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Introduction

This publication contains the proceedings of the JPL Airborne Earth Science Workshop—a forum held to
report science research and applications results with spectral images measured by the NASA Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion
Laboratory from February 25-28, 2003.






EO-1 HYPERION MEASURES CANOPY DROUGHT STRESS IN AMAZONIA

Gregory P. Asner,' Daniel Nepstad,>* Gina Cardinot,?
Paulo Moutinho,” Thomas Harris,' David Ray®

1. Introduction

Amazon moist tropical forests account for about
70-80 Pg (70-80 x 10" g) of the world’s terrestrial carbon
stocks and roughly 4-6 Pg (~10%) of the annual net
primary productivity (NPP). Because of the large carbon
pools and fluxes in this region, much attention has focused
on the effects of land use on Amazon forest cover and
carbon storage, and on the potential feedbacks to regional
and global climate (Shukla et al. 1990). The role of climate

in modulating interannual variability of Amazon forest
phenology and NPP has received little attention until
recently (Tian et al. 1998, Asner et al. 2000), yet this
variation may be significant from both climatological and
ecological perspectives. Large uncertainties persist
regarding spatial and temporal patterns of biosphere-
atmosphere carbon exchange, and these uncertainties
impede global analyses of CO, sources and sinks, and thus
changes in climate forcing (Ciais et al. 1995). Climate-
driven phenology and NPP variability in the Amazon also
has important implications for basin hydrology, river
biology and biogeochemistry, trace gas fluxes, and spatial

and temporal patterns of land-use change.

There is now increasing focus on the effects of the
El Nifio-Southern Oscillation (ENSO), which is known to.

Figure 2. Cloud cover probability by month for
Landsat imagery of the Brazilian Amazon
(Asner 2001). Whiter indicates fewer clouds.

Figure 1. Interannual precipitation variability in the
Amazon basin. ENSO periods (1983, 1987, 1991-

1992) can be linked to decreased rainfall, especially
in the southeast region of the basin (Asner et al. 2000)

decrease rainfall in the Amazon basin (Marengo 1992). For
example, the 1983, 1987, and 1991/92 ENSO events varied in
strength, but all resulted in anomalously low precipitation
throughout much of the region (Figure 1). Because the factors
controlling forest phenology and productivity throughout the
tropics are not well known, independent observations are needed to
evaluate estimates of a biological response to climate variation.
Whereas annual variations in rainfall are starting to be
understood in the Amazon Basin, seasonal variations are not well
known. There is a pronounced dry season that extends from June
to November throughout the eastern and central Amazon, but
spatial variation in the strength of this dry season remains poorly
quantified. Phenological losses of canopy foliage are reduced
during the dry season through forest deep root access to soil water
reserves (Nepstad et al. 1994). Nonetheless, field measurements
do show that Amazon forest canopies respond to seasonal dry
periods, with litterfall increases of 10-35% and decreases of total
leaf area index (LAI) of up to 30% (Asner et al. 2000, Nepstad et
al. 2002). Cloud cover information from more than 54,000
Landsat images of the Brazilian Amazon yielded a spatial proxy
for seasonal rainfall patterns in the Amazon, as shown in Figure 2.

' Carnegie Institution of Washington, Stanford California
? Instituto de Pesquisa Ambiental da Amazdnia, Bélem, Brazil
* The Woods Hole Research Center, Woods Hole, Massachusetts



The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and
precipitation from June through November.

There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index,
canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne
studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy
responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation
and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water
availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual
drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling
available from Landsat and AVHRR sensors.

We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical
forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field
data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that
spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy
stress resulting from water availability.

2. Study Region and Areas

The experiment was located in Brazil’s Tapajos
National Forest, in east-central Amazonia (2.897° S, 54.952°W;
Figure 3). This forest receives 600—3000 mm of rain each year,
with a mean of 2000 mm; it experiences severe drought during
El Nifio events (Figure 1). The forest is situated on a flat terrace
of Tertiary sediments capped by the Belterra Clay Formation,
and is approximately 90 m above the water level of the Tapajos
River, located 10 km to the west. The Oxisol soil (Haplustox) is
dominated by kaolinite clay minerals and is free of hardpan or
iron oxide concretions in the upper 12 m. The water table is
located at ~100 m depth.

We selected two floristically and structurally similar, Figure 3. (left) Location of forest drought
one-ha (100 x 100 m) plots from an initial survey of 20 hectares | ©Xperiment in the central Brazilian Amazon.
of forest. We encountered 182 and 203 species represented by (EEnFLaosaY igge ol orestotought.
individuals with diameter at breast height (1.3 m, dbh) of at least ?rxPcr.im?;t g clantroltarea, boioated) wihijn the
10 cm (trees) and 5 cm (lianas) in the treatment and control HELE i
plots, respectively. The plots shared 54 tree species in common with at least 2 individuals per plot, therefore
allowing us to compare responses to the experimental treatment within the same species. The plots also had similar
physiognomy, with the exception of a 600-m” treefall gap on the edge of the control plot. The forest surrounding the
plots had emergent trees up to 55 m in height, with continuous canopy varying in height from 18 to 40 m. The study
plots were placed in areas where most of the canopy was <30 m high to facilitate access to the tree crowns. Above-
ground biomass of trees =10 cm dbh and lianas =5 c¢m basal diameter at the beginning of the experiment was 291
and 305 Mg ha-1 in the treatment and control plots, respectively.

At their closest points, the plots were 25 m apart. Four wooden towers (13-30 m in height) and 80-100 m
of catwalk (8-12 m height) provided access to the canopy in each of the 1-ha plots. Soil shafts (12-m deep, with 2.1
x 0.8 m openings, n=3 per plot and n=5 as of April 9, 2001), with a wooden infrastructure, provided belowground
access. Sampling grids with 10-m distances between points were established with 10 x 10 points inside of each plot
and a perimeter of sampling points outside of each plot, for a total of 12 x 12 = 144 points. These grids were used
for measurements of surface soil water content, leaf area index, canopy openness, and other measures. A 1-to
1.7-m deep trench was excavated around the treatment plot to reduce the potential for lateral movement of soil water
from the surrounding forest into the plot, and to provide a conduit for water exciuded from the plot. A similar trench
was excavated around the control plot to avoid the confounding of throughfall exclusion and trenching effects. As
with many large-scale ecosystem manipulations, this experiment was prohibitively large and expensive to permit
replication.

Throughfall was partially excluded from the treatment plot during the rainy season of 2000, from late
January through early August, and during the rainy season of 2001, from early January through late May, using
5,660 panels made of clear, PAR-transmitting greenhouse plastic mounted on wooden frames. The panels were
removed during the dry season to reduce their influence on the forest floor through shading and heating. The panels




increased forest floor temperature by no more than 0.3°C. While they were in place, the panels were flipped on their
sides every two to three days to transfer accumulated litter onto the forest floor. Each 3 x 0.5 m panel drained into a
plastic-lined, wooden gutter (30 cm wide) that carried the water into the trench, which was also lined with plastic.
Water flowed by gravity from the perimeter trench into a deeper drainage ditch (1.7-2.3 m depth), which extended
220 m away from the plot into a small valley. The panels and gutters covered only ~75% of the forest floor, because
openings we left around tree stems. We did not exclude stemflow from the plot. Estimates of daily rainfall were
made with two wedge-shaped rain gauges located in the center of an §0-m wide clearing 500 m from the
experimental plots. Trampling of the forest floor was reduced in the experimental plots by directing foot traffic onto
wooden walkways. Despite this precaution, 17% of the treatment plot and 15% of the control plot had visible signs
of foot traffic as of January, 2001 (based on three, randomly-placed, 100-m transects across each plot). Forest floor
damage in the treatment plot was greater than in the control plot because of the installation of panels and gutters.
However, the control plot suffered similar forest floor damage because measurements of canopy cover, leaf area
index, litterfall, and throughfall within the sampling grid required ground access; elevated drainage guiters provided
access to the grid in the treatment plot.

3. Field Sampling

The amount of throughfall excluded by the panels was calculated for each exclusion period as the increase
in soil water content in the control plot minus the increase in soil water content in the treatment plot, plus the
difference between deep seepage of soil water (below 11 m depth) in the control and treatment plots. Deep seepage
was estimated as evapotranspiration minus rainfall minus the increase in soil water content for a given time interval.
Evapotranspiration was assumed to be 4 mm per day, based on published estimates for Amazon forest ET during the
wet season. Drought affects forests primarily through its effects on soil moisture. Previous studies have found that
forests in seasonally-dry Amazonia absorb soil water from depths of 8 m and more during periods of severe drought
(Nepstad et al. 1994). We therefore monitored volumetric soil water content (cm’ water cm™ soil) to 11 m depth in
both the treatment and control plots.

We measured soil water using Time Domain Reflectometry (TDR) to a soil depth of 30 ¢cm. The pre-dawn
leaf water potential of mature trees was measured at approximately 2-wk intervals during the dry seasons and at
longer time intervals during the wet seasons to provide a measure of canopy drought stress. Six tree species
common to both forest plots were studied, with three individuals per species in each plot, and four leaves sampled
per individual. Leaves were clipped before sunrise, and stored in plastic bags on ice until water potentjal was
measured using a pressure chamber. Measurements were always completed within one hour of clipping.

We measured leaf area index (LAI) before and during the throughfall exclusion treatment at each of the
grid sampling points using LICOR LAI-2000 Plant Canopy Analyzers. One instrument was placed above the
canopy on a tower to measure incoming radiation with no canopy influence; the other instrument was used for the
understory measurement, made with the same directional orientation as the above-canopy instrument. The
instruments were inter-calibrated above the canopy at the beginning of each set of measurements. Measurements
were made under conditions of diffuse skylight. LAI calculations were made using the inner three quantum sensor
rings to minimize the overlap among measurements made in adjacent grid points.

4. Spaceborne Imaging Spectroscopy

Earth Observing-1 (EO-1) Hyperion imaging spectrometer data were collected over the experimental sites
in July and November 2001, corresponding with the early and late parts of the dry season. Details of the mission are
available on the EO-1 internet website at: http://eol.gsfc.nasa.gov. The imagery was delivered in L1A calibrated
radiance format from NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland. Three calibration steps
were applied to the radiance as suggested by GSFC: (1) a pixel shift was applied to samples 129-256 in the
shortwave-infrared (SWIR) wavelength region to co-register this portion of the data with the visible and near-
infrared (NIR) observations; (2) the visible and NIR bands were multiplied by a scale factor of 1.08, and the SWIR
bands were multiplied by a scale factor of 1.18; and (3) the wavelength values were increased by 2 nm for all bands.
These steps were necessary to bring the data set up to the currently available calibration level. The Hyperion data
were then spectrally and spatially subset. The zero-value visible bands 1-4 and SWIR bands 226-242 and the
overlapping bands 58-78 were removed, resulting in a 200 band subset.

Apparent surface reflectance was estimated from the Hyperion radiance data using the ACORN
atmospheric correction algorithm (AIG-LLC, Boulder, Colorado). ACORN uses the 1.14 um water vapor feature to
compute atmospheric water vapor thickness. The water vapor bands near 1.4 and 1.8 um were then removed. The



resulting reflectance spectra still contained some anomalies; however, no ground calibration was applied since the
noise was not systematic.

The two calibrated spectral reflectance cubes were geo-located using differentially-corrected GPS data
points collected throughout the area. Owing to the fact that all calibration steps, including atmospheric correction,
are not perfect, and given our interest in isolating relatively small differences in canopy reflectance between the two
sites, we employed a comparative analysis of the sites by ratioing spectral signatures. Since the two sites were close
together spatially, site-based ratioing of the results eliminated the contribution of atmospheric differences to the
multi-date comparison of sites.

5. Spectroscopic Indices

Imaging spectroscopy offers a unique set of observations — and thus tools — to analyze the molecular
absorption and scattering features of materials. Traditional multi-spectral observations, such as from Landsat,
SPOT, AVHRR and MODIS sensors, provide a subset of the capabilities provided by hyperspectral imagers.
Although imaging spectroscopy affords the means to analyze full spectral features of materials, many vegetation
indices have been developed to condense and simplify the analysis of high-dimensional spectral data while also
attempting to maximize the information content of the indices. The normalized difference vegetation index (NDVI)
is a prime example. The NDVI is the normalized difference of reflectance at red (~680 nm) and near-infrared
(~750-850 nm) wavelengths ( = [NIR-RED]/[NIR+RED]). The NDVI is sensitive to canopy greenness, fractional
photosynthetic radiation absorption (fPAR) and canopy leaf area. It is available from nearly all multi-spectral
sensors. However, the NDVTI is also known to become insensitive, or to saturate, in canopies with leaf area indices
(LAI) greater than about three or four (Choudhury 1987, and many others).

Novel vegetation indices have been developed using imaging spectrometers. These indices are derived
from a variety of spectral channels, often using observations from very narrow wavelength regions of the spectrum.
Because leaf pigments absorb photons at visible wavelengths (400-690 nm), whereas water absorbs in near-IR
(750-1300 nm) and shortwave-IR (1500-2500 nm) regions, a narrow and contiguous sampling of the spectrum at
these wavelengths allows the development highly sensitive indices. The following are a few indices that have
proven useful to understanding the spatial and temporal dynamics of vegetation:

Table 1. Five narrowband vegetation indices available for analysis from the EO-1 Hyperion spaceborne imaging
spectrometer.

| Index Index Name Equation Reference |
NDVI Normalized Difference (R800-R680)/(R800+R680) Choudhury (1987)
Vegetation Index
SR Simple Ratio R800/R680 Sellers (1985)
NDWI Normalized Difference (R857-R1241)/(R857+R1241) Gao (1996)
Water Index
PRI Photochemical (R531-R570)/(R531+R570) Gamon et al. (1992)
Reflectance Index
ARI Anthocyanin (1/R550) — (1/R700) Gitelson et al. (2001)

Reflectance Index

The simple ratio (SR) is one of the oldest vegetation indices. Like the NDVI, it is sensitive to canopy
greenness, fPAR and leaf area. The normalized difference water index (NDWTI) was designed for sensitivity to
canopy water content (Gao 1996). Two pigment-related indices unique to imaging spectroscopy are the
photochemical reflectance index (PRI; Gamon et al. 1992) and anthocyanin reflectance index (ARI; Gitelson et al.
2001). The PRI has been used to study changes in xanthophyli cycle pigments, providing a means to estimate
photosynthetic light-use efficiency (LUE). Anthocyanins are water soluble pigments that cause the red coloration of
plant tissues. These red pigments are expressed differentially by species and within species, with observed
variations resulting from leaf aging, stress and nutrient status.

We used the EO-1 Hyperion spectrometer observations to calculate these five narrow-band vegetation
indices. We ratioed the sites to look for differences that might be the result of precipitation throughfall exclusion in
the Amazon forest dry-down experiment.



6. Results and Discussion

Differences in plant available water (PAW) in
the soils of the drydown and control forest areas were
pronounced (Figure 4). In comparison to the control
area, PAW was 54% and 56% lower in the drydown
site in July and November, respectively. Decreasing
PAW followed the well-known monthly pattern of
decreasing rainfall during the dry season (June—
December), but the precipitation throughfall exclusion
greatly enhanced the effect of seasonal drought on the
drydown forest area (Figure 4).

The average canopy reflectance spectra from
EO-1 Hyperion of the dry-down and control areas are
shown in Figure 5. A zoom graph of the visible (500—
700 nm) spectral range and the spectral bands used to
create the narrow-band vegetation indices is also
provided. Visible reflectances were higher and near-IR
reflectances were lower in the early dry-season (July) in
comparison to the late dry-season (November). These
differences between imaging dates likely resulted from
changes in upper-canopy architecture, canopy water
content, and LAI; however, a precise cause for this
observed change is not clear. It is also possible that
these general differences in the visible and near-IR
spectral regions are due to atmospheric effects.

Both canopies maintained LAI values in July
and November, and these LAI values were well into the
saturation zone for both the NDVI and SR (Figures 6).
The LAI of the control area actually increased from
July to November, while it decreased slightly in the
drydown site. Leaf water of the drydown and control
canopies was also similar in July and November
(Figure 6).

Despite the similarity of LAI and leaf water
within each site at the beginning and end of the dry
season, there were substantial differences between the
two sites on each imaging date. The drydown site had
an average LAI value that was 8% and 19% lower than
the control area in July and November, respectively
(Figure 6). While leaf water was nearly the same in the
drydown and control sites in July, the drydown area
was nearly 30% lower in leaf water at the end of the
dry season (November).

Another important biophysical difference
between the drydown and control areas was found in
the specific leaf area (SLA) values of species common
to both sites. SLA is the leaf area per unit mass, which
is a good inter-species indicator of leaf thickness. SLA
values were nearly twice a high among species in the
control than in the drydown forest areas (Figure 7).
This finding indicated that the vegetation responded to
persistent drought by developing leaves of greater
thickness, which reduced transpiration and increased

leaf longevity.
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Figure 4. Monthly plant available soil water (mm) and
precipitation for the period January 2001-2002. EO-1
Hyperion acquisition dates are shown in black arrows.
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Figure 6. Monthly LAI and mid-day leaf water potential
from January 2001-2002 for the control and drydown
experimental areas. Percentage differences in LAl and leaf
water at each Hyperion observation date are shown in the
legend.




A summary of all major leaf and canopy
properties for the drydown and control forest areas in
July and November 2001 is provided in Table 1. In
July at the beginning of the dry season, plant available
soil water and leaf water potential were both high in the
control area but decreased to moderate levels by the
end of the dry season in November. During both
imaging periods, LAI and leaf thickness (1/SLA) were
very high and low, respectively, in the control area.

In contrast to the control area, the drydown
forest site had moderate plant available soil water and
high leaf water in July. Both of these properties
decreased dramatically to low levels by November.
Meanwhile, both LAI and leaf thickness (1/SLA)
remained high at the beginning and end of the dry
season in 2001 (Table 2).

These differences between drydown and
control forest areas, at the start and end of the dry
season, had differential effects on the hyperspectral
narrowband indices derived from the EO-1 Hyperion
imagery (Figure 8). Interestingly, the ratio of NDVI
and SR values for the drydown and control areas
remained nearly constant at 1.0 in both July and
November. This indicated no measurable NDVI or SR
response of the drought either at the beginning or end
of the dry season. This result is not surprising, given
that the NDVI and SR saturate at LAI values in the
three to four range. This result suggests that multi-
spectral sensors, such at Landsat or AVHRR, cannot
detect changes in canopy “greenness” as provided by
the NDVI or SR for drought conditions in Amazon
humid tropical forests.

In contrast to the traditional NDVT and SR
indices, the canopy water index (NDWT) was highly
sensitive to drought conditions (Figure 8). The ratio of
drydown:control area NDWI was nearly 1.0 (no
difference) at the beginning of the dry season (July) but
decreased substantially to about 0.25 by the end of the
dry season in November.
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Figure 7. Specific leaf area — a measure of leaf thickness —
for four species common to the drydown and control forest
areas.

Canopy Properties and Changes During Dry Season

Controf Forest July November
Plant-avail Water High Moderate
Leaf Water High Moderate
LAl Very High Very High
Leaf Thickness Low Low
Drydown Forest

Plant-avail Water Moderate Low
Leaf Water High Low

LAl High High
Leaf Thickness High High

Table 2. Summary of leaf and canopy properties in the
control and drydown forest areas in July and November
2001.
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Figure 8. Ratio of narrowband vegetation indices for drydown vs. control areas, derived from EQ-1 Hyperion in July

ST

A A




This result suggests that the NDWI is sensitive to canopy foliage area and water content at high values
obtained by tropical forests. This also indicates that the effects of the precipitation throughfall exclusion were best
observed at the end of the dry season, when the affects of drought are at maximum. These effects were most evident
in the plant available soil water, leaf water and leaf thickness data obtained in the field (Table 2).

Light-use efficiency (LUE), or the amount of carbon uptake by vegetation per unit energy absorption, is a
critically important determinant of net primary production in ecosystems (Field et al. 1995). Hyperion observations
indicated about a 20% higher and a 20% lower LUE in the drydown area in July and November, respectively (Figure
8). It is difficult to ascertain the cause of increased LUE in the drought-stressed forest at the beginning of the dry
season. It is possible that this site had a flush of new foliage prior to the July image, a potential response to foliage
loss in the previous dry season. This hypothesis is supported by the concomitant observation of 60% higher
anthocyanin levels (ARI; Table 1) in the drydown site at the beginning of the dry season. Anthocyanin, or leaf
redness, is a general indicator of newly-formed foliage prior to the full development of chlorophyll pigments that
changes the leaf color to green. The much lower LUE in the drydown (vs. control) by the end of the dry season is
more understandable, as the drought site had much less leaf water at this time of the year. A simultaneous indicator
of anthocyanin levels (ARI) showed 40% lower values in the drydown as compared to the control area in November.

7. Conclusions

The results presented in this communication indicate that narrowband vegetation indices available from the
spaceborne imaging spectrometer, EO-1 Hyperion, can be used to monitor drought impacts on humid tropical
forests. The first-ever measurements of soil and plant water stress at the landscape scale were combined with the
first-ever spaceborne imaging spectrometer observations to test the sensitivity of these hyperspectral indices. We
found that:

a. Drought stress in the central Amazon is most evident in decreased plant available soil water, leaf water
potential, and specific leaf area.

b. Narrowband NDVI and SR observations are insensitive to changes in leaf area index and canopy water
content in humid tropical forests.

c. Narrowband canopy water observations (NDWT) are highly sensitive the changes in canopy leaf area and
water content in humid tropical forests.

d. Narrowband pigment indices related to light-use efficiency and anthocyanin levels indicate the onset of
stress effects caused by chronic water stress.

These preliminary findings strongly suggest that only narrowband, hyperspectral observations can be used
to detect canopy drought stress in humid tropical forests such as in the central Amazon Basin. Additional
spaceborne imaging spectrometer observations are critically needed to continue this assessment in other forest types
and climatic conditions.
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Retrieval of Marine Water Constituents Using Atmospherically Corrected
AVIRIS Hyperspectral Data

Sima Bagheri' and Steef Peters’

1. INTRODUCTION

This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New
Jersey-New York to retrieve accurate water-leaving radiance spectra and chlorophyll concentration from the
Airberne Visibile/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer data. MODTRAN-4 was applied
to remove the effects of the atmosphere so as to infer the water-leaving radiance. The study area - Hudson/Raritan of
New York and New Jersey (Figure 1) is an extremely complex estuarine system where tidal and wind-driven
currents are modified by freshwater discharges from the Hudson, Raritan, Hackensack, and Passaic rivers. Over the
last century, the estuarine water quality has degraded in part due to eutrophication, which has disrupted the pre-
existing natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing
oxygen demand, and leading to episodes of hypoxia. As the end result, a thematic map of chlorophyll-a
concentration was generated using an atmospherically corrected AVIRIS ratio image. This thematic map serves as
an indication of phytoplankton concentration. Such maps are important input into the geographic information system
(GIS) for use as a management tool for monitoring water resources.

Sampling Stations

Figure 1. Map of the study area with the locations of sampling stations
2. MATERIALS AND METHODS

The research was based on imaging spectrometer data from AVIRIS, field spectroradiometer, and water
samplings. Based on these measurements optical water quality models are constructed linking the water constituent
concentrations to (i) the inherent optical properties (IOP), using the specific inherent optical properties (SIOP), and
(ii) to the subsurface (ir) radiance reflectance (Bagheri and Dekker, 1999, and Bagheri et al., 2000 and 2001. A
simple optical water quality model was calibrated on measurements of optical water constituent concentrations and
inherent optical properties and used to simulate subsurface irradiance reflectance (or water leaving radiance). The
following is a brief description of the field/laboratory method used to establish the IOPs of the estuary for retrieval
of water quality concentrations from the AVIRIS data:

A) Upwelling and downwelling radiances/irradiances (E, and E4) were measured using the OL754 field
spectroradiometers. The goal was to parameterize the bio-optical model relating the CDOM, TSM and algal

! New Jersey Institute of Technology
? Vrije Universiteit, The Netherlands
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pigment concentrations, to the light absorption and scattering and to the water leaving radiance, through direct and
laboratory based optical measurements. In short, the link between remotely sensed upwelling radiance and
underwater inherent optical properties is made through subsurface irradiance reflectance R(0-).

