1994). We observed that as the overall reflectance declined, the position of the 
maximum reflectance also shifted to shorter wavelengths. 

currently available field and airborne instruments with a SWIR range to 2500 nm are just short of this 
hdamental water absorption peak. Therefore, it is necessary to model the SWIR continuum to extrapolate beyond 

the wavelength range of the instruments. 
FiniSg a mathematical curve and hear 
functions to the extrapolated continuum 
provides numerical measures of the 
absorption depth and area changes in the 
fundamental water absorption. The 
shiftiing of the maximum reflectance to 
shorter wavelengths lengthem the tail of 
the curve as the absorption deepens. This 
shape response is chaiacteristic of the 
changes seen in an inverted Gaussian 
fundion. Mineral and vegetation 
absorptions have been commonly 
measured through parameterizing the 
absorption bauds with Gaussian functions 
(Miller et al., 1990; Musfan$ 1992; 
Sunshine and Pieters, 1993). 

can be estimated through its relationship 

Previous investigations have used laboratory spectra that are continuous throughout the full range to estimate 

4 t , , l  
19% 

Figure 1. Distinctly different soils at similar moistures. 

To demonstrate that water content W w b w b ( r m )  
Jm 
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Fignre 2. The ab50@on depth at 2200-nm is related to the clay 
Cane. 

to the fundmental absorption spread, 
laboratoty soil SpeGtra &om a range 
Meditermnean soils and moisture contents 
were fined to inverted Ganssian curves. The 
retnmedGaussianparametemwere 
regressed against the moisture contents of 
these soil samples. Several m e t e r s  from 
the Ganssim mode1 were w e d  and demon- 
strated Werent Levels of accuracy f b m  
0.017 to 0.025 RM3E for estimating water 

pra;ess is neoessaty before the process is 
applied to AVIRlS image. E 
effect of soil water is e 
~ t e e s t i m a t s s  

develop% the correction for m o b  
e f f m  is to acmate4 eathnate moisture content. A large subs& of these laboratoty specma were nsed to develop 
and validate tht soil moisture Gaussian modei (SMGM), degrade4 &om 1-nm to IO-nm band 
AVIRISreflactano n of water content on these model pameters dem 
improvement in est 

1.1 Effcct of Moistrrre on Mlneral Abnndanee Estimae 

shown in the contiuuum removed spectra @ ~ g m  2), obtained f b m  similar soils in OUT stndy am. The shape of 
other absorption features has been associated with abnndance, as in the derivatives of the 2.3 pn region in 
laboratoiy spectra dafa for carbonate abnndance (Ben-Dor and Bsnin, 1990). The p b l m  is that this contrast 
obsavcdinthecontinnumisinconsistsntwithchanges whethermeasuredbythedepthorshape. 

on, the om-all icflectance of 
sorption at 1.4 and 1.9 lun, 

moistutea as shown in eontinvtrm removed spectral 

The depths of absorption mar 2.2 pm inwaaes correspondiig to the inQeasfag clay m i n d  contmrs when 

inemsing moisture (Figure 1). In con- 

going researoh pro@am. 

13 Physical and Matbematlenl 
Mohtnre Model 

3w- 
42% - 

2W rn m am m Mo 
ms*lra 

Figure 3. Absoqtion depth declines dispmporfionately to the m o m  
of increasing water conten?, and decline in soil re3ectance. 

The deciine in soil reflectance with 
inmasing moisture follows a 

wen among 
gure 1, the brighter 

soil fiom calcareous tennces in Spain 
and the darker soil froin southcm San 
Joaquin Valley, California basin rims, at 
the same moishues, appear to have very 
different continuum patterm. However, 
after the differences in intrinsic or 
matrix reflectance is e l i d  by 

the spectrnm.s maximum 
4), the spectra from 

the same moistures show similar 
patterns, denoted by awed tines. Also, 
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themaximumreflectanceintheS7KIR 
declfnes with increasing moisture content 
and the wavelength position o 
ShiRS to shorter wavelengths, 
the spread of the fundamental 
abso@ion. 

From the Beer-Lambert Law, we 
know that absorptions are log based, that 
is, absorbance is the negative log of 
dk tance .  The difference firom incident 

absorbed. Thisapparentabsorbance 
(Kortum, 1969) is e@ to the product of 
a mineral's absorption coefficient and 
optieal depth (Clark and Roo&, 1984). 

