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The Influence of 5000 year-old and Younger Glacial Mass Variability on
Present-day Crustal Rebound in the Antarctic Peninsula

Erik R. Ivins!, Carol A. Raymond', and Thomas S. James?

'Jet Propulsion Lab., Caltech, 4800 Oak Grove Dr. , Pasadena CA 91109-8099 USA
2Gealogical Survey of Canada, 9860 W. Saanich Rd., Sidney, B.C., V8L 4B2 Canada
Proceedings of the GPS99 & APSG Meeting in Tsukuba Oct.18-22, 1999.

Abstract. Much of the late-Quaternary ice sheet history in the northern hemisphere is now relatively
well-constrained, with the total contributions to eustatic sea level change from North America and
Eurasia estimated at roughly 60 (£ 12) and 20 (+ 7) m, respectively, and with deglaciation bracketed
at 22 to 8.5 kyr BP. The rate of rebound at the former ice sheet centers is roughly 11 (£ 3) mm/yr.
Assessment of Antarctic rebound is, however, complicated by two issues: (1) The total ice volume at
Last Glacial Maximum is contentious, with estimates ranging from just a few meters to several tens of
meters of equivalent eustatic sea level rise. (2) The late Holocene mass budget is also uncertain.
Space-based geodesy may provide important data in the coming years for estimating the recent ice
mass balance state of Antarctica. Toward this end, GPS has an important role for isolating the solid
earth movements that are associated with postglacial rebound. Here we provide numerical examples
of vertical motions that are predicted by coupling realistic glacial load histories to 20th century ice
mass imbalance estimates for the Antarctic Peninsula. The main complexity revealed by these exam-
ples is the striking difference among predictions that have an oscillatory mass change during the last
5000 to 50 years, as opposed to those having a continuous (non-oscillatory) mass drawdown of the

grounded ice sheet.

1. Introduction

Global Positioning System (GPS) satellite geodesy has emerged during the last decade as a
method of determining present-day deformation of the earth’s crust at precisions of 1 - 3 mm in the
horizontal and to within 10 mm in the vertical (Herring, 1999). Measurable changes in tilt and grav-
ity accompany slow viscous rebound of bedrock once buried beneath the great ice sheets of the north-
ern hemisphere that disintegrated from their Last Glacial Maximum (LGM) some 21 to 8 thousand
years ago. GPS measurement of the pattern and rate of vertical crustal motion in Fennoscandia is
now unfolding at a rapid pace (Scherneck et al., 1998). Efforts are now underway to make similar

measurements on Antarctic bedrock (Tregoning et al., 1999; Raymond et al., 1999).

One of the main themes of current glaciological study in Antarctica is to unravel the mass his-
tory of the great ice sheet during the past 100,000 years, as this would provide a key parameter for

the study of global paleoclimatology and paleoceanography. Significant progress has been made in
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the past decade, primarily fueled by new analyses of ice core data, datable volcanic-ice deposits and
new terrestrial moraine and marine sediment chronologies (e.g., Bentley and Anderson 1998;
Ingdlfsson et al., 1998). In terms of measuring the present-day glacioisostatic motions of the crust, a
major challenge for numerical modelers is to account for the changes that occur during the past
several thousand years since it is likely that the ice sheet has a well-insulated internal dynamics, with
a relatively slow response to external climatological forcing (Johannesson et al., 1989). Far-field rela-
tive sea level data may also provide evidence for a prolonged Antarctic ice sheet evolution over the
past four thousand years (Okuno and Nakada, 1998). The situation, however, may be rather compli-
cated in coastal regions where changes in moisture flux and oceanic thermal conditions occur on both

decadal and centennial time scales, thus influencing shorter time-scale ice mass budgets.