B) To estimate optically-important water quality parameters coincident with the R(0-)measurements, samples
(0.2 to 0.5 m depth) were taken for laboratory analysis. Standard procedures (Rijkeboer et al., 1998) were used to
determine concentrations of total chlorophyll-a (TCHL) defined as the sum of chlorophyll-a and phaeopigment (to
index phytoplankton abundance) and total suspended matter (TSM). TCHL and TSM were determined according to
the Dutch standard methods NEN 6520 (1981) and NEN 6484 (1982) respectively. TCHL varied between 22 mg m’

3 and 46 mg m” indicating that sampling did not coincide with any major phytoplankton bloom. Likewise, TSM (7-
11 g m™) was not remarkably high nor low for this time of year. Phytoplankton species were also identified and
enumerated in the samples for inclusion in the library spectra of the estuary.

C) The two IOPs measured directly were spectral absorption (a) and spectral beam attenuation (c), using an
Ocean Optics-2000. (Note: Use of this device for measuring IOPs is experimental and has not been referenced in the
published literature.)

Spectral scattering (b) was then deduced via subtraction of a from ¢ (b=c-a).

A simple optical water quality model based on the work of Gordon (1975) was calibrated for measurements of
optical water constituent concentrations and inherent optical properties and used to simulate subsurface irradiance
reflectance (or water leaving radiance).

R(0-) = r (by/(atby)) 6

Where
a is the total absorption coefficient, by, is the backscatter coefficient
r is a factor based on the geometry of incoming light and volume scattering in the water.

The water constituents are expressed in their specific (per unit measurement) absorption and backscattering
coefficients:

a=ay+a TSMTSM +a*phCHL+a*CDOMCDOM440 @)
bp = bhwtbTSMTSM

The asterisks denote that a and by, are specific inherent optical properties (SIOP), i.e. per unit concentration denoted
by the subscript.

The inversion of such a model (using semi-analytical algorithms) can be used to characterize the estuarine
waters in terms of chlorophyll concentration, colored dissolved organic matter and total suspended matter from the
observed spectra. Validation of the concentration estimates by optical means and the AVIRIS atmospheric
correction is based on in situ measurements of spectra and concentrations.

3. SIMULATION MODELING AND RETRIEVAL TECHNIQUE

The AVIRIS images the earth's surface in 224 spectral bands approximately 10 nm wide covering 400-2500nm.
AVIRIS records the integrated effects of the solar source, the atmosphere and the targeted surface. To compensate
for the atmospheric effects, an atmospheric and air-water interface correction algorithm based on MODTRAN-4 was
utilized. MODTRAN is a radiative transfer model developed by US Air Force Geophysical Laboratory which
describes the radiative transfer process in the entire system from the solar source to the remote sensor via the
hydrosols. A quantitative treatment of radiative transfer and atmospheric correction is the only way to achieve
accurate (multi/hyperspectral) water leaving radiance measurements from satellite and airborne observations and to
obtain accurate estimates of concentrations of optical water constituents. The input atmospheric parameters used in
MODTRAN-4 were as follows:

Horizontal visibility = 20 km Midlattitude summer atmosphere urban (5km) aerosol model
Solar zenith angle=55 Solar azimuth angle=83
Modtran 16 streams mode O3 scaling factor = 2.0

The above parameters were applied to the spectra where in situ measurements were collected during the course
of the project (1999-2001). MODTRAN was able to bring the envelope of AVIRIS spectra reasonably close to
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simulated spectra but the results dictated the reconstruction of the “true” values of the band ratio image (702/675)
based on chlorophyll field observation and measured SIOP (Figure 2). Results of Modtran are summarized as
follows:

1) There is considerable spectral noise
2) There are significant deviations in bands 675 and 702 nm
3) There are unexplained large differences in the blue and NIR

a'cpo ! a'rsmm’ gt

. 2 -1 . 2 =
b'rsam g a'row, M*mg”
ami? by m!

~ SIORInAVIRIS bands
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Figure 2. Measured SIOP were input into the forward Gordon model to simulate specira at the Keyport Harbor (5t5)
and Traid Bridge (St4) locations for comparison with AVIRIS spectra.

A semi-analytical CHL algorithm was applied to obtain a reasonable estimate of the spatial distribution of
CHL concentration (Figure 3). Atmospherically corrected ratio image of the AVIRIS was generated as a thematic
map to represent the spatial distribution of CHL concentration as indication of phytoplankton concentration
(Figure 4). The following is a summary of the procedures applied:

1) A CHL algorithm was fitted on simulated spectra

2) The ratio image (702/675 nm); based on atmospherically corrected AVIRIS bands) was scaled between
reasonable values based on a priori knowledge of possible CHL concentrations sampled at Keyport
Harbor (St5) and Traid Bridge (St4) sampling locations

3) The CHL algorithm was applied to the scaled ratio image to obtain the spatial distribution of CHL
concentration

The simulation modeling demonstrates the value of AVIRIS observations. The result of the analysis as shown
in Figure 3 can be summarized as follows:

1) Spectra below 500 nm are uncorrectable and unreliable.

2) The envelope of the spectra is quit irregular, indicating that there remains a substantial amount of sunglint
within the AVIRIS data.

3) The irregularity of the spectra is such that the balance between 670 and 700 nm observations seems to be
affected, making CHL determinations based on ratios difficult.

4) The general shape of the envelope and the range of values seem to be realistic for 500 and 750 nm.
Although normally the spectral maximum is observed around 550 nm, but in this case it is shifted to the

right.

13



Comparion between an atmospheric corrected AVIRIS spectrum (using MODTRAN) and simulated
spectra at Traid Bridge
(TCHL = 17 and TSM= 13 in 1999)
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0.09 - — TSM=15 TCHL=16
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Figure 3. The AVIRIS spectrum after atmospheric correction was scaled down with 20%. (Note: The scaling
difference may be due to many reasons, primarily due to the time difference between the measurements)

I [ }
Figure 4. Bloom-like structure up the Raritan River as
depicted in AVIRIS atmospherically corrected ratio image
(702/675)




4, CONCLUSION

In our approach IOP of water constituents were used to model the reflectance. A reasonable fit was found
between modeled and measured R(0-) using the optical model and RT code.

We conclude that the AVIRIS spectral data provides the opportunity to distinguish the atmospheric effect from
the marine water effect to set the estimated turbidity for CHL concentration retrieval. Development of a robust
algorithm for simultaneous retrieval of atmospheric aerosol optical properties, CHL, CDOM and TSM is a very
challenging task. Nevertheless, such an algorithm is needed to make progress in this area. The model for the coupled
atmosphere-marine water provides the link between the spectra measured by the AVIRIS spectrometers and the in
situ measurements of spectral irradiances in the water.
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AmeriSat - Requirements Analysis for a
Hyperspectral Land Remote Sensor Constellation for Energy Exploration

Specifications for a Complete, Routine, and Operational Hyperspectral Geological Survey of the
United States and Miscellaneous Regions at 1:24,000 as part of the USGS National Map

Richard Beck, Department of Geography
University of Cincinnati, Cincinnati, Ohio 45221
richard.beck@uc.edu

Introduction

The physical and economic well being of the United States of America depends upon a stable and affordable supply
of abundant energy. Energy security for the United State of America will continue to depend primarily on fossil and
nuclear fuels for the next few decades at a minimum. Efficient and successful exploration for new sources of energy
requires precise and consistent geological surveys. Despite years of global exploration activity, much of the world
and indeed even the United States has not been geologically surveyed at a scale appropriate for energy exploration,
environmental hazard analysis, environmental protection or land use planning.

Need for a Precise U.S. Geological Survey at 1:24.000 as part of the USGS National Map and Gateway to the Earth
Energy exploration requires a precise, consistent and accessible U.S. Geological Survey at 1:24,000. For example,
although the basic unit of geological analysis, the formation (a significant layer or body of rock), is defined as being
mapable at a scale of 1:24,000, less than a tenth of the more than 55,000 1:24,000 scale USGS topographic
quadrangles have ever been mapped geologically and these maps are inconsistent at best. This is especially ironic
given that almost all other U.S. Geological Survey location data are available in the form of high-quality 1:24,000
scale quadrangles (Figure 1).

Energy exploration takes place on a scale of tens of meters, not kilometers and depends on precise moderate
resolution spatial information to make certain that exploration roads are constructed safely and responsibly and so
that seismic crews can negotiate proposed seismic lines with a minimum of environmental impact. Similarly,
seismic shot points are surveyed to meter-scale
precision and exploration wells costing upwards of $10
million each must be located precisely relative to
geologic structure, land ownership, elevation and
location. This is especially true in the case of
directional drilling and detailed three-dimensional
seismic surveys. Hard and soft rock mining operations
require similar precision for sampling and successful
recovery of ore and fossil fuels as well as the safety of
the miners.

Land Remote Sensor Comparison for the 1:24,000 U.S.
Geological Survey

As part of the specification development process for a
‘ land remote sensing system for the 1:24,000 geological
i survey necessary for more efficient energy and mineral
i exploration, we compared the effectiveness of
e historical, current and proposed multispectral and
hyperspectral imaging instruments capable of remotely

Figure 1. Simplified outline map derived from one of Seizmg Hie V}Slble’ e frared, short=wave mﬁ’are{.j,

the few existing 1:24,000 U.S. Geological Survey and thermal-infrared regions of the electromagnetic

geological quadrangle maps. Subsequent figures spectrum (Ta'ble 1).. This specte?l versatlhty_ is

show this outline map superimposed upon Landsat, necessary to differentiate and to identify the geological

ASTER and AVIRIS imagery for comparison. formations to be surveyed in a semi-automated manner
(Dwyer et al., 1995).
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We chose a test site in an area known to produce petroleum, coal, oil shale and uranium. These were the same test
site considerations identified by Bailey et al. (1984) in their comparison of the Landsat Multispectral scanner (MSS)
and Thematic Mapper (T.M.) instruments flown on Landsats 1 through 5. Their results will not be repeated here
although we have chosen the same primary test site on the western edge of Dinosaur National Monument to
facilitate comparison of historical, current and proposed land remote sensing systems for geological surveys. We
begin with an evaluation of the suitability of the Landsat satellites for geological surveys at 1:24,000 before
considering two alternatives (ASTER and ALI/HYPERION) as prototypes for the next-generation of geological
survey satellites. We then propose specifications for a new series of next generation land remote sensing satellites
for the USGS named AmeriSat. '

Table 1. Current satellites capable of remotely sensing the complete VIS/NIR/SWIR/MIR/TIR
spectrum necessary for geological surveys.
Spacecraft/Instrument Landsat-7 / EO-1/ALI EO-1/Hyperion | Terra/ASTER AmeriSat
ETM+ (AVIRIS Constellation
prototype used
for this study)
(ALl+ / Hyperion+)
Spectral Range 0.4-2.4 0.4-2.4 microns | 0.4-2.5 microns 0.5-0.9 0.4-2.5 microns
10.7-12.7 1.6-2.4
microns 8.1-11.7
microns
Panchromatic Bands 1 1 Q 0 11
Visible Bands 3 6 60 2 6/35
Near Infrared Bands 1 2 60 2 (stereo) 3/35
Short Wave Infrared 1 1 60 1 1172
Middle Infrared Bands 1 1 60 5 1
Thermal Band 1 0 0 5 1
Spatial Resolution 15, 30,60 m 10,30 m 30m 15, 30,60 m 30 m/15m
Swath Width 185 km 37 km 7.5km 60 km 185/30 km
Spectral Coverage Discrete Discrete Continuous Discrete Both
Pan Band Resolution 15 m 10m N/A N/A 10m
Stereo no no no yes yes
Number of Bands 7 10 220 14 10 and 220
Number of Spacecraft 1 1 1 1 4-6
Temporal Resolution 16 days 16 days 16 days 16 days 4-8 days
( 8 days with
Landsat-5)
Source: NASA EO-1
briefing materials

Summary of Current Satellites Capable of Remotely Sensing Visible/NIR/SWIR/MIR/TIR Electromagnetic
Radiation (Satellites Good for Geologic Surveys)

Natural materials exhibit a very broad “rainbow” of “color”. Only a very narrow slice of this rainbow is visible to
human beings. A series of civilian (USGS/NASA) satellites has been designed to view an increasingly complete
spectrum in steadily narrower slices of the “rainbow” known as bands and in steadily increasing spatial detail.
Table 1 summarizes current satellites that are capable of remotely sensing throughout the visible (VIS), near infrared
(NIR), short wave infrared (SWIR), Middle Infrared (MIR), and Thermal Infrared (TIR) part of the electromagnetic
spectrum. These satellites are capable of seeing all of the parts of the electromagnetic spectrum necessary to
differentiate geologic formations in the case of multispectral (less than 100 bands) satellites and even to identify the
types of minerals in the geologic formations in the case of hyperspectral (generally greater than 100 bands spaced
closely enough to create spectra from images) satellites.

These space-borne imaging instruments (or air-borne prototypes of very recent and proposed space-borne systems)
were compared with each other as well as historical systems to gauge their effectiveness with regard to improving
the efficiency of resource exploration and management at 1:24,000. As one might expect, this comparison
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demonstrated that improved spectral resolution (finer slices of the rainbow) and improved spatial resolution (the
ability to see smaller objects) resulted in progressively more useful imagery for energy exploration.

Landsat MSS Series

The first series of geological survey satellites, the Landsat multispectral scanner (MSS) satellites were crude but
provided regional imagery of some use in energy exploration (4 bands at 80 meter resolution). These satellites could
miss whole football fields and yet they provided the first views of the earth from space for most geologists,
researchers and the public. Research with these images did contribute greatly to the development of plate tectonic
theory and suggested improvements for future satellites for resource exploration. Examples of MSS imagery over

the Dinosaur Quarry Quadrangle test site used here are available in Bailey and Anderson (1982) and Bailey et al.,
(1982, 1984).

Landsat TM Series

The second series, the Landsat thematic mapper (TM) satellites, provided much more complete coverage of the
spectrum and moderately useful spatial detail (5 and 1 bands at 30 and 120 meters respectively) (Figures 2 and 3).
While this series could have been quite useful to regional resource exploration (e.g., Beck et al., 1995)

Landsat ETM+ Series

Although the Landsat system is absolutely
crucial with regard to maintaining the continuity
of our record of global change and to support
regional early warning systems with regard to
food supplies, the rate of deforestation, outbreaks
of plant diseases, drought, and land use change,
its technology is more than two decades old and
the 5 band, 30 meter multispectral data it
produces are not sufficiently detailed for

practical geological surveys at the 1:24.000 scale.

ASTER on TERRA

The advanced spaceborne thermal emission and
reflection  radiometer (ASTER) is a
Japanese/U.S. instrument on a Japanese satellite
that has many improvements over the U.S.
Landsat ETM+ series of satellites but has several

: ) - - features that limit its use for energy exploration.
Figure 2. Simplified outline map derived from one of the few While ASTER has a greater number of bands
existing 1:24,000 U.S. Geological Survey geological with greater radiometric sensitivity than Landsat
quadrangle maps superimposed upon a Landsat-7 ETM+ ASTER’s bands d ¢ h th R i
visible image. The image quality is good but not sufficient 8, ARG O SAEVE HEQ SIS St
for energy exploration. resolution throughout thf: v151l?le and mfrarf_:d
parts of the spectrum. This requires the geologist
to artificially coarsen the visible bands or to artificially resample the infrared bands before statistical processing.

Both processes result in fuzzy images (Figure 4) of dubious statistical validity.

ASTER'’s (as well as Landsat’s) spatial resolution is too coarse to be of extensive use in petroleum exploration
(Figures 2, 3, and 4). This is because most geological surveys are the starting point for subsurface seismic
interpretation and the choice of locations for exploration wells. Petroleum geologists typically record the geologic
formation at each shot point (small wells filled with lots of dynamite) along a seismic survey line in areas of good
geologic exposure (where you can see the rocks at the surface). These shot points or VIBROSEIS stations (places
where heavy trucks shake the ground) are typically spaced every 25 meters along a seismic line to create the
artificial seismic waves later recorded by microphones.

The seismic wave arrival time patterns are interpreted with the aid of surface geology to tell geophysicists the type
of rock and the expected speed of the seismic waves. They then use this time and speed information to calculate the
depth of the various rock units and their structure beneath the ground surface with the help of powerful computers.
Meanwhile, the geologists also collect samples to determine the likelihood of a source of petroleum, the likelihood
of a porous and permeable reservoir, the likelihood of a seal to trap the petroleum beneath the surface, and measure
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the angle of the layers (if any) at the surface to prov1de a series of known starting points for subsurface

interpretation. These data points are then used to
locate the contacts between geologic units with a
spatial precision of approximately 5 to 15 meters
at a scale of 1:24,000.

Given the 25 meter spacing of seismic survey
points and the need to locate geologic contacts
with a precision of 5 to 15 meters at 1:24,000, the
ideal satellite for geological surveys would have a
spatial resolution of at least 15 meters (a four-fold
increase in data density over 30 meter data) or
finer. This requirement for 15 meter spatial
precision means that the 30 and 60 meter spatial
resolution of the short wave infrared and thermal
bands of the ASTER instrument are too coarse for
geological surveys of use to day-to-day petroleum
exploration. Despite these limitations, some
ASTER data will undoubtedly be used for
regional exploration projects given the lack of
more suitable alternatives.

The public domain ASTER data are interesting
scientifically because of their ability to
differentiate (but usually not identify) more rock
types than Landsat-7. The ASTER data will have
enormous educational and research value for
many decades into the future.

ALl on EO-1

The Advanced Land Imager (ALI) on the Earth
Observing (EO-1) satellite represents a new
generation of technology designed to provide
scientific continuity with the Landsat TM and
ETM-+ series of satellites. It promises to be more
useful for regional geological surveys than
Landsat ETM+ given the addition of four more 30
meter visible and near infrared bands and a 10
meter panchromatic band to assist with geometric
registration. The most valuable feature of ALl is
that all of the multispectral bands have the same
spatial resolution. This is the ideal case for the
statistical extraction of the maximum amount of
spectral information. ALI does lack the thermal
bands carried by the Landsat TM, Landsat ETM+
and ASTER satellites. Although the thermal band
is of great value scientifically, it is rarely used in
petroleum exploration.

Multiple thermal bands do have the ability to
differentiate rock types however and at least one
thermal band at the same resolution as the VIS,
SWIR and MIR bands would be useful. ALI data
for the Utah test site only recently became

Figure 3. Simplified outline map derived from one of the few
existing 1:24,000 U.S. Geological Survey geological
quadrangle maps superimposed upon a Landsat-7 ETM+
principal components image. The image quality and
differentiation of many of the geologic formations are fair to
good but not sufficient for energy exploration. Several
formations were missed by this 30 meter image.

T

Figure 4. Simplified outline map derived from one of the few
existing 1:24,000 U.S. Geological Survey geological
quadrangle maps superimposed upon an ASTER principal
components image. The image quality is poor because not
all of ASTER's bands have the same spatial resolution. Its
differentiation of the geologic formations is fair to good but
far from sufficient for energy exploration. Many formations
were missed by this 15/30 meter image.

available. ALI is better than Landsat ETM+ and ASTER in terms of signal-to-noise ratio. It will be very useful for
regional geologic reconnaissance but its 30 meter resolution is too coarse for 1:24,000 scale geological surveys.
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Similarly, ALI's discrete spectral coverage (limited number of widely spaced bands) prevents the use of USGS-
developed automated mineral identification and mapping sofiware (hitp://speclab.cr.usgs.gov) to create the “first
draft” of each quadrangle before field checking and refinement.

As will be shown below, hyperspectral 15 meter spatial resolution satellite image data, while not ideal for very
detailed geological mapping, are a powerful tool that will usually be adequate for rapid geological surveys at the
1:24,000 scale (Figure 5). This spatial resolution represents a good compromise between our needs for
economic/environmental security as well as defense/intelligence security.

Hyperion on EO-1 and its AVIRIS “Proxy”

Hyperion is a hyperspectral sensor that records a continuous series of 220 very narrow bands from the visible
throughout the short wave infrared part of the electromagnetic spectrum (wavelengths of 0.4-2.5 microns). This is
an extremely important feature for rapid semi-automated geological surveys for energy at 1:24,000 scale (Dwyer et
al., 1995). This is because the USGS has developed software that compares the amount of “light” reflected from the
earth’s surface in each one of these bands to laboratory measurements of a wide variety of minerals (as well as
plants). Each mineral has a unique signature that can be used to identify it from space (Clark, 1999; Clark and
Rousch, 1984; Clark et al., 1993; Gaffey et al., 1993; Salisbury, 1993; Swayze et al., 2000).

The USGS software looks at each pixel in the image and its spectrum of “light” (Clark and Swayze, 1995; Dwyer et
al., 1995). It then compares this spectrum of “light” with USGS digital libraries of mineral spectra to identify the
minerals in each pixel before mapping them. These computer generated first drafis of geologic maps can then be
field checked by geologists who examine the nature of the contacts between the geologic formations before
completing the maps.

While actually identifying the minerals in each formation from the satellite is the optimum case, the large amount of
spectral information recorded by hyperspectral instruments can be distilled statistically to differentiate rock types on
the ground with extraordinary effectiveness far beyond that of the human eye. These distilled statistical images can
be created within a few minutes on a modern laptop computer The geo]oglst then 51mply traverses each quadrangle
and assigns an identity to each of the geologic ™ W7 G % A ST S e

formations imaged without having to follow every * - '
contact on foot.

Hyperion data for the test site have only recently
become available. Therefore this study began with
AVIRIS data as a proxy for Hyperion. A simple
comparison of Hyperion vs. AVIRIS has been
added to the end of this study accordingly. The
conclusion is that AVIRIS was a reasonable proxy
for Hyperion but that future hyperspectral
satellites should be designed to imitate AVIRIS as
much as possible given its higher spatial
resolution and higher signal-to-noise ratio. An
example of one of these statistically distilled
hyperspectral images from AVIRIS recorded from
an ER-2 aircraft (a forward principal components
analysis) over the Utah test site is shown in Figure
5. The continuous spectral coverage and 20 meter
spatial resolution of this early proxy for Hyperion Figure 5. Simplified outline map derived from one of the few
demonstrates extraordinary improvement in the existing 1:24,000 U.S. Geological Survey geological

o7 7 ; : : : quadrangle maps superimposed upon an AVIRIS
?(I)j;rl::ti;?s differentiate (and “identify) geologic hyperspectral principal components image. The image

quality is good to excellent because all of the AVIRIS bands
; . ) have the same spatial resolution. Its differentiation of the
Experience with the 15 meter panchromatic band | geologic formations is good to excellent. Nearly all of the

on Landsat-7 (most if its bands have 30 meter | geologic formations were found by this 20 meter spatial
resolution) indicates that 15 meter resolution is resolution image. The precision with which these formations
necessary to confidently differentiate sampling and their boundaries are located is a little too coarse for
petroleum exploration.
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sites at the 1:24,000 scale. As noted above in our discussion of
energy exploration activities, 15 meters is probably the coarsest
practical spatial resolution. To demonstrate this, we scanned one
of the few (paper) 1:24,000 geological quadrangles available
and, subsampled it to 15 meter spatial resolution before
geometrically warping it to match our test satellite and aircraft
imagery (Figure 6). As the reader can see, some of the detail has
been lost but most of the key features are still visible.

The example shown in Figure 7 indicates that the current
experimental Hyperion instrument must be upgraded to 15 meter
spatial resolution for geological surveys useful to energy
exploration. Our experience with 15 meter panchromatic data at
1:24,000 indicates that this is adequate and represents a four-fold
(2 squared) increase in data density. All of these demonstration
data were imported into an ArcView geographic information
system to carefully verify the conclusions stated above (Figures
1-5).

Lithologic Identification vs. Discrimination - Utah “Whole
Rock” spectral mapping with Hyperion and AVIRIS.
Hyperspectral data allow the identification as well as exceptional
discrimination of even similar lithologies for geologic mapping
for energy exploration.

Figure 6. Advanced Land Imager (ALI)
forward principal components of nine
multispectral bands. The image
differentiates most of the formations mapped
by the USGS but does not allow for the direct
spectral identification of lithology. Future
systems would also benefit from higher
spatial resolution on the order of 15 meters.

The 160 bands result in a relatively complete spectrum for every
pixel in the image above. Spectra measured in the field or in the
laboratory from field samples (Figure 8) can then be compared to
each pixel in the image across all of the bands to see if they are
similar to a user defined similarity index such as a user defined
spectral angle threshold. Pixels passing the similarity test are then
shown as white pixels on an output image. The following image
is a map of occurrences of pixels relatively similar to the field
spectrum shown below.