0rinalim-I by maximum reflectance for 
to moisture beoomes more apparent. 

I = Io exp(-od) or -ad = In1 - lnIo 
where 1 is transmitted energy, Io, incident energy, u, absbrptien wfficimt, and, d is the optical path kngth. while 
Hapke (1993) pvides a number of techniques for wnverhg re- to absorbance to 
logerithmir: compression, Yen et al. (1998) found the natural log the least nn#atislilctw for linea&& refl-e 
data firom IabaratoPy measurements and tmwfonningto appsrent absorbame, detjnedbyKorhrm(l969) as the - 
In@). For the remainder of this diwnssion, the absorb& en- is described and modeled using the natural log of 
reflectance. 

to a few parametem is fitting the Gaussian 
Function (Miller et aL, 1990, Sunsbine and Pieters, 1993). Themodel has the advantages ofparamatenzlng ' '  the 
absorption into three values: a) frmction amter, b) its amphde, and c) the distance to the inflection point. A fourth 
pammeter cm be derived, the area under the m e .  ARer a series of trial and error, the position ofthe maximum 
reflecmce was letluncmtram ed, which allowed the firnctional tail to shia with the spread ofthv limdamental 
water abscrptioe The, spectra are llormalized by dividing the reflectance at each band by this maximum renectence 
(&). The, center of fondion was canstrained to 2 . 8 ~  @), the other parametas were &ermined through a teast- 
squaws Wing of the reflectance at ea& wavelength @.& for the depth (%) or the amplituae of the Gaussian 
Fudon ,  and the distance to the inflecton point (0) m Bquation (1). 

the e&& of 

A common method of reduce complex shspas 

Theareabehwmtheextrapolated 
€romthemaximumrefle&ance 

The continuum was found by defining the upper g e n d  shape of the qectmm unough a convex hull algorithm. 
nte hull boundary points, at wavelengths greater than the maximum reflectance, were used in an irsrative least 
squares fitting algorithm to solve for the best Gaussian frmction for SWIR spectnrm, ratmning born the Gaussian 
parumetas and the minimum least sqwres fit errors (Figure 5). ThC root mean squared arm (RMSE) of the fit WBS 
calcuIatedUSiUgtheleast 
Systems, Inc., Boulder, C 
plaametarSandrVeaWWl? dete 
d c M .  The linear and non-linear regressions and statistical evsluationa were c 
(Insightful corporstion, -9 washin%on). 

baseline was determined tbrougb mtegrating quation (1) 
f Gaussian m e ,  shown m Equation (2). 

for each specmun. IDL (Research 
cnordeknninations. TheGaussian 
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2.0 STUDY METHOD 

U B  

To evaluate the effectiveness of 
the Gaussian b t i o n  to describe the 
response of the soil reflectance to 
moisture, the function was fitted to 
spectra fmm a variety of soils and a 
sequence moistme contents. The 
resulting Gaussian parameters were 
compared to a tange of measured 
moistures, fivm oven dry to satnration. 

soils were frmn two distinctly 
1 differem locations in Spain and 
-i California. The soils h m  Castilla-h 

Mancha, Spain, were collected from / I , , ,  

I 1 2.1 Study Si- and Soil Sampling 
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2.2 Collecting the Sail Spectra 

external integrating sphere (Labsphere, Inc, North Sutton, New Hampshire) each moisture level of each samples was 
measured three times. The sample holders were mounted in the light-tight port at the base of the sphere. The 
instrument projected a collimated light onto the soil surface at nadir, with a constant reference double beam. The 
maximum relative reflectance was calculated from measurements of a white Spectralon panel (Labsphere, Inc, North 
Sut t~n,  New Hampshire). The light from the spectrophotometer struck the targets in a fixed rectangle approximately 
1 cm by 2.8 cm within the 3.5 cm diameter holder. To avoid any bias due to surface geometry, three measurements 
were made of rhe soil target. The holders were rotated approximately 60’ before the consecutive spectral 
measurements. 

After lightly hand grinding with a mortar and pestle, two replicate samples were packed into small clear plastic 
petri dish sample holders. Spectra were collected at the air dry, then oven dry states. The collection of spectra 
continued after each of eleven additions of water, at approximately 5% water content intervals. At the end, the soils 
were returned to the desiccators to air dry, then oven dried and spectra were collected with each moisimre change. 
Of the possible 3600 combinations of soil replicates and moisture contents, 45 samples, by 2 soil replicates, and 3 
spectral measurements with each of 15 moistures, there were 3,462 acceptable measurements, with 2,619 used for 
modeling and 843 for validation. Some samples had fewer measurements because they saturated earlier than the 
others and did not need all 11 water additions. Additional spectral were discarded when the second oven dry weight 
for the soil replicate did not return to within 0.1% of the first oven dry weight. Either the initial weiglht was in error 
or sample material was lost with handling. 