Examples of similarly processed AVIRIS hyperspectral data for
(nearly) the same area are shown below (Figure 9). The reader
will see that the “whole rock” spectra (as opposed to spectra from
spectral libraries of individual minerals) help make up for the
relatively low signal-to-noise ratio and larger pixel size in
Hyperion relative to AVIRIS.

Nonetheless, the higher spatial resolution and higher signal-to-
noise ratio of AVIRIS allow the precise mapping of strata with
outcrop widths on the order of a single pixel with amazing

Figure 7 (left). Atmospherically corrected
Hyperion spectral angle map (SAM) of the

i i imilar to th S ; Ry
fvirnggii 222?:&%%?33\:?ri‘l:“?igtl?nte se continuity as in the spectral angle mapper result in Figure 9.
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ctral Libracd Flet — US.037 bd, DHE, Utah.

Figure 8. “Whale Rock” spectrum UC.097 (White
sandstone from a dipslope of the Cretaceous,
Dakota Formation characterized by hoodoo
weathering and a good kaolinite doublet in the
SWIR.

Pixels passing the similarity test are then shown as white pixels on an
output image. Figure 9 is a map of occurrences of AVIRIS pixels similar
to the sample reference spectrum in Figure 8. The results are more
precise than those of Hyperion, presumably due to its higher signal-to-
noise ratio and smaller pixel size. Future hyperspectral satellites should
attempt to simulate AVIRIS to the extent possible. Spatial resolutions
finer than 15 meters would be useful for energy exploration.

¥. 'f H

As a further guarantee of defense/intelligence security, all 15 meter ‘l“'?"’l
hyperspectral imagery purchased from commercial suppliers by the U.S. -
government should be in the care of the USGS. This will provide U.S. i )
government key control of the data stream and allow selective black outs
of sensitive areas while meeting the genuine need for affordable, high-
quality satellite imagery for energy exploration and U.S. economic-
environmental security.

Conclusion - AmeriSat

The 1:24,000 scale United States geological survey needs to be -
completed in order to ensure the economic security of the United States | Figure 9. Atmospherically corrected
in the 21* century. A new series of land remote sensing satellites meeting AfV TIS sl anr?Ie map .(S/T‘M)

the following specifications must be constructed, launched and used to gir;uirs;n’:r? ea\[:haolse ngc;li‘ glf el)é?rlsjm
meet this need. We refer to this constellation of U.S. geological survey shown in Figure 8.

satellites as AmeriSat. Most of the satellite technology necessary to

complete the 1:24,000 U.S. geological survey already exists. Satellite systems capable of accelerating the survey to
completion in less than two decades must meet the following requirements:

Continuity with the Landsat series (ALI with stereo and a thermal band).

15 meter hyperspectral coverage of the 0.4 to 2.5 micron wavelength region.

A minimum swath width of 30 km to minimize seams within quadrangles.

Free automated data delivery via FTP, or at cost of media (relative to the cost of the satellites).

Off-nadir pointing capability for emergency response.

A constellation of four identical satellites, with a fifth on orbit spare satellite in constant reserve. There are
55,000 quadrangles to cover and the earth is frequently cloudy. This constellation and its ground systems will
be approximately 70 percent of the cost of the AmeriSat system.

SR RN
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7. A partnership with academia, industry and the public from the beginning. The USGS does not have enough
people to get the job done. This partnership should be budgeted at 10% as well.

8. USGS quality control of all geological quadrangle maps to guarantee consistency and availability in GeoTiff
(loss-less raster) and ArcView shape files (as separations similar to those in USGS DLGs). This will also
probably cost around 10% of the total project.

A summary of AmeriSat’s general specifications is listed in Table 2.

Cost

We estimate that the project will cost approximately $250M/year for the next 20 years. Satellite hardware and
ground station construction costs will probably consume 70% of these funds during years 14 and again during
years 10-14, assuming a 6-8 year lifespan for each satellite. Funding will be focused on applications during non-
construction years.

Table 2. Summary of AmeriSat specifications.

Features Specifications
Spectral Range 0.4-2.5 microns
Panchromatic Bands 11

Visible Bands 6/35

Near Infrared Bands 3/35

Short Wave Infrared 1/172

Middle Infrared Bands 1/1

Thermal Band 1

Spatial Resolution 30 mM5m
Swath Width 185/30 km
Spectral Coverage Both

Pan Band Resolution 10m

Stereo yes

Number of Bands 10 and 220
Number of Spacecraft 4-6

Temporal Resolution 4-8 days
Emergency Pointing Capability (similar to Hyperion on EO-1)
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INTRODUCTION

Soil erosion by water runoff is a matter of great concern in both bare and agricultural lands. This
process may lead to significant effects, such as water lost to the soil profile, decline in soil
fertility and productivity, and increased peak stream flow, as well as associated floods. The main
cause of the runoff from rain and overhead irrigation water is the structural crust that develops
over bare soils during rainfall or irrigation events that significantly reduces the soils’ infiltration
rate. The hydraulic conductivity of this crust is a few orders of magnitude lower than that of the
underlying soil (e.g., MclIntyre, 1958; Morin and Benyamini, 1977). Whenever the hydraulic
conductivity of the crust is lower than the rainfall intensity, ponding, runoff and soil erosion will
occur.

Most of the available methods for assessing the physical crust status use disturbed soil samples
that do not represent exact field conditions (Keren and Singer, 1989, 1991) or use simulation
techniques that cannot mirror exact field conditions (Agassi and Bradford, 1999). Consequently,
mapping and predicting soil structural crust processes are of great interest and importance to soil
scientists and farmers. Apparently, crust potential mapping is not a straightforward problem, and
to the best of our knowledge, this technique has never been conducted.

Recent studies by Goldshalager et al. (2001, 2002) and Ben-Dor et al. (2003), showed significant
relationship existed between selected wavelengths readings and infiltration rates, when measured
under controlled laboratory conditions. Further, they were able to create a spectral library that

contains spectra of three soils from Israel, in varying rain energies and crust position, and to
show that a different correlation existed for each soil.

Because significant spectral changes occur within the soil surface as a result of raindrop impact
(see Goldshalager et al., 2002), it is assumed that the hyperspectral technology will enable
capturing of spatial variation within a rain-affected field and will provide a real-time spatial
overview of soil crust related properties (such as soil erosion and infiltration). The purpose of
this study is to examine the feasibility of hyperspectral technology together with careful
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laboratory and field measurements in order to identify soil properties that are related to the
structural crust formation and status over agricultural soils in Israel.

MATERIALS AND METHODS

The area selected for this study is located in the Negev area of southern Israel in the fields of the
Experimental Farm Station of Gilat. The soils in this area are Loamy Loess and defined as Loess
by the local Israeli definition system (Dan and Raz, 1970) and calcic haploxeralf according to the
USDA definition (Soil Survey Staff, 1975). The mechanical composition is 28% clay, 47% silt
and 25% sand and the mineralogy of the soil, estimated by XRD is: ~14% montmorillonite,
~50% kaolinite, ~27% illite and ~17% calcite. The area is relatively dry, having annual
precipitation of about 200 mm concentrated mostly during December through April.

The Flight Campaign

The airborne sensor selected for this study is the Airborne Image Spectrometer for Applications
(AISA) (Mékisara et al., 1993). The AISA is a programmed computable push broom airborne
imaging spectrometer with wavelength range between 400 and 900 nm. The size of the CCD
detector array is 384 by 286 pixels and the spectral bandwidth is >1.5 nm (max. 186 channels)
which can be summed up to 9.6 nm. The swath width is 384 pixels and the IFOV is 1 mrad,
enabling a pixel size of 1 meter from 1000 meter altitude where the FOV is 22°. The integration
(exposure) time is 4 ms, and the pixel data is digitized to 12 bits. On March 24, 2001, the AISA
sensor was mounted onboard a twin engine piper Aztec aircraft and flown over the study area in
altitude of 3000 meter (providing about 3 meter pixel size and 1.2 km swath) with 30 spectral
bands (421-888 nm) characterized by Full Width Half Max (FWHM) ranging from 1.55 to 1.71
nm. The signal-to-noise ratio of the sensor over a 50% albedo target provides reasonable values
ranging around a value of 90 (maximum 125 minimum 20). The raw data was radiometerically
converted into radiance using laboratory calibration file provided by the SpecIm© company
which were collected prior to the flight. The radiance data were corrected into reflectance units
using an ACORN code (Atmospheric CoRrection Now, ACORN, 2001) polished by ground
reflectance spectra of 4 soil samples that were taken during the overpass on the ground.

Laboratory Study

Rain Simulator

Soils were collected from a nearby field, brought to the laboratory, air-dried and then, passed
through a 4-mm sieve. Two experiments (several months apart) using two batches of soils were
employed to determine the relationship between the spectroscopy and the infiltration rate of the
soil in the laboratory. The soils in each experiment were identically packed into 30 x 50-cm
perforated soil boxes, 4 cm deep, over a layer of 6 cm coarse sand. Four runs (two for each
experiment) were employed. For each run, the boxes were placed on a soil box carousel, 5 boxes
per run, at a 5% slope, and were subjected to a simulated rainstorm, using distilled water (Morin
et al., 1967). In each experiment, at first run, the simulated rainstorm provided a fog type rain (no
energy), having intensity similar to the infiltration rate of the soil. The storm lasted until the
measured rate of percolation (in this case also infiltration) reached that of the measured
simulated rainstorm intensity. Then the rainfall was stopped and the soil boxes were left to rest
until drainage ceased from all the boxes. One soil box was randomly taken out and
photographed. At this stage the rainfall energy was changed to ~22.3 joule mm” m? The
carousel was rotated again with four of the remaining soil boxes, which were subjected to
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rainstorm intensity approximately similar to the initial infiltration rates of the soil. At first the
storm lasted until ~3.5 mm of rainfall had been applied (equal to ~70-80 joule) during which
time the infiltration rate was continuously measured. Then one box was randomly removed and
photographed. This procedure was repeated several times until ~89 mm of rainfall was
accumulated (see Table 1 for more details). After the rainstorm was stopped, the soil boxes were
oven-dried for 48 h. at 35°C and then for a week at room temperature. In Table 1 also given are
the equivalent infiltration rate measured for each rainstorm event, the accumulated rain amount
and its corresponding energy are presented. Fifteen to twenty soil samples were taken from each
box for spectral reflectance measurements in the laboratory without disturbing the soil crust.
These measurements were catried out, using ASD spectrometer with a portable light source that
measured a soil sample under a constant halogen illumination and reflectance geometry
conditions across the VIS-NIR-SWIR region (0.4-2.4 um). The reflectance of the soil samples
was measured against Halon, and the final spectrum of each measurement was presented relative
to this reference. An average spectrum for every rain treatment was calculated, using the samples
taken from each soil box. The spectra were stored and later processed to analyze the spectral-
infiltration relationship. In several locations around the study areas, samples were collected from
the surface (the upper 1 cm), covering an area of about 5 m?, brought to the laboratory and
analyzed for CaCO:;.

Table 1: Infiltration rate and rain storm energy for each treatment
used in the crust simulator experiment.

Accumulated Rain Energy Infiltration Rate Rain Accumulation
(Joule) {mm/Joule) (mm)
0 44 0
0 48 0
71 32 3.2
80 37 3.6
109 28.5 4.9
145 24 6.5
160 35 7.1
216 21 9.7
280 30 12.5
290 17 13
400 25 17.8
506 11.5 22.7
560 17.5 25
613 11.5 27.5
800 12 35.6
1012 7 45.4
1270 7 57
1842 3.5 82.6
1985 46 89

Field Measurements

During the overpass, soil samples were collected around the area from several targets to enable
rectifying the radiometric measurements into relative reflectance. Four controlling soil plots,
within the agricultural areas field of Gilat farm, were selected to study the crust spectral response
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from the air. The plots were characterized by a noticeable crust that formed during rainstorm
events that lasted two months (100 mm). Each plot was divided into two subplots: 1) the “non
crust” plot, composed of bare soil, with the thin crust broken by a gentle plowing of the upper
soil layer 24 hours before the flight, and 2) “crusted” plot, composed of crust soils (formed by
natural rain) with noticeable crust occurrences. The last rain event in the area (affecting the
“crusted” plots) was reported in March 10, 2001 (2 mm) suggesting that the soil maintained a
basic hygroscopic moisture capacity which was measured to be around 4%.

Results and Discussion

Figure 1 provides a gray scale subset image that sampled from the entire flight line image and
covers the study area. Also overlain in this image are selected controlled plots and the exact
locations of the soil sampling for the CaCO; determination. The study area is rather flat,
characterized with vegetation (beans, barely and wheat) side by side to the bare soil plots (with
and without organic residual). The soil plots are marked on the image (1-4) to draw the attention
for further discussion. From looking on the image it is noticeable, that albedo variation occurred
within these selected plots (1-4) as well as within other areas along the image. One of the basic
factors that control soil brightness in an arid environment is the CaCO; content. Basically, this
component can be assessed from hyperspectral technology, simply by using the strong
absorption feature at 2330 nm (Gaffey, 1986). However, as the AISA sensor does not cover the
SWIR region, this information cannot be extracted from the current data base and hence cannot
confirm or reject the above brightness assumption. To check this, we used the 18 soil samples
(randomly sampled) and their CaCO; content measured in the laboratory. Plotting the CaCO;
content versus the albedo parameter of each ground target (calculated from the area under the
spectral curve between 489 to 888 nm) shows no correlation between the two (Figure 2). This
suggests that the albedo tone variation may have emerged from another source and probably
from the physical crust formation.

Figure 3 presents a ground overview of one of the field plot (Plot-3 in Figure 1) after breaking
the soil crust with a discus (non-crusted) at 24 hours before the flight, whereas some small-
crusted areas can be visible at the edge of this plot. The photo also shows a close Nadir view
from 80 cm. It is evident that by naked eyes, a soil color changes from bright to dark tones is
visible within the soils based on their crusting position.

Extracting the spectra of each plot (calculated from an average of about 40 pixels) showed that
the spectral base line (and hence the soil albedo) is higher in the crusted soils than in the non-
crusted soils. Figure 4 provided the spectral reflectance of the selected plots, with and without
the crust layer. The crust plots are higher in about 3-6% (reflectance units) or about 30% (in
relative values) than the non crusted plots.
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Figure 1: The study areca on a grayscale image (band 14, 576 nm): (a) the position of the
controlled plots (crusted and non-crusted) and (b) the ground soil sample (for CaCO; content
analysis) overlain.

0.25
0.2 .,
. "
..ugJ 0.15 . ,“ . °
2 * .
< 0.1
y=0.0004x + 0.1524
0.05 1 R?=0.0101
U T I I
0 10 20 30 40
CaCo3 (%)

Figure 2: The relationship between the CaCO; content versus the albedo (the areca under the

spectral curve between 489 to 888 nm) of the samples shown in Figure 3.
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Figure 3: An overview image of Plot 3 in its discus position (noh—cmsted). Also provided are two
enlargement images showing the crusted (a) and non-crusted (b) soils from a distance of 80 cm.
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Figure 4: The reflectance spectra of the controlled plots in both crusted and non-crusted position.
Dot lines represent the crusted soil (light tones in Figure 1) and solid line the non-crusted soil
(dark tones in Figure 1).

Figure 5 provides an overview of the soil in the laboratory tray after applying rainstorm at
energies of 613 and 1842 joule/m? (taken from the first experiment). Also presented is the bulk
soil with no rain energy (non-crusted soil). It is well observed from this figure that albedo
changes occur in the direction just as observed in the field: in the high raindrop energy—the soil
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Laboratory Experiment

a b c

i :
Figure 5: Three images showing the crust position after the rain simulator treatments in three
different rain energies: (a) 0, (b) 613 joule m?, and (c)1842 joule m*.
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are brighter, whereas in the low (or no) raindrop energy—the soils are darker. The spectra of all
treatments are given in Figure 6 (a,b). As well seen, a noticeable spectral sequence occurs, going
from a low raindrop energy (low crusted) to a high raindrop energy (highly crusted) rain. These
values are equivalent to high and low infiltration rates respectively, as measured simultaneously
during the rainstorm event and are given in Table 1. The overall reflectance changes in the
laboratory were found to be similar to what were found in the image: 3% in the lower energies
and 8% in the highest energies levels. As seen, the shape of the spectra is constant with rain
energy (no new spectral features or slope changes occurs when going from one rain energy to
another) where the only significant spectral change is the reflectance offset. It is interesting to
note that Goldshalager et al., 2001 have found that in the SWIR region, not only albedo changes
are noticeable, but also changes in the spectral features positions and intensity occurs. This is
based mainly on the specific spectral information of OH in clay minerals across the SWIR
region, which is not active in the current AISA VIS-NIR spectral region.

Laboratory Experiment Batch 1 Laboratory Experiment Batch 2
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Figure 6: The laboratory spectra of the crusted soil after applying different rain energies to the
soils (a represent the first experiment and b represent the second experiment taken in few months
apart).

Although the VIS region is less informative than the SWIR region, the albedo changes observed
in the laboratory treatments suggest that quantitative relationship between spectral parameters
and the crusting phenomenon may be possible. To quanitively assess this relationship, we
calculated the Normalized Spectral Area (NSA), which is the area under the ratio curve
(generated by using a crusted soil (test) spectrum against standard non crusted soil spectrum
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(reference)). The ratio spectra are given Figure 7(a,b) and show that the ratio spectra increased as
the rain energy increased and the infiltration rate decreased. Plotting the area under the ratio
curve (NSA) against the infiltration rates is given in Figure 8. A significant relationship between
the two parameters (infiltration rate versus the NSA) was obtained (r2= 0.83). In order to apply
the NSA model to the field data, the reflectance image data were processed as the laboratory
spectral data. In this regard, we selected a polygon from a selected “non-crusted” sub plot of
plot-3 (see Figure 1) and used it as a reference in which every pixel in question may be
calculated for its NSA. In order to apply the calibration equation obtained in the laboratory for
the entire area, all non-soil pixels were masked out and then the model was applied on a (soil)
pixel by pixel basis. The result is an image given in Figure 9 with a color ramp representing the
“Infiltration Rate” (InR) values. In the processed image, several areas holding high and low InR
values can be seen. The low InR area (marked as A on the image) is a plowed (dry) field, which
exhibits NSA values within the detection limit of the InR calibration curve. Based on the NSA
values of this soil, it is assumed that the current plot is holding a good (non) crust condition in
which the soil infiltration potential is high and the erosion risk is minimal. The high InR areas
(marked as B, C and D) are holding InR values that are outside the calibration range. Area B
represents a dirt road enriched with high CaCOs content (27%) lime which is relatively higher
than the average CaCO; content of the entire population that stands on 13.8% (SD 5%). Area C
also consists of high CaCOj3 content (30%) and thus are not suspected to be crusted under the
current analysis where area D consists of CaCOs; content of 14.6%; and hence represents a
significant crusted area. Another factor inherent in the calibration results is the soil moisture
status (wet or dry) that also can change the soil color tones. This parameter can as well as the
CaCQ; features can be masked out by using the SWIR region, and hence by AVIRIS, but not
with the current AISA sensor. More study in this direction has to be applied to make the crust
mapping more accurate and totally independent of field information. Using the AVIRIS sensor in
this direction, may be a step forward to achieve this aim. The spectral information suggests that
there is a significant potential to do so under more complex soils systems.

Laboratory Experiment Batch 1 Laboratory Experiment Batch 2
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Figure 7: The ratio spectra of the laboratory treatment shown in Figure 8. Each spectrum
composed of the reflectance at every rain energy treatment against the reflectance at 0 energy
level.

34



50

=]
-

= 40

I= .

E 5 X

& 30 5 ¥

[}

o “

S 20 -

o )

‘E 10 i <
+Exp 2 ¢ 0
oExp 1 * &

0 T e L)
380 430 480 530 680

Normalized Spectral Area (NSA)

Figure 8: The relationship between the infiltration rate (InR) and the Normalized Spectral Area
(NSA) using the laboratory information obtained by the two experiments.

3
2
_
8
-
[+
=
2
o

Vegetation

high low

Figure 9: The infiltration image of the areas studied as
generated based on the reflectance information of the soils
(see text for more details).

hilometlers

35



SUMMARY AND CONCLUSIONS

The main conclusion of this study is that reflectance properties of Loess crusted soils have a
systematic relationship with the crust status. In the soil examined, the albedo parameters across
the entire VIS-NIR region hold a significant correlation with raindrop energy, and particularly
with infiltration rate. A normalized spectral curve, using a non-crusted soil spectrum as a
reference, was suggested to use whereas the area under the ratio curve, suggested to be the
parameter for the soil albedo. Doing so enables the utilization of the laboratory spectral
relationship with other spectral data sources, such as the hyperspectral sensors introduces. The
spectral variation in the field within the selected plots vary within the confident range the
laboratory experiment provided. The soils’ pixel-by-pixel calculation of the InR shows a
reasonable picture for the selected area and their surroundings. We hope that more ideas and
thoughts on how to further apply the hyperspectral technology further in this direction will be
presented by more other investigators. The AVIRIS sensor in this regard may play an important
role as it covers the entire VIS-NIR-SWIR region and has a relatively good signal to noise ratio.
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ASSESSMENT OF HYPERION FOR CHARACTERIZING MANGROVE COMMUNITIES
Martina Demuro and Laurie Chisholm!

1  Introduction

Mapping the distribution of species and vegetation types in coastal wetlands has become important because of the
need for wetland inventories and their biodiversity (Finlayson et al., 1999; Phinn and Finlayson, 1999). Vegetation
is also regarded as a bio-indicator of site conditions and it is therefore important to understand changes in its
distribution and the process acting upon it (Kiichler, 1988; Blasco et al., 1996; Muller, 1997; Klemas, 2001).
Mapping methods need to be efficient and cost effective (Mumby et al., 1999) with satellite remote sensing systems
having been used extensively for mapping the distribution of vegetation types in coastal wetlands and other
environents (Gross ef al., 1989; Phinn et al., 1999). The detection of vegetation types will depend directly on the
sampling unit used by the sensor (pixel) and the area imaged. The signal recorded for each pixel is composed of a
mixture of components that characterize each community, including the species, canopy openness, height and
substrate. Broad-band multispectral imagery is usually analyzed using methods that classify whole pixels using
limited spectral information (Vane and Goetz, 1993), which do not account for the problem of mixed pixels. The
discrimination of vegetation types using satellite-borne sensors is usually based on the structure (height, openness)
and broad vegetation categories (such as woody, perennial, evergreen) (Lewis, 1999; Holmgren and Thuresson,
1998). A common criticism of satellite remote sensing is its inability to define features of interest that are related to
ecological processes because of the crude spectral and spatial dimensions of the images (Rougharden ef al,, 1991;
Holmgren and Thuresson, 1998). Advantages of higher spectral resolution imagery include the acquisition of
detailed spectral information of the features on the ground (Ustin ez ai., 1991) and the possibility of image analysis
procedures that aim to detect target spectra at a sub-pixel level (Curran, 1994; Clark, 1999; Mustard and Sunshine,
1999). Airborne hyperspectral data have been used to detect minerals and plant biochemicals that have distinct
absorption features (Curran, 1994; Serrano et al., 2002) and species distribution (Dehaan and Taylor, 2002; Parker
Williams and Hunt Jr., 2002). EO-1 Hyperion is the first satellite-borne hyperspectral sensor to orbit the Earth,
capable of recording spectral information superior to previous satellite sensors. Hyperion differs from previous
satellite sensors in that it records radiance in many narrow contiguous bands spanning the visible to the near infrared
portion of the spectrum. Hyperion has a spatial resolution of 30 meters and records radiance in 220 bands spanning
from the blue at 450 nm to the middle infrared at 2500 nm. Each band has a width of approximately 10 nm.

1.1  Objectives

This study aims to assess Hyperion for its ability to discriminate vegetation types based on species composition. The
study focuses on the vegetation of coastal wetlands, namely temperate mangrove, saltmarsh and casuarinas forests.
To the authors’ knowledge there are currently no studies that have tried Hyperion imagery for mapping mangrove
species diversity and saltmarsh vegetation as yet.

“#
2 Study Site

The study was conducted in the Minnamurra River estuary, New South Wales.
The study area is located approximately between S 34136’ and 3437’ and
between E 150030” and E 150031°. The estuary sub-catchment area where this
study is based is approximately 10 km? (Figure 2.1). The estuary is in an o
advanced stage of infilling and the river follows a meandering channel /
characterized by three bends flowing around three sand deposits (Carne, 1991).
The Minnamurra River estuary has been listed as a nationally important wetland
in Australia because “it is a good example of a wetland type occurring within a
biogeographic region in Australia” and because “the wetland supports native
plant or animal taxa or communities which are considered endangered or
vulnerable at the national level” (Environment Australia 2001). . ]
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Figure 2.1. Study site location
! School of Geosciences, University of Wollongong (laurie_chisholm@uow.edu.au) 0 NSW, Australia.
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2.1  Vegetation

The estuarine vegetation of the Minnamurra estuary has been described in a number of studies (Carne, 1991;
Chafer, 1997). The vegetation in the muddy intertidal zone is composed of mangroves and saltmarsh (Figure
2.2). A swamp-oak forest composed of casuarina trees extends to the landward side of the mangrove and
saltmarsh vegetation, outside the tidal range (Chafer, 1997). A littoral forest is found further inland, which has a
patchy distribution. The widths of the mangrove, saltmarsh and swamp oak forest areas are usually smaller than
500 meters. Other cover types surrounding the estuary include: to the east, an extensive residential area, to the
north a waste disposal depot and some artificial water bodies, and to the west, at higher elevations, an area
composed of grasslands.

Two mangrove communities have been identified in the temperate mangroves of Australia (Saenger et al., 1977).
These are the 4. marina low closed-forest and 4. marina low woodland. The 4. marina low closed-forest is a
monospecific stand of A. marina trees that have a foliage cover of over 70 % and a height of less than 10 m. The 4.
marina woodland is composed of both A. marina trees and A. corniculatum shrubs. The term woodland corresponds
to areas where the projective foliage cover of the upper stratum (4. marina) is very low (10-30 %) and the trees have
a height of less than 10 m. A mid-stratum of both the shrub 4. corniculatum and a ‘dwarf” variation of 4. marina
become very extensive in this community. Similar to other temperate mangroves of New South Wales, the
distribution of each community in the Minnamurra estuary is characterized by the formation of low closed-forests in
the low intertidal zone, especially at the mouth of the estuary, while the low woodland develops to the landward side
of the monospecific Avicennia marina forests (Carne, 1991).

Saltmarsh communities develop to the landward side of the mangroves, with the succulent Sarcocornia quinqueflora
dominant in the low marsh area, while the grass Sporobolus virginicus and the rush Juncus kraussii dominate in the
middle marsh areas. The reed Phragmites australis becomes dominant in less saline areas of the saltmarsh. Swamp-
oak forests develop to the landward side of the mangrove and saltmarsh vegetation exclusively composed of the
Casuarina spp. trees that grow extensively at higher elevations in Minnamurra.
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Figure 2.2, Estuarine vegetation of
the Minnamurra River Estuary.

i (Source: Chafer, 1997)
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3 Methods
3.1 Field data collection

Eleven plots of 90 m x 90 m each (33 pixels) were taped in the field: two of Avicennia marina low closed-forest,
three of 4. marina low woodland, five of the saltmarsh vegetation and two of the casuarina forest. The plots were
made facing north in order to ensure that the largest number of pixels possible covered the plots. The tape and
compass method was used to tape the plots. Each corner was marked using 1.5 m high stack marked with flagging
tape. A Trimble ProXL GPS with TDCI data logger was used to obtain the coordinates of each corner. The points
were verified to correspond to each corner by plotting these over a geo-referenced aerial photograph and deciding if
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these coincided with each known point in the field. The coordinates of each corner were displayed in Arcview GIS
and it was confirmed that the plots were rectangular and positioned in a south-north direction.

The information collected for mangroves included, for each plot, the projective foliage cover of the upper and mid-
stratum, average height and the relative abundance of A. marina and A. corniculatum. The projective foliage cover
was estimated using the gap-ratio method (McDonald er a/., 1984) and the relative abundance of each species was
estimated using the line-intercept method. In the saltmarsh, the relative abundance of each species was measured for
each plot. In the casuarina forest, the canopy closure and height of trees was sampled and an average calculated in
order to determine the structural heterogeneity of the forest in each plot.

3.1.1  Structure and floristic of vegetation in each plot

The A. marina low closed-forest was composed of 100% Avicennia marina trees of an average height from 4 to

5.7 m in both plots. The projective foliage cover was approximately 50% in each plot and the gap between the
crowns was 12 cm, while average crown diameter was from 250 to 1000 cm in each plot, indicating high canopy
closure. The 4. marina low woodland was composed of both A. marina and A. corniculatum species. In the low
woodland vegetation, the relative abundance (aerial cover) of each species was over 50% for A. corniculatum and
less than 30% for 4. marina. The upper-stratum was dominated by isolated 4. marina trees with a projective foliage
cover of less than 10% and a mean gap between crowns of more than 7 m. The mid-stratum was dominated by

A. corniculatum shrubs in all sites, with a projective foliage cover of approximately 40% in all sites. The saltmarsh
vegetation was divided into low-marsh, dominated predominantly by the succulent herb Sarcocornia quinqueflora
and the grass Sporobolus virginicus, and the mid/upper-stratum, dominated by Junkus kraussii, Phragmites australis
and Sporobolus virginicus. The casuarina forest plots were composed of 100% Casuarina spp. trees, with both plots
having the homogeneous forest formations.

3.2  Satellite hyperspectral imagery acquisition and characteristics

The EO-1 Hyperion irmage was acquired by USGS (United States Geological Survey)/EROS Data Center, Sioux
Falls, South Dakota, USA, on 27 July 2002 at about 10:30 a.m. (local time). The Hyperion data consist of a data
‘cube’ represented by 242 spectral bands acquired over an array of 256 pixels (width). The number of lines (length)
varies with the data acquisition event and the image is built up with the forward motion of the sensor (Jupp et al.,
2002). The image acquired over the study area was 7.7 km wide and 185 km long.

3.3  Pre-processing
3.3.1  Atmespheric and geometric correction

All pre-processing and analysis of the EO-1 Hyperion imagery was done using the image processing system ENVI®
(Environment for Visualizing Images, Research Systems, Inc.). The EO-1 Hyperion image was atmospherically
corrected in order to convert the data from at-sensor-radiance to apparent reflectance. The “coastal Waters and
Ocean MODTRAN-4 Based ATmospheric correction” (c-Wombat-c) implemented in IDL/ENVI® was used. The c-
WOMBAT-c¢ applies a full MODTRAN-4 atmosphere parameterization and characterization to run the inversion
from radiance to reflectance. The parameters correspond to very dry and clear atmospheric conditions without
aerosol contents. An inspection of a false color composite agreed with these parameters since the image appeared
very contrasted and without hazy effects. A spatial subset of 4 km wide by 5.7 km long was selected from the image
to define the Minnamurra estuary study site, including the upland areas and coastal waters. The image was
geometrically corrected using an image-to-image registration procedure using an ortho-rectified gecreferenced aerial
photograph of the area as reference. The image was registered to the Australian Map Grid 66 (AMG) coordinate
system using 6 control points obtained from the photograph. A polynomial nearest-neighbor algorithm was applied.
In this method, the pixel that has its center closer to the point located in the image is transferred to the corresponding
display grid location (Richard and Jia, 1999). This technique does not alter pixel brightness values. The average
RMS was 0.259 or within 1 pixel. Vegetation and cadastral vector files of the area were overlaid to observe the
correspondence between the image and the geo-referenced files. After inspecting a number of points it was
concluded that the registration was satisfactory.

3.3.2 Band selection

Of the 242 bands only 198 are calibrated to radiance while the rest are set to zero (Jupp et al., 2002). The 198 bands
were viewed through the animation tool in order to select noise-free bands for further processing. Bands
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corresponding to water absorption features were very noisy containing no spatial information and were subsequently
excluded from the data set. Streaking was apparent in some bands from both the VNIR and SWIR regions. Streaking
is presented as vertical lines related to the along-track effects of push-broom systems (Jupp et al., 2002) and are
more apparent in low SNR (signal to noise ratio) bands. The streaking effect was pronounced in the SWIR region,
specifically between 2000 nm and 2500 nm. De-streaking was initially attempted, however, the resulting images
appeared worse than the originals. Consequently only bands 207 and 208 were retained from the 200-2500 nm
region. All other bands deemed to have unacceptabie noise or streaking were also removed. In total 105 bands were
selected for further use.

3.4  Image analysis
3.4.1 Mixture Tuned Matched Filtering (MTMF)

The Mixture Tuned Matched Filtering™ (MTMF) is a technique that works by partially unmixing pixel spectra
according to a user-defined endmember. In this procedure, the response of the reference endmember spectra is
matched to the pixel spectra by maximizing the endmember response and masking the background unknown
response (ENVI, 2001). The results indicate the degree to which the endmember was matched to the pixel spectra
and the approximate sub-pixel response of the endmember (ENVI, 2001). An image is produced where bright pixels
indicate high abundance of the endmember and therefore a high MF (matched filtering) score. An infeasibility result
is also produced that represents the ‘false positives’ and assigns high infeasibility scores values to pixels erroneously
matched to the endmember (see ENVI 2001 for details). This approach has been used to determine biochemical
composition of leaves using data sets of leaf spectral response (Pinzon et al., 1998) and species discrimination in
saltmarsh vegetation (Zhang et al., 1996) and the discrimination of a weed species (Parker Williams & Hunt Jr.,
2002) using AVIRIS data. In this study, the technique was applied using each mangrove species as endmembers.

3.4.1.1  Data reduction and endmember selection for the mangrove species

Dimensionality reduction refers to the process by which the main components attributing to the spectral variance of
the data set are identified. The aim is to reduce the information present in hyperspectral imagery so that it can be
displayed in a minimized form without any alteration to the original data (Keshava & Mustard, 2002). The
procedure used to achieve this was the Minimum Noise Fraction (MNF) implemented in ENVI®. The MNF
transformation decomposes the data into the main components contributing most of the spectral variance and also
accounts for the noise present in the data (Keshava & Mustard, 2002). The noise is first estimated resulting in a
noise covariance matrix, which is then used to decorrelate and rescale the noise in the data. In the transformed data
the noise has unit variance and no band-to-band correlation. A PCA is then applied to the noise-whitened data
(ENVI, 2001). Two approaches were undertaken to find endmembers representative of each species. For the A.
marina dominated low closed-forest community the endmember was selected from regions of interest (ROI)
corresponding to the two plots for which field data indicated these were monospecific patches of Avicennia marina.
For the low woodland community the endmembers were selected from the pixel cloud created with MNF bands 1, 8
and 9. The MNF band 9 showed that brighter pixels corresponded to Site 1 where Aegiceras corniculatum was
dominant in terms of ground cover and projective foliage cover.

3.41.2  MTMEF of the mangrove species and display

The MF score band and the infeasibility band were used to create a 2-dimensional scatter plot in order to select
pixels that matched well with the reference endmember. Pixels of low infeasibility and MF score higher than
approximately 0.25 were highlighted. These pixels corresponded to areas where the endmember was recorded as
present at a sub-pixel level at a proportion according to the MF score (where 1 = 100 %). The maps were compared
to the plots taped in the field for each community and to areas visited in the field that contained these communities.
The MTMEF results were assessed by correlating the ground-cover measurements taken for each site with the
estimated cover of each species at the sub-pixel level. The Pearson correlation coefficient () was calculated to
determine the correlation between the predicted and actual species ground cover. The correlation was applied to the
A. corniculatum endmember only-the reason being that the 4. marina endmember resulted in high MF scores and
high infeasibility values for some of the low woodland areas making the data unsuitable for the comparisons
between actual and predicted species cover.

3.4.2  Supervised classification- Spectral Angle Mapper (SAM)

In the spectral angle mapper (SAM) classification, pixels are considered vectors in n-dimensional space according to
their DN values for each band, where the number of dimensions is equal to the number of bands (Kruse ef al., 1993).
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SAM classifies pixels according to the angular distance between two vectors, the approach ignores vector lengths
and is therefore unaffected by illumination effects (Mustard and Sunshine, 1999). Vectors with small angles are
considered spectrally similar during the classification and the user must define the minimum spectral angle threshold
to which all angles are compared. In this case the angle was set to 0.1 radians for all classes.

Regions of interest (ROI) were created for each community according to the position of their respective plot taped in
the field. Additional spectral classes were also created using the information obtained during the endmember
selection and field knowledge. A false color composite (RGB:50,33,17) was used to define other spectral classes,
with all classes subsequenily plotted in 2-to 3-dimension scatter plots using the original image bands. The visible
and near infrared bands were used as vegetation features were of greatest interest. Pixels that plotted at the
extremities of the spectral clouds were deleted from the class. The maximum, minimum, mean and standard
deviation signature of each class were also calculated. These were inspected to ensure that the spectral variance was
normal for each class. Supervised classifications were run using the original classes created, which included all 6
communities described in previous sections, and the newly created classes.

3.4.2.1  Accuracy assessment

The accuracy of the resulting images was assessed by calculating confusion matrices that show the level of accuracy
of each classified image (Congalton & Green, 1999). Producer’s and user’s accuracies were calculated for each
class, as well as the errors of omission and commission, overall accuracy and kappa coefficients. For each class
additional non-biased regions of interest (ROI) were selected and used to calculate the statistics. For the mangrove
and saltmarsh classes the regions of interest were defined by field checking carried out on the 20 and 25 November
2002. During field visits a Global Positioning System (GPS) was used to record the coordinates of the areas of"
interest. For the casuarina forest and littoral forest the ROIs were defined from maps already produced for the area
by Chafer (1997) and Carne (1991) (not shown). For the other classes, defined from spectral analysis, false colour
composites and scatter plots, the additional ROIs used for the accuracy assessment were defined from the false
colour composite. The spectral signatures of these regions were inspected in order to ensure the pixels belonged to
the relevant classes. The water classes, such as ‘ocean’ or ‘river’, were not included in the accuracy assessment.
These classes were not correctly classified by SAM and it was determined that inclusion of the water classes would
decrease the overall accuracy of the SAM classification.

4  Results
4.1.1 MTMF (Mixture Tuned Matched Filtering)

The mean spectral reflectance of the A. marina and 4. corniculatum endmembers are shown in Figure 4.1. The
spectral reflectance of the A. marina endmember is higher in the middle infrared than for the 4. corniculatum
endmember. Spectral reflectance for the A. corniculatum endmember is higher in the visible, from the green and red
(559 nm to 661 nm) and in the left shoulder of the near infrared plateau from 750 nm to 1100 nm. Both endmembers
have high absorbance in the chlorophyll band at approximately 675 nm. Figure 4.2 shows the scatter plot of the
MNF bands 1, 8 and 9 and the pixels of A. corniculatum endmember that plotted to one of the corners.

The distribution of the 4. marina endmember is shown in Figure 4.3. Pixels that resulted in low infeasibility values
and high MF scores ranging from 0.35 to 1.35 are painted green. Colored pixels on the image represent areas where
the 4. marina endmember has been identified as present. The distribution of the 4. marina endmember corresponds
to Sites 4 and 5 (shown with an arrow) and other areas of the low-intertidal zone closer to the mouth of the estuary
(circled) that have been visited and confirmed as being dominated by A. marina trees or shrubs. High MF scores and
infeasibility values were recorded for some low woodland pixels. These areas were not highlighted since the MF
scores are in reality “false positives’ (Boardman, 1998; ENVI, 2001) and do not match correctly with the A. marina
endmember. The distribution of the A. corniculatum endmember is shown in Figure 4.4. The sub-pixel abundance
for this species agrees with the distribution of field sites corresponding to the low woodland community. The
distribution also extends to the upstream sections, over the low-intertidal zone. Correlation analysis between the

actual and predicted ground cover of A. corniculatum indicated a high correlation between the predicted and actual
abundance of the species (1*=0.879).
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Figure 4.1. Spectral reflectance of the endmembers used in the MTMF
of the two mangrove species; Avicennia marina (white) and Aegiceras
corniculatum (black), obtained from the EO-1 Hyperion image subset of
the Minnamurra estuary.

Figure 4.2. Scatter plot of MNF bands 1, 8 and 9 obtained from the
EO-1 Hyperion image subset of the Minnamurra estuary (left) and
the image subset of the area (right). Position of degiceras
corniculatum endmember in the scatter plot (red pixels) and its
spatial distribution in the area (red). 4. corniculatum pixels
corresponding to one of the plots (circled)

Figure 4.3, Distribution of the Avicennia marina endmember (green)
obtained from the MTMF applied to the EO-1 Hyperion subset of the
Minnamurra estuary (left). The image shows the coordinates of all sites
(blue dots), low closed-forest (white and black arrow), and areas
confirmed to be composed of 4. marina (circled). Corresponding pixels
in the scatter plot (right), showing high MF (matched filtering) scores
and low infeasibility values (green)

4.1.2  Supervised classifications (SAM)

Figure 4.4. Distribution of the Aegiceras corniculatum endmember
(red) obtained from the MTMF applied to the EO-1 Hyperion subset
of the Minnamurra estuary (left). Shows: coordinates of all sites (blue
dots), low woodland plots (arrows), and areas confirmed to be
composed of A. corniculatum (circled). Corresponding pixels in the
scatter plot (right), showing high MF (matched filtering) scores and
low infeasibility values (red).

The resulting map from the supervised classification agreed with the distribution of land-cover types at the
landscape scale. Major cover classes, such as the urban areas, grasslands and littoral forests, were mapped in
accordance to their distribution. In addition, the intertidal vegetation was discriminated well from the rest of the
vegetation in the area. Figure 4.5a shows the distribution maps produced for the aggregated saltmarsh and mangrove
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classes using the SAM classification and the already created map for the area. Table 4.1 shows the confusion matrix
created with the mangrove and saltmarsh classes aggregated.

Table 4.1. Confusion matrix for the distribution map corresponding to Fig 4.5a, produced with the SAM applied to the EO-1
Hyperion subset of the Minnamurra estuary. All aggregated classes.

Overall accuracy = 76.74 % Kappa Coefficient = 0.73

Ground Truth (pixels)
bare d casuarina littoral reen User's Commission
Class ground grgs mangroves Forast saltmarsh forest urban irass Total (%) (%)
unclassified 16 2 93 78 27 25 13 2 256
bare ground 87 2 2 1 92 94.57 5.43
dry grass 1 86 2 89 96.63 3.37
mangroves 257 11 6 1 275 93.45 6.55
casuarina forest 20 113 2 10 145 77.93 22.07
saltmarsh 1 2 38 41 92.68 7.32
littoral forest 3 5 90 98 91.84 8.16
urban 16 4 4 17 1 301 1 344 875 12.5
green grass 2 1 12 292 307 95.11 4.89
Total 120 90 380 214 90 139 316 298 1647
Producer's (%) 72.5 95.56 67.63 528 42.22 64.75 9525 97.99
Errors of Omission (%) 27.5 444 32.37 472 57.78 35.25 475 201
Unclassified (%) 1333 222 2447 36.45 30 17.99 411 067 15.54
M Unclassified
M Unclassified 3
& bare ground e
i shallow water [
M casuarina forest M casuarina forest
{Hl saltmarsh Briver
river M iittoral forest
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M ocean i
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Figure 4.5. Distribution maps resulting from a SAM classification applied to the EQ-1 Hyperion image subset of
the Minnamurra River Estuary, NSW. (a) aggregated mangrove and saltmarsh classes (b) not aggregated mangrove
and saltmarsh classes. Each image reoresents an area of 4 km bv 5.7 km.

The confusion matrix corresponding to Figure 4.5b (Table 4.2) shows the mangrove class and casuarina forest class
were accurately discriminated with producer’s accuracies of 62.47 % and 67.29%, respectively. The saltmarsh class
recorded lower levels of producer’s accuracy of 42.22%. The user’s accuracies were higher, approximately 90 % for
all three wetland vegetation classes, however, the saltmarsh vegetation was erroneously mapped at high elevations
as it was confused with the upland grasses and urban areas. The distribution maps produced by the SAM of the two
mangrove classes are shown in Figure 4.5b. The distribution of low closed-forests is restricted to the mouth of the
estuary and to the low-intertidal zone, while the distribution of low woodlands is more extensive in the low-
intertidal zone upstream and in the upper intertidal zone downstream. The producer’s accuracy for the low closed-
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forest and the low woodland classes were 57.69 % and 56.67 %, respectively. The confusion occurs mainly between

the two mangrove classes (Table 4.2). For example, some pixels corresponding to the low closed-forests were

classified as low woodland, while some pixels known to contain mainly 4. corniculatum shrubs were classified as
low closed-forest (Table 4.2). The classifier produced good resuits, especially considering that around 10 % of the
pixels in both classes remained unclassified.

Table 4.2. Confusion matrix corresponding to Figure 4.5b obtained for the SAM classification. Showing the discrimination of the
two mangrove communities, low-marsh, mid/upper-marsh and casuarina forest.

Overall Accuracy=66.39 % Kappa Coefficient = 0.61

B

Ground Truth (pixels)
Class bare dry low-closed low low- mid/upper green b littoral ~ casuarina Total User's Commission
ground  grass forest woodland marsh -marsh  grass forest forest (%) (%)
unclassified 50 3 16 11 3 0 3 18 2 2 108
bare ground 33 33 100 0
dry grass 9 80 8 97 82.47 17.53
low-closed
forest 60 44 1 1 40 146 41.1 58.9
low woodland 24 85 3 17 129 65.89 34.11
low-marsh 2 4 26 27 16 75 5.33 94.67
ey 5 3 19 3 1 31 | 6129 3871
marsh
green grass 2 237 24 14 20 297 79.8 20.2
urban 5 2 250 1 258 96.9 31
littoral forest 6 85 10 101 84.16 15.84
casuarina forest 4 10 1 22 35 123 195 63.08 36.92
Total 99 90 104 150 12 48 298 316 139 214 1470
Producers | 3333 ggg9 5760 5667 3333 3958 7953 79.01 6115 5748
accuracy (%)
Emossof | gc67 1111 4231 4333 6667 6042 2047 2080 3885 4252
Omission (%)
U“CI(?,ZS)‘ﬁed 5051 333 1538 733 25 0 10l 57 144 093 | 735

5  Conclusion

The MNF transformation applied to the Hyperion imagery showed that MNF band 9 corresponded with the
distribution of 4. corniculatum, especially in areas of high cover. The MTMF results obtained by using the 4.
corniculatum endmember agreed strongly with the distribution of this species. Its presence was recorded in the three
plots and in other areas visited and confirmed (Fig. 4.4). The correlation analysis resulted in high positive
correlation between the predicted cover of the A. corniculatum endmember and the actual cover measured in the
field (+?=0.879). Similarly the distribution obtained for the 4. marina endmember showed that the distribution
agreed with the two low closed-forest plots and other areas in the low-intertidal zone around the mouth of the
estuary (Fig. 4.3), where this species has a high cover and forms extensive monospecific stands.

In mangrove forests, correlations have been found between the projective foliage cover (and leaf area index (LAI))
and the red and near infrared canopy reflectance (Jensen ef al. 1991; Ramsey & Jensen, 1996; Green ef al., 1997),
where ncreases in foliage cover result in increases of near infrared reflectance. However, no correlations have been
established between species cover and any of the broad bands used by the most common satellite-borne sensors
(Jensen et al., 1991; Ramsey & Jensen, 1996). Previous studies have established that mangrove species could not be
discriminated with broad-band satellite sensors because of the low spectral and spatial resolutions (Green ef al,
1996; 1998). Therefore, zonation has been mapped according to the structure of the vegetation in each zone (Blasco
et al., 1998; Rasolofoharinoro ef al., 1998) and the reflectance in the red and near infrared bands. The present study
indicates that the improved spectral resolution of Hyperion, which allows for the application of more sophisticated
methods of image analysis such as the MTMF, results in a good discrimination of the two mangrove species
assessed in this study, despite the apparently low SNR (1:100) of the sensor (Kruse et al., 2001) and 30 m pixels.
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ENDMEMBER SELECTION FOR MULTIPLE ENDMEMBER SPECTRAL MIXTURE ANALYSIS
Philip E. Dennison' and Dar A. Roberts'

1. Introduction

Spectral mixture analysis (SMA) models image spectra as the linear combination of endmembers (Adams et al.,
1993). By utilizing an invariable set of endmembers, SMA does not account for the absence of one of the
endmembers or spectral variation within “pure” materials. Multiple endmember spectral mixture analysis
(MESMA) addresses these issues by allowing endmembers to vary on a per pixel basis (Roberts et al., 1998).
MESMA has beer: applied in a variety of environments for vegetation and snow mapping. Roberts et al. (1997;
1998; 2003) and Dennison et al. (2000) used MESMA to map vegetation species and land cover type in Southern
California chaparral. Painter et al. (1998; 2003) mapped snow grain size in the Sierra Nevada of California using
MESMA. MESMA has also been used to map vegetation in semi-arid environments (Okin et al., 2001).