In the laboratory, using a Cary 5E spectrophotometer (Varian Incorporated, San Jose, California) fitted with an 

3.0 RESULTS AND DISCUSSION 

3.1 Fitting the Moisture Model to Laboratory Spectra 

samples, and then evaluated against the measured water contents. Of the spectra, the number of hull lboundary 
points for each spectnum ranged from 20 to 100, with the greater numbers being from the drier replicates due to 
greater curvature in the spectra. The maximum reflectance moved from between 1650 and1800 nm for the dry soils 
to near 1300 nm for moist soils. There was not a gradation of maximum refleclance positions due to the deep water 
absorption at 114001 nm. The fitted Gaussian returned parameters of depth, distance to inflection and a.rea under the 
shortward portion of the curve. 

For all soils and all moistures, the area of the curve was the best predictor of moisture content. While the 
fiinctional depth and distance to the inflection point predicted the water content less accurately, analyzed together as 
the integration of the area, the performance was far superior. The prediction accuracy for all parameters decreased 
with increased moisture, and significantly worsened above 0.30 water content. The increase in moisture begins to 
saturate the soil samples, filling the small pores then the larger pores (Jury et al., 1991). The reflectance from the 
water becomes dominate, instead of the soil and water (Liu et al., 2002). 

Since the area was far superior in predicting the water content, further analysis was conducted with this 
parameter. From the increasing variability exhibited in the predictions by the hct ional  parameters, the linear 
model developed fiorn the area was restricted to air dry to near field capacity, 0.02 to 0.32 g d g m  water content. 
Field capacity is defiried as the water content that free draining soil holds against gravity after 24 hours (Jury et al., 
1991). Most soils reach field capacity between 0.25 and 0.40 gm/gm water content (Brady and Weil, 1996). Our 
value of 0.32 g d g m  was derived from the sudden increase in variability for values above 0.32. The “restricted” 
model also eliminated spectra where the error in the Gaussian fit exceeded 0.0125 RMSE. The same variability was 
apparent in the validation set. The restricted validation set had no spectra fit exceeding the 0.0125 MUSE, within 
the moisture contents below 0.32. 

The restricted soil moisture Gaussian model (SMGM) for these spectra was highly correlated to water content, 
llhough the regression coefficients were slightly different for the two locations. The result of the model for all soils 
and moistwes was coefficient of correlation (2) = 0.89, and for the restricted model set was r2 = 0.92, and with 
stratifications within the study sites the r2 improved in most to 0.95. The model for Lemoore has a slightly higher r2 
tlhan that of Tomelloso. 

The Eemoore soils are much more consistent between samples in texture and aggregate size. The Tomelloso 
varied widely between the geomorphic surfaces. The correlation coefficients for the Tomelloso restricted model and 
validation sets improved substantially by stratifying by the geomorphic surface. When the model was applied to the 

The Gaussian parameters were determined for each spectra from the sequence of moistures and soil replicated 
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valida 
water 

set for only Lemoore the results were very similar to the modeling set, with 8 of 0.92 and RMS of 2.85 in 
m t  percentage. The fit lines for the restricted models for the two regions are shown in Figure 6. 

C7urd.n N to N . b m l L e #  HmU V.lnn. Limitd Set of Y d d  Spcb., 
N 0 d . L  -L.# (hW9 / W % W )  

Spawn limited 
Watas C a n t  > 2% and <= 32% , 

a d 8at = -11.68 + 0 . 1 m  < 
Residual Std E m :  2.6 ~ 1 7 3 0  df .I -4 
R-squared 0 92 0 

* 

50 100 150 zoo 250 
AM undcr Qausaim Cuwe 

- 
Figure 6. The Linear fit of water content on the Gaussian area for Lemoore and Tomelloso soils. 