2. Background

Since the number of possible materials in an image can be very large, and since MESMA permits multiple
endmembers for each material, an appropriate spectral library can contain hundreds of spectra. A large number of
potential endmembers decreases computation efficiency and increases the complexity of the model output, so a
parsimonious spectral library is desirable. Several methods of endmember selection for MESMA have been
proposed. Painter et al. (1998) and Okin et al. (2001) used a limited number of reference spectra or a priori
knowledge to select endmembers for their analyses. Roberts et al. (1997) devised a hierarchical endmember
selection rule that used specialist endmembers to unmix a scene and then used generalist endmembers to model the
remaining unmodeled or poorly modeled spectra. Roberts et al. (1998) selected endmembers to maximize the area
mapped and minimize the overlap between models using a solution to the maximal covering problem (Church and
Revelle, 1974). This paper presents the application of a new technique for selecting endmembers for MESMA using
the endmembers that best model the spectra within their own class. The endmember with the minimum average root
mean square error {(RMSE) within a class is selected as the most representative endmember for the class.

Each spectrum in a spectral library can be modeled by any other spectrum within the library and shade using a
two endmember model. Each of these models has a goodness of fit as measured by the RMSE. Endmember
average RMSE (EAR) is the average RMSE for an endmember modeling the library spectra within its own material
class. EAR is calculated as:

Zn:RMSEA’_,Bj

EARA,.,B =L;"‘—"‘—“ (1)

where 4 is the endmember class, 4, is the endmember, B is the modeled spectra class, and # is the number of
modeled spectra in class B. For example, a “soil” class within a spectral library could contain 8 spectra. EAR can
be calculated for the spectrum “soil3” as the average RMSE of “s0il3” and a shade endmember modeling all the
spectra within the soil class. EAR measures the actual model performance of an endmember for modeling spectra
within its class. The spectrum with the lowest EAR best models the class, and is thus most representative of the
class.

3. Methods

High altitude AVIRIS data were acquired on 5 dates over the Santa Barbara front range, including the city of
Santa Barbara, California and the south-facing slope of the Santa Ynez Mountains. Six land cover classes were
identified as dominant at a scale of 20 meters within the study area, including 5 vegetation classes (4denostoma
Jasciculatum, Arctostaphylos spp., Ceanothus megacarpus, Quercus agrifolia, and mixed introduced grasses) and an
urban class. 65 reference polygons for the vegetation classes were identified using field inspection and hard copy 1
meter resolution United States Geological Survey digital orthophotos in June, 2002. Ten urban reference polygons
were identified from the digital orthophotos in January, 2003. Polygons were required to be at least 50% dominated
by one of the six land cover classes and be at least 40 meters by 40 meters in size, so that at least one pixel was
contained entirely within the polygon.

AVIRIS data were acquired between 1998 and 2001, in the months of May, June and September (Table 1). All
dates were processed to apparent surface reflectance using a modified version of the MODTRAN radiative transfer
model (Green et al., 1993) and calibrated using the field-measured reflectance of a sand target. The data were
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registered to an orthorectified SPOT mosaic resampled to 20 meters. Since the date is not a reliable indicator of
vegetation water stress due to the variable nature of precipitation in Southern California, a simple soil water balance
model was used to rank the relative moisture status of the 5 AVIRIS dates. Precipitation measured at the E1 Estero
Water Treatment Plant in Santa Barbara was compared to reference evapotranspiration (ET,) measured at a
California Irrigation Management Information System (CIMIS) station approximately 4 kilometers to the northwest
of the treatment plant. Soil water balance was set to zero for the full dry season preceding each date. Soil water
balance was determined by cumulatively summing the daily ET, subtracted from the daily precipitation. Runoff and
soil infiltration were not included in the model. The beginning of the dry season was determined to be the date on
which the water balance reached zero after the last significant precipitation (> 3mm). Positive and negative soil
water balance are referenced from this date (Table 1).

Image spectra from pixels entirely inside the reference polygons were extracted from the 5 registered AVIRIS
reflectance images. 988 spectra from 59 polygons at least 75% dominated by a single land cover class were included
in a separate spectral library for each date (Table 2). For each date, the library of 988 image spectra was unmixed by
each of its component spectra and photogrammetric shade using MESMA. The non-shade endmember fraction was
constrained to less than 106%, based on optimal constraints from Halligan (2002). For best-fit models with non-shade
endmember fractions in excess of 106%, RMSE was calculated using the maximum non-shade endmember fraction of
106%. Permitting higher non-shade endmember fractions allows dark endmembers to have low EAR values that are
not representative of their ability to model the spectra within their class. EAR was calculated for each endmember by
averaging the RMSE for modeled spectra within the same land cover class. Endmembers with the minimum EAR
within their class for each date were selected for mapping the AVIRIS images. Each AVIRIS image was modeled
using 6 two endmember models corresponding to the 6 minimum EAR endmembers for each date. Non-shade
endmember fractions were constrained to between -6% and 106%. Residuals were not allowed to exceed 2.5%
reflectance for more than 7 contiguous bands and RMSE was constrained to below 2.5% reflectance (Roberts et al.,
1998).

4. Results

The selected minimum EAR endmembers displayed significant spectral changes through the AVIRIS time
series (Figure 1). Solar zenith was smaller for the 1998 and 2001 images (Table 1), and brightness effects due to
lighting geometry were evident in the selected spectra of all of the land cover classes. All of the vegetation
endmembers selected from the positive water balance images possessed a distinct red edge and chlorophyll
absorption. Grassland endmembers exhibited the greatest changes in spectral shape due to the complete senescence
of the grasslands. The red edge and shortwave infrared absorption features of the grassland endmember selected
from the 1998 image were greatly reduced in the 2001 and 2002 endmembers, and were largely absent from the
1999 and 2000 endmembers (Figure 1d). A red edge was apparent in all of the selected urban spectra (Figure le),
indicating subpixel scale vegetation was present in the urban environment. The presence of the red edge in both
positive and negative soil water balance images indicates this vegetation was irrigated. The most interesting spectral
changes occurred in 4. fasciculatum and Arctostaphylos (Figure 1a,b). As soil water balance decreased, the
presence of non-photosynthetic vegetation became more pronounced in the spectra of these land cover classes.
Positive water balance spectra in these two land cover classes showed pronounced chlorophyll absorption and little
ligno-cellulose absorption, while negative water balance spectra showed increased ligno-cellulose absorption and
decreased chlorophyll absorption. This trend was less distinct in the selected C. megacarpus and Q. agrifolia
spectra (Figure 1c,e).

Large areas corresponding to mixed residential and riparian areas were unmodeled by the 2 endmember models
in all 5 AVIRIS images (Figure 2). Neither class was spectrally similar to the selected endmembers from the 6 land
cover classes, and the high heterogeneity of residential neighborhoods made them difficult to model with only two
endmembers. Both images with positive soil water balance (Figure 2a,b) were well mapped. C. megacarpus
dominates the south-facing slope of the Santa Ynez Mountains, with bands of 4. fasciculatum on rockier soils and
Q. agrifolia on more mesic slopes and valley bottoms. Arctostaphylos spp. was properly limited to higher altitude
rocky soils. Grassland was poorly modeled in the 1998 image, most likely due to varying degrees of grassland
senescence. Three of the vegetation classes in the images with negative soil water balance were poorly modeled: 4.
Jasciculatum, Arctostaphylos spp., and C. megacarpus (Figure 2¢,d,e). Arctostaphylos spp. and 4. fasciculatum
were overmodeled in all three images, while C. megacarpus was undermodeled. Q. agrifolia was overmodeled in
the 2002 image, but was adequately modeled in the 1999 and 2000 images. Urban and grassland classes were well
modeled in all the images with negative soil water balance.
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5. Discussion

The accuracy of the modeled images was assessed using the entire set of 75 reference polygons. Land cover
class accuracy was assessed by grouping all of the modeled image spectra within a reference polygon and selecting
the most frequently modeled land cover class as the dominant class for the polygon. Unmodeled image spectra and
polygons with equally dominant land cover classes were excluded from the accuracy assessment. Overall accuracy,
kappa coefficient, and kappa variance were calculated for each date (Table 3) (Cohen, 1960; Congalton, 1991). The
2001 modeled image had the highest accuracy (0.90) and kappa coefficient (0.87) of the five AVIRIS dates. The
1998 modeled image also possessed overall accuracy and kappa coefficients over 0.80. Kappa and kappa variance
were used to calculate a Z-statistic for each pair of dates to determine whether the kappa coefticients for each date
were significantly different (Congalton, 1991). The kappa values of the two positive water balance images were
found to be significantly better than the kappa values for two of the three negative water balance images, at the 95%
confidence level. All three negative soil water balance images suffered from low accuracy. This is directly the
result of C. megacarpus and A. fasciculatum polygons being modeled by A. fasciculatum and Arctostaphylos
endmembers, as is apparent in Figure 2. The confusion matrix for the 2000 image highlights the confusion between
these three vegetation classes (Table 4).

As the soil water balance decreases, the amount of senesced and dead material in a stand of vegetation
increases. Even if the dominant species is not prone to senescence or dieback, subdominant components (grasses,
Artemisia californica, Salvia spp.) of the stand may be. The vegetation classes modeled in the AVIRIS images
become less distinct under drought conditions due to varying amounts of non-photosynthetic vegetation (NPV). The
selected C. megacarpus endmembers model fewer C. megacarpus polygons in the negative water balance images
than in the positive water balance images. C. megacarpus polygons with a higher fraction of NPV are modeled by
the A. fasciculatum and Arctostaphylos endmembers, which displayed spectral features characteristic of increased
NPV. Similarly, greener A. fasciculatum spectra were better modeled by C. megacarpus endmembers than by A.
fasciculatum endmembers,

6. Conclusions

Endmember average RMSE was used to select the most representative image endmembers of six land cover
classes from five AVIRIS images with varying soil moisture availability. Confusion between endmembers
increased as soil water balance changed from positive to negative, reducing the accuracy of the modeled negative
water balance images. Considering that many areas of all five AVIRIS images were unmodeled, a single two
endmember model for each land cover class is not adequate for comprehensive mapping. Using multiple 2
endmember models for each class or adding 3 endmember models will reduce the number of unmodeled spectra.
The use of additional models may also diminish confusion between A. fasciculatum, Arctostaphylos, and C.
megacarpus. Endmembers with varying amounts of NPV could be selected for each species, allowing more
accurate mapping in the negative water balance images. Even with an expanded set of endmembers, it is likely that
wet season images with positive water balances will still be modeled with higher accuracies. This has implications
for mapping vegetation using broadband sensor data, which will also be sensitive to seasonal spectral variability.
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Table 1. Dates of AVIRIS data, ordered by soil Table 2. Spectral library constituents from
water balance. each land cover class.
Solar Soil Water Class # of spectra

AVIRISDates | 7. ith | Bal. (cm) A fasciculatum 76
May 30, 1998 12.5° +66.2 Arctostaphylos spp. 111
June 14, 2001 11.2° +12.5 C. megacarpus 398
May 5, 2002 19.7° -18.4 grassland 117
Sept. 16, 2000 37.0° -37.9 Q. agrifolia 107
Sept. 11, 1999 32.9° -64.0 urban 179
total 988

Table 3. Accuracy, kappa, and kappa variance

for each AVIRIS date.
Year | Accuracy | Kappa | Kappa Var.
1998 0.85 0.81 0.0034

2001 0.90 0.87 0.0021
2002 0.63 0.56 0.0054
2000 0.68 0.62 0.0046
1999 0.79 0.74 0.0037

Table 4. Polygon dominant land cover class confusion matrix for the modeled 2000
AVIRIS image, including user’s and producer’s accuracies.
Reference Dominant

A fasc.  Arcto. C.mega grass (. agri. urban user’s

A. fasc. 5 1 5 0 0 0 0.45
v Arcto. 4 6 9 0 0 0 0.32
$E C mega 2 0 9 0 0 0 0.82
E £ grass 0 0 0 10 0 0 1.00
R 0. agri 0 0 1 0 8 0 0.89
urban 0 0 0 0 0 9 1.00

producer’s 0.45 0.86 0.38 1.00 1.00 1.00
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Figure 1. Selected minimum EAR endmembers for each land cover class, by year.
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Adenostoma fasciculatum
B Ceanothus megacarpus
M Arctostaphylos spp.

® Quercus agrifolia
Grass
B Urban

Figure 2. AVIRIS images of the Santa Barbara front range modeled using the minimum EAR endmembers
for each date. Image letters correspond to the following dates: a) May 30, 1998; b) June 14, 2001; c) May 5,
2002; d) Sept. 16, 2000; and e) Sept. 11, 1999, Black areas are unmodeled.
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Using AVIRIS Data to Map and Characterize Subaerially and Subaqueously Erupted
BasalticVolcanic Tephras: The Challenge of Mapping Low-Albedo Materials

William H. Farrand®

1.0  Introduction

Increases in the signal-to-noise ratio (SNR) in AVIRIS has enabled the mapping and
characterization of low albedo materials. Low albedo materials of interest include certain soils,
man-made materials (asphalt, certain building materials, tires, etc.), and basaltic lava flows and
ashes. Early in its history, the response of the AVIRIS sensor was not sensitive enough so that
these low albedo materials could be reliably mapped. However, as indicated by Green and Pavri
(2002) the noise equivalent delta radiance (NEdL) of AVIRIS in the 2001 flight season was
below 0.010 in all but the shortest wavelength channels. This is approximately a ten-fold
improvement from the 1989 flight season when NEdL was closer to 0.1 (Green et al., 1990). In
the current investigation, AVIRIS data from the 2002 flight season collected over the Pavant
Butte tuff cone, Tabernacle Hill tuff ring, and an associated lava flow in the Black Rock Desert
of west central Utah were examined to determine how well these generally low albedo volcanic
lavas and tephras could be discriminated from background materials. The Pavant Butte tuff cone
was examined by the author in an earlier study with a 1989 AVIRIS dataset (Farrand and Singer,
1991).

2.0 Field Area

Figure 1 shows the location of the Pavant Butte area and the outline of the portion of the
AVIRIS flightline that was examined. Tabernacle Hill and Pavant Butte are examples of,
respectively, a tuff ring and a tuff cone. Such landforms are part of a continuum of volcanic
landforms that are produced when magmas erupt in the presence of water. They represent
different amounts of water present at the vent at the time of eruption. Tuff cones are produced
from high water/magma ratios representative of eruption into standing water and tuff rings result
from a lower water/magma ratio (Wohletz and Sheridan, 1983). Pavant Butte was erupted into
Pleistocene Lake Bonneville in west-central Utah between 16,000 and 15,300 years ago (Oviatt
and Nash, 1989). It consists of a partial cone that is composed of massively bedded ashes which
are highly palagonitized and cemented into tuff. These palagonite tuff beds lie atop fresh to
poorly palagonitized ash and tuff beds. The ash beds lie atop lacustrine sediments. Ash and
cinders from the Pavant Butte eruption are prominent as a component of the soils surrounding
the tuff cones. The AVIRIS scene analyzed in this study also contains a number of ephemeral
lakes or playas some of which were apparently wet at the time of the overflight. South of Pavant
Butte lies the younger, moderately palagonitized Tabernacle Hill tuff ring. Tabernacle Hill lies
atop a weathered basalt flow. The age of the Tabernacle Hill eruptions is between 14,500 and
14,300 years ago (Oviatt and Nash, 1989). Between Pavant Butte and Tabernacle Hill lies a
more recent, relatively fresh, low albedo basalt flow.

! Farr View Consulting, Thornton, Colorado and Space Science Institute, Boulder, Colorado, E-mail:
farrand@ricochet.com
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3.0  Materials of Interest

Reflectance spectra of hydrovolcanic tephras from Pavant Butte and the fresh basalt flow,
extracted from the AVIRIS scene, are presented in Figure 2. The reflectance of the Tabernacle
hill tuffs is approximately the same as that of the poorly palagonitized tuff shown in Figure 2.
The well palagonitized tuff is distinguished by a distinct Fe** crystal field band just shortwards
of 1 um, deep water absorption features, and a small sheet silicate vibrational overtone at 2.3
um. In the poorly palagonitized material, the “1 um” feature is caused by both Fe’" in the
palagonite and Fe®' in the unpalagonitized glass. Water absorption features are weak to absent.
The highly palagonitized tuff is relatively bright while the poorly palagonitized tuff is
characterized by relatively low reflectance values, on the order of 20%. The relatively unaltered
ash has reflectance values below 10%. More detail on the spectroscopic characteristics of Pavant
Butte tephras is provided in Farrand and Singer (1992).
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Figure 2. Reflectance spectra of hydrovolcanic tephras from Pavant Butte and fresh basalt flow
as extracted from the AVIRIS data. Spectra have been scaled by a factor of 5000. Note that
even the low reflectance sideromelane (basaltic glass) ash has discernable spectral shape.

The surrounding lacustrine sediments include several clay minerals as well as the
evaporite mineral gypsum. There are aeolian sediments which to the naked eye appear reddish
and whose reflectance spectra indicate the presence of iron and a weak 2.2 mm band indicative
of a dioctahedral clay phase. The recent basaltic lava flow in the central part of the scene has
low reflectance values. In addition to the volcanic materials and aeolian and lacustrine
sediments, some circularly irrigated agricultural fields are also present in the scence near
Tabernacle Hill and the recent lava flow.

4.0 Data

The hyperspectral data examined here were collected on October 8, 2002 by NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The data, as supplied by the
AVIRIS data lab, were provided in a geometrically corrected format (Boardman, 1999). In order
to eliminate null pixels at the borders of the scene that were introduced by the geometric
correction, the data were spatially subsampled to a 688 by 2048 subsection. It is this spatial
coverage that is outlined in Figure 1 and shown in the color composites of Figure 4. The data
were corrected to surface reflectance by means of the HATCH atmospheric correction software
(Qu et al., 2000). Spectral “polishing” of the data was achieved through application of the
EFFORT software (Boardman, 1998) resident in ENVL
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5.0 Results

Selection of an initial set of image endmembers was achieved by applying the “standard”
ENVI processing steps of Minimum Noise Fraction (MNF) transformation, Pixel Purity Index
pixel selection, and n-Dimensional visualization (RSI, 2002). This initial set of image
endmembers was used as input to the linear spectral mixture analysis (SMA) routine contained in
ENVI. SMA was run iteratively in order to obtain additional endmembers indicated in the root
mean square (RMS) error image (Adams et al., 1993). The final set of image endmember spectra
is shown in Figure 3. The endmember materials include the highly palagonitized tuff of Pavant
Butte, vegetation, oxidized cinders associated with the fresh basalt flow and several playa
endmembers. A surface class that is notably absent from this set of endmembers is the basalt
flow itself. The flow is one of the most obvious components of the scene upon visual inspection
of a simple color composite (such as Figure 4a). However, it is a low albedo material and in
running SMA on standard reflectance or radiance data, materials which are higher in albedo will
be preferentially selected as required image endmembers.

In order to remove the effects of albedo, a hyperspherical directional cosine (HSDC)
transformation (Pouch and Campagna, 1990) was applied to the data. Color composites of
HSDC transformed data produced color contrasts much more vivid than composites of the non-
transformed data. In Figure 4, a three band color composite of the original AVIRIS data is
shown along with a composite of the same bands of the HSDC transformed data. In the color
composite of the HSDC transformed data, low albedo materials such as the basalt flow and
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Figure 4. A. Composite of 1.7
pm (red), 0.8 um (green), and
0.45 wm (blue) bands for the
subsection of AVIRIS data
discussed here. B. Composite
of those same channels in data
transformed by the HSDC
transformation

' B.A

exposures of the unaltered Pavant Butte ash show up as red. Iterative SMA was applied to the
HSDC-transformed data and an endmember required by this analysis was the basalt flow. The
resulting fraction image of the basalt endmember also displays higher contrast against the
background than when the same pixels are averaged to produce a comparable image endmember
set and run against the original/non-albedo normalized data (Figure 5).

Application of the HSDC transformation also helped to improve the mapping of the low
albedo ashes associated with Pavant Butte and Tabernacle Hill. Fraction images of the relative
abundance of the highly palagonitized tuff and the poorly palagonitized tephras associated with
Pavant Butte and Tabernacle Hill were produced via application of constrained energy
minimization (CEM) (Farrand and Harsanyi, 1997) and foreground / background analysis (FBA)
(Smith et al., 1994). The highest fractions (fractions greater than 0.4) from these fraction images
were thresholded and these results are presented in Figure 6. While the ability to map out the
highly palagonitized tuff of Pavant Butte was demonstrated in a previous study with relatively
low SNR 1989 AVIRIS data (Farrand and Singer, 1991), the lower albedo tephras could not be
uniquely mapped out with that data set and the ability to do so in this study is attributed to the
increase in instrumental SNR.
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Figure 5. A. Fraction image for
basalt flow image endmember as
derived and run against the HSDC
transformed data. B. Basalt fraction
image as derived and run against
non-albedo normalized data.

While the influence of albedo on SMA is profound, it should be noted that other
processing techniques can be more insensitive to the effects of albedo. A spectral feature fitting
approach such as is implemented in ENVI and which is a critical component of the USGS
Tetracorder (Clark et al., 2003) software requires that the data have the continuum removed.
Such a continuum removal is a de facto albedo normalization. The Spectral Angle Mapper
technique (Kruse et al., 1993) is also insensitive to albedo differences.

6.0 Conclusions

['he ability to map low albedo materials in AVIRIS data was demonstrated in this study.
The materials of interest in this investigation were volcanic lava flows and tephras of the Black
Rock Desert of west central Utah. [t was demonstrated that image endmember spectra selected
by iterative SMA are skewed towards high albedo materials. Hence, even a major low albedo
component in the scene, such as the basalt flow in the Pavant Butte scene, that is readily apparent
to the observer in color composites is not a required endmember in iterative SMA of non-albedo
normalized data. Forcing the issue, and including such a low albedo endmember in SMA of the
non-albedo normalized data, results in a fraction image in which there is low contrast between
the target endmember and the background (Figure 5). A better representation of what materials
in the scene are truly spectrally unique is obtained by conducting iterative SMA on albedo
normalized data. In this study, the HSDC transformation (Pouch and Campagna, 1990) was used
to remove albedo differences. Running SMA, or a related technique such as FBA, on the albedo
normalized data also serves to increase the contrast between target and background in the the
resulting fraction image.
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By using the high SNR 2002 AVIRIS data and the HSDC transformation, it was
demonstrated that even the low albedo, relatively spectrally featureless poorly palagonitized
tephras associated with tuff rings and portions of tuff cones could be uniquely mapped. These
materials could not be uniquely identified in an earlier study that was conducted using 1989
flight season AVIRIS data (Farrand and Singer, 1991).

Figure 6. 1.7 pm band with overlay of highest (> 0.4) fractions of highly palagonitized tuff (red)
and poorly palagonitized tuff and ash (yellow) over Pavant Butte (left) and Tabernacle Hill
(right). Note the absence of highly palagonitized tuff at Tabernacle Hill.
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Unsupervised Change Detection for Hyperspectral Images
Michael Frank' and Mort Canty?

1. Introduction

Change detection is a central task in the field of remote sensing. Detection of anthropogenic or natural impacts
on landcover is essential for many environmental studies. On the regional to global scale, only multitemporal remote
sensing is capable of monitoring landcover changes caused by short-term phenomena such as fire hazards and
seasonal vegetation change, or long-term phenomena such as urban development and desertification in a practical
way. A variety of change detection techniques has been developed for multispectral satellite and airborne imagery,
including arithmetic operations, methods of principle component analysis as well as post-classification comparison
and multitemporal classification [Singh, 1989], [Roberts et al., 1998a], [Yuan et al., 1998]. Spectral change
detection techniques rely on the principle that a difference exists in the spectral response of a pixel on two dates if
the biophysical material within the instantaneous field of view (IFOV) has changed between these dates [Jensen,
1996]. Hyperspectral change detection has many advantages over multispectral data in detecting and discriminating
surface properties because it provides a continuous spectrum across a range in wavelengths [Green et al., 1998].
Nevertheless, only few attempts have been made for change detection based on hyperspectral images [Wiemker et
al., 1997}]. Until recently, the main limiting factor on the employment of hyperspectral sensors in change detection
studies has been inadequate multitemporal coverage [Garcia and Ustin, 2001]. But with the launch of the
hyperspectral sensor Hyperion [EO1, 2000] and the growing number of hyperspectral airborne sensors, more of
these images may be available soon, and with them a greater need for hyperspectral change detection methods. Past
investigations mainly focused on the use of hyperspectral change detection for vegetation. Gareia (2001) [Garcia
and Ustin, 2001] and Roberts (1999) [Roberts et al., 1997] use spectral mixture analysis to identify changes between
soil, green vegetation (GV) and non-photosynthetic vegetation (NPV). But this involves time-consuming pre-
processing and endmember selection to extract the amount and kind of changes depending on the selected classes.
Other researchers used vegetation indices for change purposes [Chen et al., 1998], [Gamon and Qiu, 1999]. But all
of these methods only considered specific changes. None of these methods accounts for general purpose monitoring,
which is often needed to interpret the different changes in a global context. For example, changes in vegetation may
often be due to anthropogenic influences. However, as multitemporal hyperspectral coverage increases even in those
areas where no or little ground truth data is available the need for robust unsupervised change detection methods
will be more evident than before.

The purpose of this study is to detect seasonal vegetation dynamics in the Santa Monica Mountains using an
unsupervised hyperspectral change detection approach. Seasonal vegetation dynamics in arid and semi-arid areas are
largely regulated by the availability of water. But climatic shifts and anthropogenic influences may also have a
major impact on seasonal fluctuations. Therefore it is important to understand how these properties interact to
predict long-term environmental consequences of climate and land use changes on ecosystem function and
sustainability [Ustin et al., 1998]. However, detecting vegetation dynamics in the absence of land cover change is
more challenging then standard land cover analyses because of the subtle community response [Garcia and Ustin,
2001]. Therefore we investigate the usefulness of a relatively new unsupervised change detection procedure for
hyperspectral images. The so-called multivariate alteration detection (MAD) technique proposed by Nielsen and
Conradsen (1998) [Nielsen et al., 1998]. In past studies this method has been successfully applied to multispectral
images [Canty and Niemeyer, 2002], [Niemeyer et al., 1999], [Nielsen, 1996]. Here it was used to highlight seasonal
changes in bitemporal Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) images from the Santa Monica
Mountains (California). We applied the algorithm to selected bands as well as to all bands to test the usefulness of
this method. The MAD bands were then examined to identify the quantity and the quality of changes. The results
were compared with a derivative-based green vegetation index (DGVY) proposed by Chen and Elvidge (1998) [Chen
et al., 1998] and a spectral mixture analysis (SMA) [Ustin et al., 1993] to provide a basis for comparison with other
studies.

! Geographisches Institut der Rheinischen Friedrich-Wilhelms Universitiit, Bonn, Germany (uzsSor@uni-bonn.de)
2 Forschungszentrum Jiilich GmbH, Germany (m.canty@fz-juelich.de)
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2. Methods
2.1 Study Site

The study site was located in the Santa Monica Mountains (California, USA). The range extends 70 km
westward from the City of Los Angeles to Ventura, along the Pacific coast. Elevation ranges from sea level to about
900 m. This region is characterized by a Mediterranean climate, having cool, wet winters and hot, dry summers. The
mean annual precipitation is 600 mm per year mainly falling between December and April. Temperatures exceed
35°C in the summer but seldom drop below 10°C in the winter. The rough, discontinuous, mountainous terrain is
mostly dominated by chaparral vegetation communities, including drought-senescent ”soft” chaparral (coastal sage
scrub) and evergreen “hard” chaparral [Barbour and Major, 1990]. Hard chaparral (dominated by Ceanothus spp.
and Adenostoma fasciculatum) is mainly distributed at higher elevations on the interior side of the range. Soft
chaparral (dominated by Salvia and Eriogonum spp. and Artesemia californica) is more common in the coastal area
at lower elevation but does also occur in isolated patches at higher elevation on outcrops of shallow or fine textured
soils [Holland and Keil, 1967]. However, vegetation patterns are complicated by the complex spatial distribution of
chaparral species due to steep topographic gradients, variable fire histories, a complex landownership and different
soil types [Roberts et al., 1998b].

2.2 AVIRIS Data

AVIRIS collects spectra in the wavelength range from 390 to 2500 nm in 224 bands with a nominal spectral
response of 10 nm [Green et al., 1998]. The sensor is mounted on an ER-2 aircraft, flying at an elevation of
approximately 20 km resulting in an IFOV of 20 m on the ground. A typical AVIRIS scene consists of 614 * 512
pixel (~ 11 km * 8 km).

Bitemporal AVIRIS data sets were acquired over the Santa Monica Mountains on 23 October 1996 and on 7
April 1997. The data presented here were obtained from flight-lines f970407t01p02, run 06, scene 04 and
f961023t01p02 run 04, scene 05 and 06, centered over Point Dume, California (34 °5°N, 118 °40°W).

The images from 1996 were acquired 3 days after the Calabasas fire at the end of the dry Mediterranean summer,
whereas the 1997 image represents a period of spring growth.

2.3 Preprocessing

Atmospheric correction was done using the MODTRAN 3 radiative transfer code to process the AVIRIS
radiance data to reflectance. To retrieve apparent surface reflectance a method proposed by Green et al. [Green et
al., 1993], Roberts et al. [Roberts et al., 1997] was applied on the MODTRAN corrected images. This model
accounts for a spatially variable atmosphere, such as found over mountainous terrain. The images from fall 1996
were then mosaicked to cover the scene from spring 1997.

A tedious task associated with change detection is the registration of the images involved, in particular the
setting of ground control points (GCPs). Registration errors will tend to reduce the accuracy of any digital change
detection effort. It is essential that registration accuracies should be on the order of half a pixel or less, to avoid false
change signals as much as possible. A typical problem of hyperspectral imagery recorded with airborne line
scanners is that normal registration techniques like polynominal fitting yield accuracies of some pixels at best. This
displacement is caused by the varying flight tracks of the aircrafi (in contrast to satellites) and the usually large
swath angles of airborne scanners which allow for oblique viewing angles. Therefore, imagery from airborne
scanners in general requires locally adaptive transformation functions [Wiemker et al., 1997]. For the image-to-
image registration, the scene from 1997 was used as base image and a thin plate spline model (TPS) was applied to
compute the warping transformation [Geomatics, 1997]. This model computes, in addition to a global
transformation, local interpolation functions between the GCPs. To ensure an accurate change detection registration,
400 GCPs were manually digitized. 150 GCPs were selected as check points to compute the root mean square error
(RMS) of the transformation. The overall accuracy of the registration was about 0.41 pixels.

In order to preserve the spectral characteristics of the data as much as possible resampling was done using the
nearest neighbor method. For further processing, 165 AVIRIS bands were selected and a sea mask was applied to
the co-registered AVIRIS images.

2.4 Multivariate Alteration Detection (MAD)

The MAD procedure is an application of a classical statistical transformation referred to as canonical
correlation and will briefly be described here. In general, hyperspectral imagery for monitoring purposes is recorded
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by multitemporal overflights over the same land area. We represent hyperspectral pixel intensities measured at two
different times by random vectors X and Y:

X=| : |, Y=| : (D)
X, Y,

N being the number of spectral components, then we search for a linear transformation
— 4l y —
u=a X=aX, +a,X,, @

v=b"Y =bY,+-b,Y,, 3)

where the coefficients a; and b, (i = 1... N ) are as yet unspecified. In order to detect the changes between the two
images, we calculate the difference U — V. As an advantage of this procedure all the information is combined into a
single image, and one is free to choose the coefficients @, and b, in a suitable way. The MAD procedure determines
these coefficients so that the positive correlation between U and ¥ is minimised [Nielsen, 1994].

In fact, we search for a linear transformation such that the difference between the transformed vectors has maximum
variance:

var(u —v) = Var(aTX -b'Y ) — Maximum 4
subject to the constraint
var(u) = var(v) =1 )

Under these constraints we have:

var(u — v) = var(u) + var(u) — 2 cov(u,v) = 2(1— corr(u,v)). (6)

Therefore, we seek vectors a und b, which minimizes the positive correlation corr(u, v). Mathematically this

involves the solution of a generalized eigenvalue problem [Anderson, 1984]. The MAD transformation is then
described as:

T T
a —b

X—) - 7
v : (7N

T T
ay —by

where a; and & ; are the defining coefficients from a standard canonical correlation analysis. X and Y are vectors with
mean zero.

As aresult we obtain as many MAD bands as input channels, whereby the last MAD component has maximum
spread in its pixel intensities and, ideally, maximum change information. The second-to-last component has
maximum variance subject to the condition that the pixel intensities are statistically uncorrelated with those in the
first component, etc. Figure 1 shows a scatterplot of MAD1 vs. MAD?2 for two AVIRIS scenes. The components are
seen to be uncorrelated and approximately Gaussian. Assuming that different kinds of changes will generally be

65



uncorrelated with one another, these changes will be distributed among different MAD components. Noise will be
concentrated in lower order componentg [Canty et al., 2001]
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Figure 1: Scatterplot MAD1 vs. MAD2.

The MAD procedure is invariant to linear scaling. Therefore, it is insensitive to, for example, differences in gain
and offset settings in a measuring device, and to the application of radiometric and atmospheric correction schemes
that are linear in the digital numbers (DN) of each image band [Nielsen, 1999]. The MAD method can also be
applied on any spatial and/or spectral subset of the full data set to focus the analysis in any desired manner. For
specific applications, certain wavelength bands may be selected, whereby for general purpose monitoring, all
spectral bands can be taken into account (see equation 2 and 3).

The resulting MADs can qualitatively be interpreted by

*  visual interpretation
o magnitude and direction of the changes
o correlation with the original AVIRIS bands

Furthermore the MAD method can be computed completely automatically because the calculation of the
transformation is solely determined by the statistical properties (spectral dispersion matrices) of the original image
data [Canty et al., 2001].

For cases where many spectral bands are to be used, pre-processing via the MNF (minimum noise fraction)
transformation and/or post-processing by means of a MAF (minimum/maximum autocorrelation factor)
transformation could be useful [Nielsen et al., 1998].

3. Results and Discussion

In unsupervised change detection studies, where little or no ground truth data are available, it is very useful to
get a rough estimation of the expected changes. Besides visual interpretation this can be done by using some
fundamental image statistics. Therefore the mean and the standard deviations of both images were computed for
every band and compared with one another to provide insight into the type of process that may have produced the
changes (Figure 2).

In Figure 2(b) the AVIRIS scene of October shows higher spectral variations in the NIR/SWIR. In addition, the
mean signature of the AVIRIS scene of April (Figure 2(a)) shows a more pronounced red edge, chlorophyll and
water absorption as well as lower mean values in the NIR and SWIR compared with the scene from October. On the
basis of visual examination and due to the fact that both scenes are mainly covered with vegetation the signatures in
the figure could be interpreted as a subsequent drying of the vegetation from April to October with an increasing
amount of NPV and Soil at the expense of GV.
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Figure 2: Mean (a) and standard deviations (b) from April 1997 (thick line) and October 1996 (dotted line)
calculated over all AVIRIS bands.

The MAD method was applied to the co-registered images using:
(i) vegetation specific bands
(ii) MNF bands

(i) Wavelength regions from 673-702 nm (chlorophyll absorption), 770-818 nm (rededge shoulder), 1173-
1211 nm (plant water absorption), 2088-2138 nm (ligno-cellulose absorption) and 2288-2338 nm (ligno- cellulose
absorption) were selected as input channels for the MAD method in order to enhance these phenological changes as
much as possible. The AVIRIS scene from April was selected as the base image in the MAD transformation. In
order to detect the subtle vegetation dynamics we applied manual thresholding with 1.5 Standard deviations from the
mean for the discrimination of change and no-change pixels. The MAD components are linearly stretched from
mean minus and plus three standard deviations. The results of the MAD transformation (first 6 components) are
shown in Figure 3. Maximum change areas are shown as white (positive changes) and black (negative changes)
pixels. Gray areas indicate no change. Correlations between the change areas of the MADs and the original AVIRIS
data (wavelength regions) are shown in Table 1.

Table 1: Correlation matrix of the MAD components with the original AVIRIS bands.

Date and wavelength region MAD 1 MAD 2 MAD 3 MAD 4 MAD 5 MAD 6
April 7" (673-702 nm) 0.19 0.10 0.02 0.06 -0.08 0.00
April 7" (770-818 nm) 0.25 0.19 -0.07 0.09 -0.06 0.03
April 7" (1173-1211 nm) 0.15 -0.16 0.02 0.05 -0.09 -0.05
April 7" (2088-2138 nm) 0.16 -0.02 0.16 0.18 -0.00 -0.05
April 7" (2288-2338 nm) 0.i1 -0.02 0.16 -0.19 0.02 -0.12
October 23" (673-702 nm) -0.11 0.10 -0.09 0.06 0.03 -0.04
October 23™ (770-818 nm) -0.15 -0.21 -0.02 -0.08 0.04 -0.09
October 23" (1173-1211 nm) -0.25 0.19 -0.08 0.05 0.03 -0.07
October 23 {2088-2138 nm) -0.22 0.08 -0.28 0.16 0.08 0.01
October 23™ (2288-2338 nm) -0.24 0.08 -0.22 0.28 0.09 -0.05
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(a) MAD 1 (b) MAD 2 (¢) MAD 3

(d) MAD 4 () MAD 5 HMAD 6
Figure 3: MAD components 1 to 6 (a-f).

As mentioned above, MAD1 shows the largest changes. The correlation of MAD1 shows a weighted mean of
all channels with positive correlation in the October image and negative correlation in the April image. Therefore
MADI1 is probably an indicator of shadow-induced changes. Actually, if we consider MAD1 (Figure 3(a)) * we can
identify positive and negative changes mainly located in east-west valleys, which are strongly effected by intense
shadowing. Positive changes at the Calabasas fire site (at the lower middle site of the image) are due to post-fire
vegetation re-growth from October to April. In MAD2 we expect smaller changes that are furthermore uncorrelated
to MADI. Therefore more subtle changes, such as changes in phenology, are expected to occur in MAD2 and lower
order MAD components. In fact MAD?2 correlates with bands in the NIR and Red and could therefore be sensitive to
changes in GV. Figure 3(b) shows high positive changes at the coastal region and in some isolated patches in the
interior. These changes are consistent with the distribution of the soft chaparral communities. Soft chaparral is
drought-deciduous and exhibits pronounced seasonal changes. Because seasonal vegetation dynamics in
Mediterranean-climate ecosystems are mainly driven by the effect of water, most of the changes in the chaparral
communities were basically due to loosing green leaves. Negative changes represent seasonal dynamics in hard
chaparral communities. Most hard chaparral species are evergreen and undergo little seasonal senecense.

MAD3 and MAD4 have highest correlation in the SWIR regions and are presumably change indicators of NPV
and/or soil. In general the change-enhanced data of MAD3 (Figure 3(c)) and MAD4 (Figure 3(d)) show small areas
of changes in the soft chaparral areas. However, because of the larger changes at the Calabasas fire site, MAD4
seems to be more likely to represent changes in soil. Linear changes in MAD3 and MAD4 are probably due to poor
registration of roads. MADS5 (Figure 3(e)) and MADG6 (Figure 3(f)) are uncorrelated with all bands in both years and
show scanner noise.

Changes in the urbanized area apparent in all MAD components are probably due to registration errors,
irrigation or seasonal planting of different flowers or plants. The golf course at the upper right shows high changes
in some MAD components induced by irrigation and soil moisture. The changes at the coastline are caused by waves

* In this article all images are rotated 90 degrees clockwise.
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and tides. Different changes at the Calabasas fire site best seen in (Figure 4(a)) are presumably due to the successive
stages of post-fire vegetation re-growth.

In comparison to the SMA (not shown) we see a general agreement between the MAD components and the
fraction images (GV, NPV, soil and shadow) of the SMA.

(i) In order to concentrate and to visualize all spectral change information in one composite image the MAD
transformation was performed based on a MNF transformation [Green et al., 1988] calculated from 165 AVIRIS
bands. We used the first 10 MNF Bands describing 90% of the variance of the image data. Figure 4(a) shows the
RGB image of MAD/MNF components two, three and four with the same decision threshold (MAD/MNF1 as an
indicator of shadow induced changes was rejected).

To provide a basis for comparison with other methods a DGVI difference image (Figure 4(b)) with the same
decision threshold as applied on the MAD transformation was computed [Chen et al., 1998]. In the MAD/MNF
composite we can see more changes than in the DGVI difference image, especially in the housing estate areas, the
Calabasas fire site and at the golf course.

In addition, a change probability based on a MAD transformation calculated from all 165 AVIRIS bands was
performed. It was calculated using the sum of standardized, squared MADs [Canty et al., 2003] (see equation 8):

v ( MAD, Y
Z; —— ®)

The resulting image (Figure 5) is approximately chi-square distributed with six degrees of freedom describing a
change probability of 95%.

a) MAD/MNF RGB composite image with (b) DGVI change mask
R=MAD/MNF2, G=MAD/MNF3, B=MAD/MNF4

Figure 4: Comparison between MAD/MNF and DGVI.
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Figure 5: MAD change probability. White areas represent changes with a probability of 95%.

4. Conclusion

The applicability of the MAD method to hyperspectral, bitemporal, unsupervised change detection studies was
demonstrated and an interpretation approach based on the correlation matrix was given. The MAD transformation
was applied on bitemporal AVIRIS images of the Santa Monica Mountains to detect seasonal changes. The method
was performed on selected bands, MNF bands as well as to all bands. The main changes observed are due to
contrasting seasonal patterns of chaparral communities. Large change areas are located within soft chaparral
communities and at the Calabasas fire site. The lowest changes occurred in areas covered with hard chaparral. In
addition changes that can be related to registration errors, irrigation practices, shadow formation and other
anthropogenic influences were also shown by the MAD method. As expected subtle vegetation changes occurred in
the lower order MAD components whereas large changes like shadow formation are more apparent in the first MAD
components.

We found the MAD transformation to be a good unsupervised change detection method for hyperspectral
images. It can be applied on any spatial and/or spectral subset of the full data set and sorts different changes into
different images. The MAD transformation is also comparable to other methods based upon DGVI or SMA. MAD
tends to be robust against varying recording conditions at the time of the data acquisition and can be run completely
automatically. But as for all change detection techniques a good registration accuracy is needed. On the other hand,
interpretation of the MAD components is difficult when many spectral bands are used, so data reduction is
sometimes necessary as'a pre- and/or post-processing step. In general, the MAD transformation seems to be suitable
for all kinds of change detection applications.
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RELATIVE PERFORMANCE OF HATCH AND THREE OTHER TECHNIQUES FOR ATMOSPHERIC
CORRECTION OF HYPERION AND AVIRIS DATA

Alexander F. H. Goetz, " Bruce Kindel,' Mario Ferri,’ and Ethan Gutmann'?

1.0 Introduction

The analysis of hyperspectral image data requires either the application of a radiative transfer model to
correct radiance data from the sensor to reflectance or the simultaneous acquisition of surface spectral reflectance
data to obtain correction factors for the solar irradiance and atmospheric transmission and scattering. The
transmission, and in some cases the scattering, is highly location dependent because the major absorber is water
vapor, a poorly mixed gas. Therefore, radiative transfer modeling is required to extend point measurements to the
rest of the image.

Several models have been developed for atmospheric correction and four of them, ATREM (Gao et al,,
1993), HATCH (Qu et al., 2003), ACORN (Miller, 2002) and FLAASH (Matthew et al., 2000) have gained
prominence. The latter two are commercially available. In this paper we describe the results of using model and
measured reflectances propagated to the top of the atmosphere using MODTRAN4 (Adler-Golden et al., 1999) and
retrieved using the above models for different precipitable water vapor values. In addition, we have applied the
models to AVIRIS and Hyperion data in order to compare the average reflectances obtained with each model, and
compared the results for the derivation of spectral reflectance under a variety of precipitable water vapor conditions.

2.0 Approach

The methods used here are an extension of those described by Goetz et al. (2003). In order to eliminate the
variables of sensor response and signal-noise ratio, and the uncertainties in ground reflectance in the comparison of
models, the above-the-atmosphere radiance for several total precipitable water vapor values was modeled using
MODTRAN4 (Adler-Golden et al., 1999). The modeled at-sensor radiance was entered into the four atmospheric
correction models and the surface reflectance retrieved. MODTRAN4 was used to retrieve the modeled radiance to
assure the validity of the at-sensor radiance values. A spectrum consisting of 50% reflectance values over the
wavelength range 0.4-2.5 wm was input to MODTRAN4 for precipitable water vapor values of 0.5, 1.5, 2.5 and 4.5
cm. This artificial reflectance spectrum was created to emphasize the model differences since there were no slopes
or absorption features normally associated with natural materials.

There are errors induced into the retrieval if the wavelength calibration of the sensor departs from that of
the model. Reduction of at-sensor radiance to reflectance requires taking a ratio between the modeled and actual
radiance that will accentuate wavelength calibration errors especially at the edges of atmospheric absorption bands
(Qu et al., 2003). The differences between models as well as the calibration errors are the major contributors to the
uncertainty in the retrieval of surface reflectance. The comparison of the ratio between two MODTRAN4 models,
incorporating a wavelength shift in one of them, and the retrievals of the 50% spectrum discussed above make it
possible to quantify the errors and their sources.

The individual models were applied to field spectra representing pure soil and pure vegetation cover at the
four different precipitable water vapor amounts in order to examine the model behavior. This test was important
because each model uses a different interpolation scheme and the results differ.

The models were also applied to AVIRIS and Hyperion images having varying average water vapor values.
Water vapor images were created and compared. A mean reflectance spectrum was calculated for each entire image
so that any sensor influences, such the signal-to-noise ratio, were minimized.

! Center for the Study of Earth from Space
% Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
> University of Naples, Italy

73



3.0 Results
3.1 Artifical Reflectance Spectra

Figure 1 shows the results of applying the ACORN, HATCH and FLAASH atmospheric corrections to
retrieve the at-sensor radiance of a 50% reflectance target modeled using MODTRAN 4 (Adler-Golden et al., 1999).
The differences are most notable at the edges of the water vapor absorption bands. There are no artifacts associated
with inaccurate wavelength calibration, nor sensor signal-to-noise ratio characteristics. The departures from the
50% line correspond solely with differences between the atmospheric correction models and the MODTRAN 4
model. Retrieval of the reflectance from the at-sensor radiance using MODTRAN 4 produces the straight 50% line
shown in Fig. 1. The differences among models become more pronounced as the water vapor amount is increased.
At 4.5 cm precipitable water vapor the FLAASH model breaks down. This problem has been corrected in later
versions of the program.
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Figure 1. Model retrievals for varying total precipitable water vapor amounts. a) 0.5 cm; b) 1.5 cm; ¢) 2.5 cm;
d) 4.5 cm. The gaps are associated with the saturated water vapor absorption features at 1380 and 1900 nm.

Sensor calibration errors lead to additional errors in the retrieval, particularly at the edges of sharp
atmospheric or surface reflectance features. The errors are introduced through the process of ratioing the modeled
at-sensor radiance with the measured radiance. Figure 2 shows the effects of wavelength calibration errors using a
ratio of two MODTRAN 4 models convolved with the AVIRIS spectrometer point spread function and offset by 3
nm. The wavelength calibration error results in errors in reflectance of + 20 % of the value at the edges of the sharp,
unsaturated atmospheric absorption features caused by O,, CO, and water vapor. Signal-to-noise ratio is important
in the quality of the retrieved reflectance spectrum. Poor signal-to-noise ratio will produce artifacts at sharp
absorption edges similar to those created by poor calibration shown in Fig. 2.
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Figure 2. MODTRAN 4 model of sensor radiance from a soil surface that has been converted to reflectance using
MODTRAN 4 (Model) and the same model but shifted to longer wavelengths by 3 nm. The results of the
atmospheric model HATCH applied to the MODTRAN sensor radiance are shown in red.

3.2 Application to AVIRIS data

The atmospheric models were applied to AVIRIS images taken under different water vapor conditions. For
comparison of the spatial quality of the water vapor effect removal, water vapor images were created. If the removal
is complete, no surface albedo variability will be visible. In order to exclude the effect of sensor signal-to-noise
ratio on the corrected reflectance, the entire reflectance image was averaged after the atmospheric correction was
applied on a pixel-by pixel basis. Fig. 3 shows the water vapor images from the AVIRIS scene taken over
Yerington, Nevada. The ATREM image (b) shows more albedo features and generally shows greater errors at high
vapor values and in the presence of vegetation (Goetz et al., 2003). Fig. 4 shows the average reflectances as a result

of the application of three atmospheric correction programs to correct the AVIRIS scene of Yerington, Nevada
to......72?2

Because the full scene is averaged, no sharp spectral reflectance features will be present. Any departure
from a smooth reflectance curve is the result of an error in the model correction or an incorrect wavelength
calibration. The HATCH algorithm automatically corrects for wavelength calibration errors up to + 3 nm (Qu et al.,
2003). There does not appear to be a significant wavelength calibration error because the reflectance errors at the
edges of the sharp atmospheric absorption features are equivalent for each of the models.