3.2 Fitting the Model to Simulated AVIRIS Spectra 

More relevant to this conference, we tested the effectiveness of this model at the loam full width half 
maximom (FWHM) channels of A W S  data. The model and validation samples w m  seleded to capture both 
saline-sodic and healthy vegetation responses determined from a pseudo-color i n k e d  composite of a 1998 ER-2 
AVIRIS image of the Sheely F m ,  new Lamoore, celifomia 

Resampliag lab spectra has the advantage of stndying the effects of specaal resolution without increasing the 
errors aasosiated with incorrectly calibrated image data. The same lab spectrophotometer data between 400 nm and 
2390nmwasintsrpolatedtoAVIRISimagebandcenters,which~dthespectra~m1,990 lambandsto 189 
nominal loam bauds. The resampling improved the smoothness of the spectra, though it reduced the range in the 
munbar hull boundary points h m 2 0  to 100 in the full labomtory spectral to 5 to 20 in the simulated AVIRIS data. 
The fit to the Gaussian improved eubswdally with no error rate greater than 0.0 125 RMS. With high moisture 
contents, the number ofhull points for some spectra fell below 5, and the fitting with the Gaussian function would 

Tablel. Conywison of laboratory and simulated 
AVIRIS spectra fitting and water content model 
prediction. 

not converge. The n&ber of hull points must be greater 
thanthenumberofparamaters inthe function 

The variability inthe AVIRIS Gaussian parameters 
values was similar to the laboratory s p x t m l  data (Figure 7). 
While the amplitude of the hction, again, was correlated to 
the water contmt, the of Gaussian was a better predictor 
of the wata content. In Table 1, the labonaory restrkted 

e@) to Hull Points 0.015 0.0125 model and the AVIRIS simulation model are basically the 

Area Fit to coefficient,-1.68to-11.81,andthesameO.19coefaoientfor 

Comparison of RMS 
lauiwd- 

R2-Limited Set 0.92 0.93 same, though there is a slight difference in the off-set 

Warn C e n t :  the area. The is virtually the same for both, 0.92 to 0.93, 
Overall 3.7 4.4% respectively. 

When the model is applid to the validation spectral set, 
the accuracy of the model was similar to the model set for 
all moisture contenb and is within RMS of 4.4 %-water 

LimitedRango 2.9% 2.9 % 
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Simulated AVIRIS Data, Natural Log, 
Normalized at Maximum Reflectance 

Regression Model: 
R = 740 
water content > 2% and <= 32% 
ewt = -11.81 + 0.19~ 
R-squared: 0.93 

, 
OQ 0 

09 
/' 

60 110 160 210 
Area Under the Gaussian Curvo 

Figure 7. Similar hear fit of water content for the AVIRIS spectra simulation. 

content. Again, the model is much improved within a restriction of the range ofthe water contents from 0.02 to 0.32 
with the RMS falling to 2.84 %-water content. 

4.0 CONCLUSIONS 

spectral range of our field and imagery instruments. The fundamental absorption can be modeled with a Gaussian 
function on the hull boundary poinb of the continuum by extrapolating the SWIR continuum to the region of 
fundamental water absorption. The function and change of the SWIR general shape are sufficiently sensitive to the 
water content changes. Within the sandy loam to clay loam textures, in widely diverse Mediterranean soils from 
Caliiornia and La Mancba, Spain, and common moisture ranges, the area under the cnwe has a linear relatiomhip 
that catl accurately estimate the surface moisture content witbin 3 %-water content (RMSE). 

Specific to the application of this model for the retrieval of soil water content to imaging spectrometer data, the 
10-nm FWHM of AVIRIS data appears to have sufficient detail to retnrn the same ammcies. Smoothing, induced 
by the intetpolation ofresampling, did improve the fit accuracy slightly. At the higher moisture contents, some 
spectra had a reduced the number of hull boundary points, less than the needed nnmbcr of the parameters, and fail to 
converge. Investigations are continuing on using the model of eliminate the effects of soil moistnre to improve the 
estimates of other soil constituents in the soil spectra. 

5.0 ACKNOWLEDGEMENTS 

Contributions by EL-NASA of ER-2 and Twin Otter flights with AVIRIS over the Sheely Farm in Lemoore 
am gmtefully acknowledged. Also, the researchers wish to thank the USDA, Natural Resources Conservation 
Service for the staff time provided through an Interagency Personal Agreement with University of California, Davis. 
A portion of this study was funded by NASA EOS grant #NAG59360. The cooperation of Ted Sheely, of Mal 
Farm Management, is greatly appreciated. 

The general shape of soil spectra SWIR region is related to water's fundamental absorption slightly beyond the 
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