An AVIRIS scene from Hawaii with a higher average water vapor content is shown in Figure 5.
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Figure 3. Water vapor images of Yerington, Nevada with average values of 0.69
cm precipitable water vapor. The models applied were a) ACORN; b) ATREM;
¢) FLAASH; d) HATCH
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Figure 4. Reflectance derived from the Yerington scene using 3 different
atmospheric correction models.
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Figure 5. Water vapor.."lmges of an AVIRIS image; in Hawaii. The average
water vapor value is 2.21 cm. The models applied were a) ACORN; b) ATREM;
c) FLAASH; d) HATCH

In this steep terrain the water vapor values are closely tied to the elevation giving the impression that the
models are very sensitive to surface albedo. ATREM (b) looks the most different from the other three model images
possibly reflecting higher sensitivity to vegetation cover differences. The whole-image reflectance retrievals are
shown in Fig 6.
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Figure 6. Reflectance averaged for the entire Hawaii scene for three correction models

The smoothest rendition of reflectance is given by ACORN but for an unknown reason the derived
reflectance is considerably higher than from HATCH and FLAASH in the visible portion of the spectrum.
FLAASH shows the greatest sensitivity to sharp atmospheric bands. HATCH exhibits a significant increase in
reflectance around the 940 nm water vapor absorption band not shown by FLAASH or ACORN.

3.3 Application to Hyperion data

Hyperion (Pearlman et al., 2003) is a pushbroom imaging spectrometer that poses a different set of
challenges for atmospheric correction. The 940 nm water vapor absorption, feature normally used to determine the
column water vapor value for use in correcting the rest of the spectrum with the models, falls within the cross-over
region between the two detector arrays. The signal-to-noise ratio is not high enough in this region to make an
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accurate water vapor determination. As a result, the 1140 nm water vapor band is used. The difficulty here is that
the calculation is more affected by the nearby deep 1200 liquid water feature in vegetation than the shallow 980
water feature near 940 nm (Goetz et al., 2003). An additional problem is the stability of the radiometric calibration
and the inaccuracies in the pixel-to-pixel calibration precision leading to stripes in the images when they are
enhanced by ratioing, principal components analysis or other means in which the least significant bits in the pixel
values are utilized. Striping is also induced by atmospheric correction models because the small radiometric
calibration errors are highlighted by ratioing the sensor radiance data with the modeled radiance. Additional
artifacts are induced by sensor “smile” or the change in spectral calibration across the detector array. Smile is a
characteristic of all pushbroom array systems and HATCH-2d was developed to compensate for smile by calculating
the wavelength calibration for each column in the image (Qu et al., 2003). ACORN and FLAASH make use of only
one wavelength calibration for each array.

Hyperion scenes having varying amounts of precipitable water vapor were processed using ACORN,
HATCH-2d and FLAASH. Fig. 7 shows the water vapor images for a Hyperion scene of Yerington, Nevada. The
average retrieved spectra are shown in Fig. 8.

Figure 7. Water vapor images from the Hyperion scene of Yerington, Nevada.
The models used were 1) ACORN; 2) FLAASH; 3) HATCH-2d. The average
water vapor value is 1.26 cm.
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Figure 8. Reflectance spectra of the averaged Yerington, Nevada Hyperion scene.
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The ragged look of the spectra is attributable to the column-to-column imprecision in radiometric
calibration. In this plot the HATCH-2d column-by-column calibration was turned off. The smoothest rendition of
reflectance appears to be from the ACORN model. All of the models show major departures from smooth behavior
around 2050 nm, the position of two CO, absorption features. These features are most likely the result of
wavelength calibration inaccuracies attributable to smile. In Fig. 9 the advantage of the HATCH-2d column-by-
column calibration is demonstrated by switching the calibration option on. The 2050 nm CO, feature is significantly

dampened as are some of the other water vapor band features.
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Figure 9. HATCH-2d derived reflectance of the Hyperion Yerington, Nevada
scene. “HATCH Cal off” is the same curve “HATCH” shown in Fig. 8.

Figure 10 shows Table Mountain north of Boulder, Colorado. In this Hyperion scene the areas of dense
vegetation were extracted and the reflectance values averaged after application of the models. Only HATCH-2d and

3

ACORN results are shown in Fig 11.

Figure 10. CIR composite of Table Mountain, Colorado. The
average water vapor value was 2.6 cm.
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Figure 11. Average reflectances for the densely vegetated areas shown in Fig. 10.

HATCH-2d appears to provide a smoother result than ACORN in this case for the 900-1300 nm region. In
the other regions the coincidence is almost perfect.

4.0 Conclusions

The results derived from artificial reflectance targets propagated through the atmosphere using MODTRAN
4 show that there are significant differences among the atmospheric correction models tested. The differences are
equal to or greater than errors introduced by wavelength calibration or sensor noise. This result makes it impossible
to know which model performs the best.

In retrievals from AVIRIS and Hyperion data there appears to be little to differentiate the models. In both
cases the reflectances derived from scenes with higher water vapor contained more artifacts, or departures from a
smooth reflectance curve.

Using HATCH-2d, with the column-by-column wavelength calibration enabled, appears to produce
smoother reflectance spectra than when using an average spectral calibration for the entire array. The disadvantage
is the increased computing time required.
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FOREST INFORMATION PRODUCTS FROM AVIRIS AND HYPERION

David G. Goodenough,"” Hao Chen,' Andrew Dyk,' Tian Han,” Sarah McDonald,"”
Matthew Murdoch,! K. Olaf Niemann,’? Jay Pearlman,* and Chris West!

1. Introduction

Hyperspectral remote sensing can provide forest information products for applications in forest inventory
and forest chemistry. Forest inventory products include the ability to map forest species with high accuracy using
the airborne AVIRIS sensor and the EO-1 satellite sensor Hyperion. Hyperion data were acquired in 2001 and 2002.
Corresponding AVIRIS data were also acquired. Experiments were conducted to compare the accuracies of the data
sets for mapping forest species. Bioindicators are also being developed for mapping nitrogen. Compression
experiments were also conducted on Hyperion data to investigate the utility of compression in terms of classification
accuracies for forest species. This paper reports on the Hyperion and AVIRIS analyses and the results of the
compression experiments.

Ecosystem processes such as photosynthesis and nutrient cycling can be better understood by examining
canopy biochemical content through analyzing chlorophyll, nitrogen, and lignin concentrations (Wessman, 1988).
Detailed information derived from hyperspectral remote sensing data, such as chemicals present in the forest
canopy, can be used to investigate indicators of forest health, known as bioindicators (Martin, ez al., 1998).
Bioindicators can be used in forest management practices (Jacquemoud, 1996);(Adamus, 1995). Sources of stress in
a forest ecosystem, such as nutrient deficiency, insect infestation and drought, may be examined using bioindicators
that are detectable using remote sensing (Mohammed, 2000) and yet not visible to the human eye.

Various compression schemes have been suggested for acquisition, storage and distribution of
hyperspectral remotely sensed data. Hyperspectral forestry applications that rely on the measurement of subtle
variations in the spectral signature of the forest canopy can be affected by modification to the spectra induced by
compression. As part of an experiment for the Canadian Space Agency (CSA), Hyperion data cubes acquired over
the Greater Victoria Watershed District (GVWD) were compressed using the SAMVQ and HSOCVQ algorithms
designed by CSA. Both the raw digital numbers (DN) and the radiance data were compressed using a compression
ratio of 20:1 and were returned uncompressed. These data cubes were classified into forest species using the same
supervised classification methodology used with the original data. Spectra and the classification accuracies from the
compressed and uncompressed data were compared.

2. Data Collection

Under the NASA project Evaluation and Validation of EO-1 for Sustainable Development (EVEOSD), we
have collected spaceborne and airborne hyperspectral remotely sensed imagery, as well as conducted extensive field
reconnaissance, in the GVWD, located on Vancouver Island, British Columbia, Canada. Measurements of the foliar
chemistry at this site have been collected over two years to correspond with image acquisitions. Both organic and
inorganic chemistry measurements have been collected from this site.

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, acquired by NASA’s ER-2 aircraft and
EO-1 Hyperion data were used in this research. AVIRIS has the capability of capturing 224 contiguous spectral
channels at approximately 10 nm intervals in the visible to near-infrared (400-2500 nm) portion of the
electromagnetic spectrum (Green, 1998). The Hyperion sensor acquires 220 bands with a full-width half maximum
of approximately 10 nm in the same wavelength regions as AVIRIS. The 20 m AVIRIS data were used in
conjunction with 30 m EO-1 Hyperion data. Ground spectra, at 2.5 nm resolution, were collected using an
Analytical Spectral Devices (ASD) at the time of image acquisition. Calibration sites consisted of a grassy field
(bright target) and a deep-water lake (dark target). The ground spectra collected from the ASD were associated to
corresponding AVIRIS and Hyperion data using Global Positioning Satellite (GPS) data collected along with the
ground spectra.

'Pacific Forestry Centre, Natural Resources Canada, Victoria, British Columbia (dgoodeno@unrcan.gc.ca)
2Department of Computer Science, University of Victoria, Victoria, British Columbia

’Department of Geography, University of Victoria, Victoria, British Columbia

*Boeing Corporation, Seattle, Washington
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3. Data Calibration

Data calibration was necessary for deriving species classification, for deriving forest chemistry, and for
evaluating compression. Radiometric corrections of the Hyperion data were generated using the level 1B1 dataset
from TRW, which was processed for smear correction, echo correction, background removal and bad pixel repair.
Prior to further image processing, the data were corrected for destriping and desmiling as described by Han et al.
(2002). The data were converted from radiance to reflectance using Environment for Visualizing Images (ENVTI’s)
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module based on MODTRAN4
radiation transfer code. Details of the geometric correction procedures are described in (Dyk, et al., 2002).
Geometric accuracies for the AVIRIS and Hyperion data were 10.1 m and 4.2 m, respectively. A force-fit function
was created for each image using ground spectral data to calibrate reflectance values. The remotely sensed imagery,

with the appropriate force-fit functions applied, were then used for forest classification and forest chemistry
analysis.

4. Forest Classification

Species classification in the GVWD was performed using processed AVIRIS and Hyperion data. The
Capital Regional District (CRD) provided a detailed forest cover GIS database to complement the chemical and field
measurements made in EVEOSD for 54 plots. The forest cover layers were overlaid on 1 m orthophotos to delineate
training areas for individual land cover types used in the classification. Forest and non-forest classes were selected
based on definitions from the Canadian National Forest Inventory (NFI) photo plots (Dyk, 2001).

With the large number of bands in the hyperspectral data, a data reduction technique was necessary to
achieve accurate estimates of the covariance matrices produced by the classification algorithms. The AVIRIS and
Hyperion data were subsetted to 204 and 165 bands, respectively, to remove water absorption and low signal-to-
noise bands. The data were then transformed using a Minimum Noise Fraction (MNF) method and reduced to a few
channels. The AVIRIS data were reduced to twelve new channels, which were used in the classification. Due to the
influence of smile in the Hyperion data, the first MNF channel was not used, leaving 11 channels for classification.
The MNF channels from both sensors were run through a Maximum Likelihood Classification with a total of 17
classes defined. Overall classification accuracies (Table 1) for the AVIRIS data were 90.5% for the truth and 88.5%
for the check or test data. Hyperion overall classification accuracies were 87.4% for truth and 81.6% for check data.

Table 1 - Detailed Classification Comparisons

AVIRIS Hyperion 1b (2-12)
Accuracy % Accuracy %

Class Label Truth Check Truth Check
Exposed jand 100 87.5 100 100
Recent cuts<6 m o 99.2 100 100 97.3
W ater 99 .4 99 .4 99.8 100.0
Shrub low 100 100 100 96.3
O1d clear cuts 98.6 100 100 95.2
Farmer's field 100.0 97.6 100 100
Swam p 95.0 92.3 97.1 100
Red Alder 87.5 100 91.5 87.1
Hemlock 60% Dense 79.8 66.7 74 .6 45.9
Hemlock 60% Open 93.0 78.8 91.1 52.2
Lodgepole Pine 88.0 89.7 87.7 79.6
W estern Red Cedar 609 88.2 N/A 83.3 N /A
DF Dense 60 yr 90.2 81.2 73.7 65.4
DF Dense 110 yr 71.8 73.3 79.9 73.6
DF Open 40 yr 90.3 75.0 70.8 63.9
DF Open 200+ yr 78.9 80 .4 66.0 57.4
DF Sparse 40 yr 92 .4 86.3 86.8 81.9
O verall accuracy 90.5 88.5 87.4 81.6

Results from the individual forest cover classification were aggregated and re-classified to produce a new
set of forest cover percentages (Table 2). After aggregation, classification results for the sensors were 92.1%
accuracy for AVIRIS and 90.0% accuracy for Hyperion. Image classification results are shown in Figure la-c.
Classification results were verified with GIS reference data, field checks and ground plots.
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Table 2 - Aggregated Classification Comparison

AVIRIS Hyp 1b (2-12)
Class Label Accuracy % Accuracy %
Exposed land 100 100
W ater 99 .4 99.8
Shrub low 99.4 100
Farmer's field 100 100
Swamp 94.5 |
Red Alder 89 4 91.5
Hemlock 88.8 83.0
Lodgepole Pine 89.4 87.7
Western Red Cedar 88.2 83.3
Douglas Fir 90.5 92.5
Overall accuracy with
70% of the training data 94.0 94.2
Accuracy with 30% of
the test data 92.1 90.0
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5. Forest Chemistry and Bioindicators

Hyperspectral remote sensing provides a method of deriving forest chemistry. Canopy chemistry in the
GVWD was examined using 20m AVIRIS data and compared with sampled chemistry measurements using multiple
regression analysis. Canopy nitrogen content (N) was analyzed to derive a nitrogen distribution map of the study
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site. In order to do so, the hyperspectral data were converted to absorbance and transformed to derivatives for use in
regression analysis. Absorbance (4) was computed from reflectance (R) with the following equation (Smith, 2002):

A= 10g10 (I/R)

Derivatives of reflectance were also computed. Derivatives provided a measure of the slope of the spectral curve at
every point. The resulting derivative spectrum was comprised of peaks and valleys corresponding to inflection
points in the original spectra. Statistical analysis was conducted using SAS statistical software. The most suitable
regression model was determined using the diagnostic techniques available in SAS, such as the coefficient of
determination (R?), residual plots, and regression P values. It was found that the AVIRIS data were able to predict
nitrogen content with a coefficient of determinate of 0.825 (Figure 2). A chemistry distribution map (Figure 3) was

computed using the regression equation, which provided the distribution of nitrogen found in the GVWD forest
canopy.
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Figure 2: AVIRIS Predicted Nitrogen vs. measured nitrogen with r* of 0.825.

6. Compression

The accuracy of compression for storage and distribution of hyperspectral remote sensing data was
examined. Hyperion data cubes acquired over the GVWD were compressed using the SAMVQ at a compression
ratio of 20:1 as described in Goodenough et al. (2002), where three cubes were classified for forest species and
results were compared. A level 1B Hyperion image acquired over the GVWD on September 10, 2001 was used for
this research. Negative values and spikes were removed using a program called rm_neg spk (RNS), designed by
CSA, to create the second image cube used for comparison. The SAMVQ algorithm was applied by CSA at a ratio
of 20:1 to the RNS data cube. This compressed cube was then uncompressed and used for species classification.

The three data cubes, the original, RNS and SAMVQ uncompressed, were then processed in preparation for
classification. Negative values and stripes were removed from the original data cube using a BAD PIXEL. CORR
algorithm created by (Han et al., 2002). Image bands containing zero values and VNIR/SWIR overlapping bands
were removed to form spectra of 195 bands from the original 242 bands. A linear smile correction algorithm created
by (Han et al., 2002) was then applied to the image cube. The data cubes were geocorrected using methods
described by (Dyk et al., 2002). The data cubes were transformed using a forward MNF transformation
(Goodenough, 2002); and the eigenchannels 2 to 12 were then used in the species classification as described
previously. The first eigen channel was excluded as it contained a gradient due to smile. Seventeen classes were
derived from ground truth data selected from a GIS database and high-resolution aerial photography. A supervised
classification was performed using two thirds of the truth pixels for calibration and the remaining one third for
validation.

Table 3 shows the difference in the classification accuracy between the three data cubes, the original, RNS
and SAMVQ images. When examining the original data cube and the RNS data, no significant change (up to 1.1%)
resulted. When comparing the difference between SAMVQ 20 and the RNS or original image, the non-aggregated
classes decreased by 5.1% to 6.9% and the aggregated classes decreased by 2.1% to 6.8%.
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Figure 3: AVIRIS Nitrogen concentration map

Table 3: Classification Comparison and Differences of Original, RNS and SAMVQ 20:1.

Classification Original RNS SAMVQ 20:1
Average Overall Average Overall Average Overall
All Classes 1/3 80.99% 81.61% 80.98% 8L.11% 75.80% 74.95%
All Classes 2/3 88.37% 87.38% 8847% 86.29% 81.58% 81.19%
Aggregated 1/3 89.24% 89.96% 89.54% 89.76% 87.19% 86.98%
Aggregated 2/3 93.50% 94.21% 93.96% 93.61% 87.49% 90.54%

Difference RNS-Orig SAMVQ-ENS SAMVQ-Orig
Average Overall Average Overall Average Overall
All Classes 1/3 0.01% -0.50% -5.18% -6.16% -5.19% -6.66%
All Classes 2/3 0.10% -1.09% -6.89% -5.10% -6.79% -6.19%
Aggregated 1/3 0.30% -0.20% -235% -2.78% -2.05% -2.98%
Aggregated 2/3 0.46% -0.60% -6.47% -3.07% -6.01% -3.67%

The difference between the non-aggregated confusion matrix of the SAMVQ and the original two thirds
training data showed an increased confusion among forest species and densities (up to 19.43% difference). These
differences show that the subtle changes made to the spectra are effecting the classifications at this finer level.

7. Conclusions

AVIRIS was an essential tool enabling us to demonstrate that we could recognize coastal forest species to
operational accuracies. The overall correct classification accuracy for AVIRIS was 92.1% and for Hyperion was
90.0%. Initial results on nitrogen mapping are encouraging with reasonable agreement with field measurements of
foliar chemistry. Compression does affect the results of even a simple supervised classification by reducing
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accuracies from 2.1% to 6.8% for aggregated classes and from 5.1% to 6.9% for non-aggregated classes. At this
time, it is not recommended that lossy compression be used for satellite downlinks from hyperspectral sensors. Such

compression is very useful for creating browse images and allowing people to search large archives of hyperspectral
data.

Table 4 : Classification confusion matrix difference (SAMVQ 20:1 — original)

Code Name Pixels 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 Exposed land 24 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0
3 Recent cuts<é6 mo 8 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0
4 Water 414 0 0 024 0 0 0 -024 0 0 0 0 0 0 0 0 0 0
5 Shrub tow 54 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0
6 OId clear cuts 42 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0
7 Herb Graminoids 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Swamp 133 0 0 0 0 0 0 -22 148 0 0 -072 0 -072 0 0 22 -0.02
9 Red alder 59 0 0 0 0 0 0 341 -11.8 001 0 0 0 0 -1.69 1.7 17 6.8

10 Hemlock 60% 67 0 0 06 0 0 0 0 301 893 001 593 0 -1.49 891 -1.49 -448 -1.49
Dense

11 Hemlock 60% 45 0 0 0 0 0 0 0 0 44 -1331 446 0 0 -0.02 0 448 0
Open

12 Lgdgepole pine 171 0 0 0 0 0 0 0 463 173 -18.12 0 292 0.05 236 643

13 Western redcedar 12 0 0 0 0 0 16.7 0 0 0 0 -16.63 0 0 0 003 0
60%

14 DF Dense 60 yr 95 0 0 0 0 0 o0 0 0 -001 -1.05 1.04 0 208 11 1.1 -3.12 3.13

15 DF Dense 110 yr 169 0 O 0 0 0 0O 0 002 297 06 061 0 -0.58 -7.08 233 -0.58 1.82

16 DF Open 40 yr 72 0 0 0 0 0 0 0 278 553 0 142 0 002 838 -1943 273 412

17 DF Open200+yr 244 0 0 0 0 0 0 -041 0 -0.01 -042 -0.01 0 036 042 453 .74 282

18 DF Sparse 40 yr 288 0 0 0 0 0 0 31 176 0 0 0 0 349 -074 171 -0.71 -8.71
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APPLYING TAFKAA FOR ATMOSPHERIC CORRECTION OF AVIRIS
OVER CORAL ECOSYSTEMS IN THE HAWAI’IAN ISLANDS

James A. Goodman,' Marcos J. Montes,” and Susan L. Ustin'
1. INTRODUCTION

Growing concern over the health of coastal ecosystems, particularly coral reefs, has produced increased interest
in remote sensing as a tool for the management and monitoring of these valuable natural resources. Hyperspectral
capabilities show promising results in this regard, but as yet remain somewhat hindered by the technical and
physical issues concerning the intervening water layer. One such issue is the ability to atmospherically correct
images over shallow aquatic areas, where complications arise due to varying effects from specular reflection, wind
blown surface waves, and reflectance from the benthic substrate. Tafkaa, an atmospheric correction algorithm under
development at the U.S. Naval Research Laboratory, addresses these variables and provides a viable approach to the
atmospheric correction issue. Using imagery from the Advanced Visible InfraRed Imaging Spectrometer (AVIRIS)
over two shallow coral ecosystems in the Hawai’ian Islands, French Frigate Shoals and Kane’ohe Bay, we first
demonstrate how land-based atmospheric corrections can be limited in such an environment. We then discuss the
input requirements and underlying algorithm concepts of Tafkaa and conclude with examples illustrating the
improved performance of Tafkaa using the same AVIRIS images.

2. STUDY AREAS

Three AVIRIS flightlines from the 2000 Hawai’ian Islands acquisition were used in this analysis. All three were
acquired from the high-altitude ER-2 platform at an altitude of 20 km, thereby producing a nominal pixel size of
approximately 17 m. Two of the flightlines cover the southern portion of French Frigate Shoals (Fig. 1), which is a
sizeable semi-circular atoll in the remote Northwestern Hawai’ian Islands extending nearly 34 km in width. The area
contains a few small exposed sandy islets, but consists mostly of submerged coral reefs and other associated
habitats. The two flightlines for this area, f000418t01p03_r01 and f000418t01p03 r02, are significant because they
contain overlapping spatial coverage and exhibit substantial differences in specular reflection from the water
surface. This overlapping region provides a valuable avenue for evaluating algorithm performance for the same area
but under different illumination conditions. The third flightline, f000412t01p03 r08, covers Kane’ohe Bay on the
northeast shore of O’ahu. Kane’ohe Bay is a partially enclosed embayment, extending approximately 4 km in width
and 13 km in length along a northwest-to-southeast axis. The bay contains fringing reefs, sizeable patch reefs and an
extensive protecting barrier reef. Habitat and water quality conditions vary within the bay and the reefs range from
coral-dominated to algae-dominant systems. Differences in specular reflection are not as visually apparent in this
flightline and thus serve to test algorithm performance under more consistent illumination conditions.

The Hawafi’ian Islands

Kane'ohe Bay

'

O’ahu
W

Q 20 km French Frigate Shoals

Figure 1. Study areas in the Hawai’ian Islands.
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3. EXAMPLE CORRECTION LIMITATIONS

The Atmospheric CORrection Now (ACORN) software package was selected to provide an example of the
potential difficulties of using a land-based atmospheric correction algorithm over water. ACORN (Analytical
Imaging and Geophysics, LLC) is a readily available commercial atmospheric correction package that is commonly
used in terrestrial hyperspectral applications. Its use here is not intended to identify weaknesses in ACORN nor be
critical of its use on other datasets, but merely to illustrate a situation where limitations in terrestrial algorithms
become evident when applied to an aquatic system.

3.1 ACORN Methods

ACORN requires radiometrically calibrated radiance data as input and produces estimates of apparent
reflectance based on MODTRAN radiative transfer calculations (AIG, 2001). Other inputs to the model include: a
description of sensor characteristics for the wavelength position, full-width half-max, gain, and offset for each band;
the average elevations of the sensor and the image; and scene specific information identifying the latitude, longitude,
time and date of the image center. For application to the three AVIRIS flightlines considered here, the algorithm was
run in Mode 1 (hyperspectral atmospheric correction of complete image) with a tropical atmospheric model, using
the 940 and 1140 nm bands to derive water vapor, and allowing the model to estimate atmospheric visibility based
on image characteristics. Options were also selected to reduce the effects of spectral mismatch and minimize the
errors associated with the 1400 and 1900 nm water vapor bands and other smaller spectral artifacts.

3.2 ACORN Results

Reflectance outputs for two locations in French Frigate Shoals are illustrated in Fig. 2. The first area (2A)
depicts results for a shallow location with significant reflectance from the benthic surface and the other area (2B) for
a deep-water location with no influence from the bottom. The two lines in each graph illustrate output for the same
geographic location as derived from the two separate overlapping images, thereby providing a direct comparison of
model performance for the same area but under differing amounts of specular reflection. Keeping in mind that
reflectance in longer wavelengths should approach zero due to the absorption properties of water, it is apparent in all
situations that the resulting reflectance exhibits a shift to higher values. Other observations reveal that this shift is
not spatially uniform throughout the image nor is it dependent on water depth. Furthermore, it is uncertain whether
this shift is constant across all wavelengths for a given pixel or whether it is independent of wavelength. There is
also an inconsistency in results between the two overlapping images, which is presumably a function of the
significant differences in specular reflection. Results for two locations in Kane’ohe Bay, an image with far less
visually apparent variation in specular reflection, are presented in Fig. 3. A similar shift in reflectance is again
apparent. The presence of this shift along with the observed inconsistencies illustrates a limit in the quantitative
application of land-based atmospheric correction algorithms over water.
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Figure 2. ACORN derived reflectance for French Frigate Shoals from two overlapping
flightlines: (A) shallow area with strong bottom influence; and (B) deep water.
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Figure 3. ACORN derived reflectance for Kane’ohe Bay: (A) shallow area with strong
bottom influence; and (B) deep water.

4. TAFKAA

Tafkaa is an extensively modified version of the ATmospheric REMoval algorithm (ATREM; Gao and Davis,
1997; Gao et al., 1993) that has been specifically adapted to address the confounding variables associated with
aquatic remote sensing applications (Gao et al., 2000; Montes et al., 2001, 2003a, 2003b). It uses information
supplied in the input files and by the spectral characteristics of the input radiance data to generate atmospheric
correction parameters from a series of lookup tables. Given input of radiometrically corrected at-sensor radiance
data, Tafkaa provides output in the form of reflectance (p = nL,,/E;), remote sensing reflectance (L.,/Eq), normalized
water-leaving radiance ([Ly]x), or observed reflectance (pops). Tafkaa also has an associated procedure called Mask
that allows for masking of land and clouds. Presented below is an introduction to the Mask and Tafkaa algorithms,
an overview of their input requirements, and a discussion of results as applied to the AVIRIS images of French
Frigate Shoals and Kane’ohe Bay.

4.1 Mask

The Mask algorithm (undergoing development) provides a utility for identifying and masking land, cirrus
clouds, and low altitude clouds. Tafkaa requires knowledge of which pixels are not aquatic because the underlying
assumptions used for determining the appropriate aerosol model and optical depth over water do not apply to land or
clouds. Thus, identification of land pixels allows Tafkaa to properly process land pixels using a different procedure.
Additionally, independent identification of cirrus clouds may allow for correction of some of these pixels at a later
date (Gao et al., 1998). Criteria for creating each of the three masks are based on values of observed reflectance, pops,
as calculated from the input radiance data and approximations of extra-terrestrial solar irradiance. The land mask
employs a user-defined threshold on either a single wavelength (also configurable) or on a normalized difference
index, NDI. The cloud masks are both determined by user-defined thresholds on particular wavelengths, 1375 nm
for cirrus clouds and 940 nm for low altitude clouds. A complete description of all configurable parameters can be
found in the Mask User’s Guide. Output is in BSQ image format, where bands in the image represent each of the
resulting masks (0 is not masked and 100 is masked). The land mask selected for this analysis was the NDI option,
(Pobs(860NT)-P s (6600M) )/ (P 1 860NN ) +p ,(660nm)), With land assigned to pixels where NDI > 0.05. The cirrus
cloud mask was identified by pixels where pq,(1375nm) > 0.0025 and the low altitude cloud mask by pixels where
Pobs(940rm) > 0.1. Example Mask output is presented in Fig. 4 for an area of Kane’ohe Bay centered on Moku O
Lo’e {(Coconut Island). Results reveal good agreement for the land areas of the land mask, but also appear to include
areas of cloud as land. The cirrus and low altitude cloud masks show even less robust performance with these
particular settings. Nevertheless, when used together the overall mask output does an acceptable job of leaving the
aquatic areas unmasked while sufficiently masking land and clouds.
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Figure 4. Mask output for Kane’ohe Bay with Moku O Lo’e (Coconut Island) shown at center:
(A) unmasked RGB; (B) land mask; (C) cirrus cloud mask; and (D) low altitude cloud mask.

4.2 Atmospheric Correction

The underlying equation for Tafkaa considers total at-sensor radiance to be a function of path radiance, specular
reflection from the water surface and reflected radiance from the water, which is a composite function of reflected
radiance from the water column and bottom passing through the air-water interface. The algorithm interpolates
correction parameters from lookup tables generated using a vector radiative transfer program and ultimately
provides a pixel-by-pixel solution for the radiance reflected from the water. Input parameters include the sensor
altitude, average ground elevation, wind speed, and level of atmospheric ozone (estimated using data from the
TOMS sensor). A full description of these and other input parameters can be found in the frequently updated Tafkaa
User’s Guide. Tafkaa was run on the three AVIRIS flightlines with a tropical atmospheric model, all available
gaseous absorption calculations (H,O, CO,, Os, N,O, CO, CH,, O5) and by excluding use of urban aerosols from the
offered aerosol solutions. The model also allows the user to select bands from a set of options to signify wavelengths
with no apparent water leaving radiance for determining aerosol computations (Fig. 5). Bands selected for French
Frigate Shoals and Kane’ohe Bay included the 1040, 1240, 1640 and 2250 nm wavelengths. The most recent version
of Tafkaa additionally includes a feature allowing for computations to explicitly account for pixel-by-pixel
variations in view and illumination geometry (Montes et al., 2003a). Using this option proved to significantly
enhance Tafkaa’s ability to account for cross-track variations in specular reflection for the flightlines considered
here. The additional input parameters for this option were the date, time and location of the center for every image
line, as well as the AVIRIS cross-track pointing geometry.

Figure 5. Observed radiance for three bands of radiometrically corrected AVIRIS data for
Kane’ohe Bay: (A) 550 nm; (B) 860 nm; and (C) 1040 nm. Note that bottom is strongly

visible at 550 nm, only slightly apparent at 860 nm, and no longer evident at 1040 nm.
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4.3 Tafkaa Results

Reflectance results produced from Tafkaa are presented for the same areas as examined above and output is
again presented in the form of reflectance. Fig. 6 illustrates results for French Frigate Shoals and Fig. 7 for Kane’ohe
Bay. Unlike results from the land-based algorithm, reflectance values in the Tafkaa output appropriately tend
towards zero at longer wavelengths, which holds true throughout each of the images. A certain amount of spectral
mismatch is evident in the results (e.g., around the 940 nm water vapor absorption feature), but overall the generated
values are reasonable. Although it is possible to analyze and even ameliorate the spectral mismatch (Gao et al.,
2003}, this ability has not yet been built into Tafkaa. Results for the same geographic areas from the two different
flightlines in French Frigate Shoals (Fig. 6) are substantially more similar than those produced using the land-based
algorithm (Fig. 2). Although this comparison is not perfect, the level of agreement between the two flightlines is
encouraging considering the sizeable differences in specular reflection. Thus, analysis of spatial and temporal
changes within and between flightlines can be performed with greater confidence that differences are a function of
changing water and bottom conditions and not artifacts of the atmospheric correction routine. Overall, it is evident
that there is still room for improvement, but improved results demonstrate that Tafkaa more successfully generates
acceptable reflectance output for atmospheric correction over water and produces improved results over land-based
algorithms.
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Figure 6. Tafkaa derived reflectance for French Frigate Shoals from two overlapping
flightlines: (A) shallow area with strong bottom influence; and (B) deep water.
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Figure 7. Tafkaa derived reflectance for Kane’ohe Bay: (a) shallow area with strong
bottom influence; and (B) deep water.
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5. CONCLUSION

Analysis of benthic habitats in shallow aquatic areas is complicated by the confounding effects of the overlying
water column and the air-water interface. This means that in addition to atmospheric influences, at-sensor
measurements over water are also a function of water properties, surface waves, water depth, bottom characteristics
and illumination conditions. This presents a more challenging environment than typical atmospheric correction
problems over land, and thus is not necessarily suitable for land-based correction algorithms. For instance, as shown
in the examples above, there are situations where results from land-based algorithms can be inconsistent and of
limited utility. In contrast, Tatkaa is designed to directly address the aquatic correction issues. The Tafkaa results
illustrated above demonstrate physically realistic reflectance output and uniformity within and between images. This
represents not only an improved atmospheric correction, but also a more appropriate foundation from which to next
address issues of water column correction and spectral analysis of the benthic surface. Thus, improvements in the
atmospheric correction will ultimately lead to advances in the evaluation of benthic habitats.

6. ACKOWLEDGEMENTS

This work was supported by NASA Headquarters under the Earth System Science Fellowship Grant NGT5-
ESS/01-0000-0208. It is has been made possible by the Department of Land, Air and Water Resources and the
Center for Spatial Technologies and Remote Sensing at the University of California, Davis. Additional support was
also provided by the University of California Pacific Rim Research Program, the California Space Institute Graduate
Student Fellowship Program, the Canon National Park Science Scholars Program and NASA’s Jet Propulsion
Laboratory. Furthermore, the authors would like to thank the Hawaiian Institute of Marine Biology for their
assistance and Paul Sjordal for his untiring efforts in the field. Author MIM acknowledges support from the U.S.
Office of Naval Research.

7. REFERENCES

Analytical Imaging and Geophysics, LLC (AIG), 2001, “ACORN User’s Guide,” Boulder, Colorado.

Gao, B.-C., K.H. Heidebrecht and A.F.H. Goetz, 1993, “Derivation of Scaled Surface Reflectance from AVIRIS
Data,” Remote Sens. Environ., vol. 44, pp. 165-178.

Gao, B.-C. and C.O. Davis, 1997, “Development of a Line-by-Line Based Atmospheric Removal Algorithm for
Airborne and Spaceborne Imaging Spectrometers,” in Imaging Spectrometry ITI (M.R. Descour and S.S. Shen,
eds.), Proceedings of the SPIE Vol. 3118, pp. 132-141.

Gao, B.-C., Y.J. Kaufman, W. Han and W.J. Wiscombe, 1998, “Correction of Thin Cirrus Path Radiances in the 0.4-
1.0 um Spectral Region Using the Sensitive 1.375 pm Cirrus Detecting Channel,” J. Geophys. Res., vol. 103,
no. D24, pp. 32169-32176.

Gao, B.-C., M.J. Montes, Z. Ahmad and C.O. Davis, 2000, “Atmospheric Correction Algorithm for Hyperspectral
Remote Sensing of Ocean Color from Space,” Appl. Optics, vol. 39, no. 6, pp. 887-896.

Gao, B.-C., M.J. Montes and C.O. Davis, 2003, “Refinement of Wavelength Calibrations of Hyperspectral Imaging
Data Using a Spectrum Matching Technique,” Remote Sens. Environ., in press.

Montes, M.J., B.-C. Gao and C.O. Davis, 2001, “A New Algorithm for Atmospheric Correction of Hyperspectral
Remote Sensing Data,” in Geo-Spatial Image and Data Exploitation IT (W.E. Roper, ed.), Proceedings of the
SPIE Vol. 4383, pp. 23-30.

Montes, M.J., B.-C. Gao and C.O. Davis, 2003a, “Tafkaa Atmospheric Correction of Hyperspectral Data,” in
Imaging Spectrometry IX (S.S. Shen and P.E. Lewis, eds.), Proceedings of the SPIE Vol. 5159, in press.

Montes, M.J., C.O. Davis, B.-C. Gao and M. Moline, 2003b, “Analysis of AVIRIS Data from LEO-15 Using Tafkaa
Atmospheric Correction,” 12" AVIRIS/HYPERION Earth Science Workshop (R.O. Green, ed.), Jet Propulsion
Laboratory, Pasadena, California, this volume.

96



MONITORING THE ON-ORBIT SPECTRAL CALIBRATION OF THE NEW MILLENNIUM
EO-1 HYPERION IMAGING SPECTROMETER

Robert O. Green
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

1. INTRODUCTION

Imaging spectrometers measure multiple contiguous spectral channels that are reported as spectra.
These measurements are used to pose and answer science-research and application questions about the
surface, based on the molecular absorption and constituent scattering signatures expressed in the spectra.
Analysis of spectra measured of the Earth in the solar reflected portion of the electromagnetic spectrum
from 400 to 2500 nm requires accurate and precise spectral calibration. The sensitivity of imaging
spectrometer analyses to spectral calibration results from the fine spectral absorption features from the
Earth’s atmosphere imprinted on every spectrum (Green 1998). Figure 1 shows the modeled high-
resolution upwelling radiance spectrum for a surface of constant 0.5 reflectance. The spectral response
functions for a 10-nm imaging spectrometer and the convolved radiance spectrum are shown as well. In
the presence of these strong atmospheric absorption features, errors in spectral calibration induce errors in
reported radiances. Figure 2 shows the error in reported radiance resulting from spectral calibration errors
of 1.0, 0.5, and 0.1 nm for a 10-nm imaging spectrometer. This sensitivity causes spectral calibration to
be a critical parameter for analysis of imaging spectrometer measurements. This sensitivity has been used
to investigate and derive the operational spectral calibration of imaging spectrometers instruments (Conel
et al. 1988, Green et al, 1990, Goetz et al. 1995, Green 1995, Gao et al. 2002, Green and Pavri 2002).
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Figure 1. High-resolution total upwelling radiance spectrum for a 0.5-reflectance surface. Spectral response
functions for a 10-nm imaging spectrometer and the resulting 10-nm convolved radiance spectrum are shown as well.
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Figure 2. Errors in reported radiance resulting from errors in spectral calibration of 1.0, 0.5, and 0.1 nm.

The Hyperion imaging spectrometer (Folkman et al. 2000)

was launched onboard the New Millennium EO-1 satellite on F:?r::)?] %f :'\1 o
November 21, 2000. Hyperion is the first Earth-orbiting imaging i

: : Hyperion
spectrometer operating across a broad portion of the solar image
reflected spectrum with nominal spectral coverage from 400 to acquired of
2500 nm and 10-nm sampling and resolution. The Hyperion Saifde
instrument was radiometrically and spectrally calibrated in the r—
laboratory in the summer of 1999 (Barry 2001). To assess the on- Argenti'na on
orbit performance of Hyperion soon after launch, a series of February '7‘

experiments was orchestrated in the January and February 2001
summer illumination conditions of the Southern Hemisphere. For '

one of these experiments a Hyperion data set was acquired of the

high-altitude dry salt lakebed of Salar de Arizaro on February 7,

2001. Salar de Arizaro is located at 24° south latitude and 67° west longitude with
an elevation of 3700 m in the Andes of northwest Argentina. Figure 3 shows the
Hyperion image acquired of Salar de Arizaro. Figure 4 shows the high uniform
spectral reflectance for a calibration site on the surface of Salar de Arizaro. The
large homogeneous high reflectance surface and thin low-water-vapor atmosphere
provided an ideal target to assess and monitor the on-orbit spectral calibration of
Hyperion. Additional Hyperion data sets were acquired on February 10, March 30,
April 25, May 1, and December 11, 2002. This paper reports the approach,
analyses and results of assessment and monitoring Hyperion on-orbit spectral
calibration with data sets measured of the Salar de Arizaro, Argentina.

2. SPECTRAL CHARACTERISTICS OF PUSHBROOM IMAGING
SPECTROMETERS

The design of the Hyperion imaging spectrometer is of the pushbroom form.
With a pushbroom imaging spectrometer, the spectrum is dispersed onto an area
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array detector such that each cross-track spatial element of the images is acquired by a different column in
the detector array. For a uniform cross-track imaging spectrometer image, the dispersion of light into the
spectrum must be identical in all cross-track elements on to the detector array. Factors in design,
manufacture, alignment, and stability make development of a uniform pushbroom imaging spectrometer
extremely challenging. Figure 5 depicts the goal of a uniform imaging spectrometer and two possible
deviations from that goal resulting in a nonuniform imaging spectrometer.
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Figure 4. Measured spectral reflectance for a calibration target on the surface of Salar de Arizaro, Argentina.
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Figure 5. In these panels, the colors represent the spectrum, the squares represent the detectors, and the dots
represent the spatial resolution field of view: (a) optimal imaging spectrometer design; spectral calibration is uniform
across the full field of view, (b) nonuniform curved, and (c) tilted cross-track spectral calibration variation.

3. LABORATORY SPECTRAL CALIBRATION OF HYPERION

The Hyperion imaging spectrometer was spectrally calibrated in the laboratory (Barry 2001a). This
spectral calibration resulted in a predicted spectral wavelength position and spectral response function
full-width-at-half-maximum (FWHM) for each spectral channel and cross-track spectral sample. Figure 6
shows the laboratory spectral calibration for the spectral channel near 760 nm for each of the 256 cross-
track spatial elements of Hyperion. Based on this laboratory calibration, the cross-track spectral
calibration varies by as much as 3 nm in a tilted curve. A 3 nm variation corresponds to 30% of the 10-
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nm FWHM of this spectral channel. Figure 7 shows the laboratory spectral calibration for the Hyperion
spectral channel centered near 1145 nm. The cross-track variation is ~0.5 nm, which corresponds to 5%
of the 10-nm FWHM of this spectral channel. The forms of spectral calibration cross-track variation in
Hyperion are different in these two spectral regions because Hyperion uses two spectrometers to cover the
full spectral range. The visible-near-infrared spectrometer (VNIR) covers the range from 430 to 900 nm,
and the short-wavelength-infrared spectrometer (SWIR) covers the range from 900 to 2390 nm. Each of
these two spectrometers have different design, manufacture, alignment, and stability properties. There is
a corresponding cross-track spectral calibration for each spectral channel of Hyperion. These laboratory
calibration results represent the best prediction of the on-orbit spectral calibration of the Hyperion
imaging spectrometer.
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Figure 6. Laboratory-derived cross-track spectral calibration for the Hyperion spectral channel near 760 nm.

4. ON-ORBIT SPECTRAL CALIBRATION APPROACH

The approach used to assess the on-orbit spectral calibration of Hyperion relies on the strong narrow
atmospheric absorption features present in the total upwelling spectral radiance incident at Hyperion.
Figure 8 shows a full-spectral resolution MODTRAN radiative transfer code modeled spectrum for the
Salar de Arizaro (Berk et al. 1989, Anderson et al. 1995 and 2000). Figure 9 shows a Hyperion spectrum
from Salar de Arizaro for February 7, 2001. Shifts in spectral calibration were assessed by convolving
the high-resolution MODTRAN radiance spectrum to the Hyperion laboratory calibration parameters and
comparing the result to the Hyperion measured data over Salar de Arizaro. Errors in Hyperion spectral
calibration become evident in spectral regions of strong atmospheric absorption, such as oxygen at 760
nm. Figure 10 shows the spectral agreement between the convolved MODTRAN spectrum and the
measured Hyperion spectrum for the 760 nm spectral region using the Hyperion laboratory spectral
calibration. The size and form of the disagreement between the two spectra indicate that an improvement
on the laboratory spectral calibration is possible. Figure 11 shows the agreement between the convolved
MODTRAN spectrum and the Hyperion spectrum with a 1.2-nm shift of the Hyperion laboratory spectral
calibration. The agreement is improved with the 1.2-nm shift. This analysis approach was automated and
applied to all the cross-track elements of Hyperion for the 760-nm oxygen atmospheric band spectral
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region. Figure 13 shows the on-orbit derived spectral calibration for the 256 cross-track samples of
Hyperion for the Salar de Arizaro measurements acquired on February 7, 2001. A similar analysis was
performed for the carbon dioxide absorption band near 2000 nm. Figure 14 shows the on-orbit cross-
track spectral calibration results for this spectral region derived through this approach.
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Figure 7. Laboratory-derived cross-track spectral calibration for the Hyperion spectral channel near 1140 nm.
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Figure 8. Full-spectral-resolution MODTRAN radiative transfer code modeled radiance spectrum for Hyperion for
Salar de Arizaro on February 7, 2001.

101



\,q‘h\
/ ™\ — Hyperion

g R
\f\,\

k A
%\//M“‘\ | ‘

0 T T T T
400 700 1000 1300 1600 1900 2200 2500
Wavelength (nm)

Radiance (4 W/cm®/nm/sr)

Figure 9. Hyperion spectrum from the Salar de Arizaro acquired on February 7, 2001.
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Figure 10. Comparison of Hyperion-measured spectrum and MODTRAN modeled spectrum with no spectral shift in
Hyperion laboratory spectral calibration. The residual disagreement in the spectral fit is significant.
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Figure 11. Comparison of Hyperion measured spectrum and MODTRAN spectrum with a 1.2-nm spectral shift in
Hyperion laboratory spectral calibration. The spectral agreement is improved over the laboratory spectral calibration.
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Figure 12. On-orbit derived cross-track spectral calibration for Hyperion in the 760-nm spectral region for the Salar
de Arizaro data acquired on February 7, 2001.
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Figure 13. On-orbit derived cross-track spectral calibration for Hyperion in the 2000-nm spectral region for the Salar
de Arizaro data acquired on February 7, 2001.

5. ON-ORBIT SPECTRAL CALIBRATION MONITORING RESULTS

In addition to the Hyperion data measured on February 7, 2001 at Salar de Arizaro measurements
were acquired on February 10, March 30, April 25, May 1, and December 11, 2002. The on-orbit spectral
calibration derivation algorithm was applied to these additional data sets. Figure 14 shows the on-orbit
derived spectral calibration for the 760-nm spectral region for these additional dates. This spectral region
is measured by the VNIR spectrometer of Hyperion. The on-orbit spectral calibration maintains a similar
cross-track variation form and shows less than (.5-nm shift among these data sets. The analysis was also
repeated for the 2000-nm spectral region. The spectral region occurs in the Hyperion SWIR
spectrometer. Figure 15 shows the spectral calibration variation among these data sets in the 2000-nm
spectral region. With the exception of May 1, 2002, the spectral calibration showed similar excellent
cross-track form and variation below 0.5 nm shift. The result for May 1, shows a 1.5-nm shift to shorter
wavelengths. The source of this shift is currently unknown. Overall the derived on-orbit spectral
calibration of Hyperion is shifted with respect to the laboratory spectral calibration, but with the exception
of May 1, the derived on-orbit spectral calibration was stable among the Salar de Arizaro data sets
examined.

6. CONCLUSION

Spectral calibration is required for pursuit of scientific research and application with imaging
spectrometer data. Due to the ubiquitous, strong, narrow absorption features of the Earth’s atmosphere,
small errors in spectral calibration produce comparable or larger errors in the reported radiance.
Fortunately this sensitivity to spectral calibration enables a spectral fitting approach to assess the spectral
calibration of imaging spectrometers in the operational environment.

The Hyperion imaging spectrometer was launched on November 21, 2000. The laboratory spectral
calibration of Hyperion predicted considerable curvature and tilt in the spectral calibration of VNIR
spectrometer and minimal curvature and tilt in the spectral calibration of the SWIR spectrometer.
Hyperion data sets were acquired at the high altitude high-reflectance dry salt lake of Salar de Arizaro
starting on February 7, 2001. A spectral fitting approach was applied to derive the optimal on-orbit
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spectral calibration of Hyperion for specific spectral regions of both the VNIR and SWIR spectrometers.
In the VNIR spectrometer both cross-track spectral calibration curvature and tilt were derived of similar
form to that of the laboratory spectral calibration. However, shifts in spectral calibration position of up to
2 nm with respect to the laboratory spe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>