Several facts motivate a study of the glacial isostasy of the Antarctic Peninsula. First, a geodetic
project directed by the Scientific Committee on Antarctic Research (SCAR) has retrieved several years
of epoch campaign data in the region (Dach and Dietrich, 1999). Secondly, the geographic setting of
the Peninsula renders it more vulnerable to fluctuations in climate and precipitation than elsewhere in
Antarctica. Finally, like the glacial geology that dominates West Antarctica, the region has clear evi-
dence of a more expansive ice sheet during the last 35 kyr BP and, as such, several of the issues
addressed in this study also bear upon our understanding of continent-wide Antarctic glacial isostasy.
Using numerical experiments we show how some contrasting, yet realistic, scenarios for mass evolu-
tion over the past 5 kyr may affect future interpretation of secular trends in vertical GPS height meas-
urements taken over the course of half a decade, or longer, in the Antarctic Peninsula. The most
striking contrasts are to be discovered among models that exhibit mass oscillations into the present
millennium as these may exhibit a forced viscoelastic wave-like structure. Models having a continu-

ous mass drawdown produce a more predictable pattern of uplift at present-day.

2. The Role of Past and Present Ice Mass Changes.
2.1 Rebound from LGM.

Our knowledge of the past and present mass balance state of the Antarctic Peninsula is, unfor-
tunately, rather limited. There is, however, clear evidence for periodic retreat and advance of glacier
systems north of 65 °S (e.g., Bjbrck et al., 1996) and a large body of evidence now confirms that a
more massive ice sheet was grounded to the continental shelf during the Last Glacial Maximum
(Payne et al., 1989; Bentley and Anderson, 1998). A detailed discussion of this evidence is beyond
the scope of the present paper. However, following a recent summary by Ingdlfsson et al. (1998),
Figure 1 shows the locations of some of the dated terrestrial and marine carbon deposits used to infer
the position of the retreating LGM ice sheet margin. Here we employ an ice load retreat history
modified after models of Payne et al. (1989) and Denton et al. (1991). James and Ivins (1998) con-

structed a surface load for the entire Antarctic ice sheet, termed the 'D91 model’, in which
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deglaciation from LGM was assumed to begin at 12 kyr and terminate at 5 kyr BP. The rather uncer-

tain timing was set by far-field analyses of global paleoshorelines (Peltier, 1994). The total Antarctic

contribution to postglacial eustatic sea level rise (e.s.L.r) from the previous D91 model was 24.5 m.

Figure 2 shows a map of the predicted rate of present-day rebound for the Antarctic Peninsula
using a disc-load modified from the D91. The modifications follow a regional retreat history
developed in the numerical simulation of Payne et al. (1989). The relatively coarse disc-gridding is
shown in Figure 2. Retreat from LGM is assumed to initiate at 14.0 kyr BP and terminate at 5.5 kyr
BP, largely consistent with moraine data (Clapperton and Sugden, 1988). Dates older than 6 kyr BP
shown in Figure 1 correspond to the recession from LGM, with younger dates corresponding to mid
to late Holocene readvances and retreats. The D91 model was also reduced in total size to an e.s.lr.
of 20 meters. For computing the result shown in Figure 2 the deglaciating discs cover the entire
Antarctic continent. The predictions for present-day uplift rates are affected by the assumed value of
the mantle viscosity. For example, along the southernmost coastline of Alexander Is. (see Figure 1)
the predicted uplift rate with a viscosity, n = 4 x 10?° Pa s, and lithospheric thickness, 2 = 70 km, is
1.5 to 2.5 mm/yr (see Figure 2). In contrast, computational results (not shown here) for a mantle
viscosity of n = 10?! Pa s and thicker lithosphere, » = 120 km, predict a rate of 6 - 9 mm/yr at this
same location. (Also see James and Ivins (1998), Figure 13a, for computational results for the
unmodified D91 load, upper mantle viscosity, 1 = 10?! Pa s and # = 120 km). Additionally, we
computed the uplift rates for the modified D91 load with # = 50 km and n=15x 10%0 pa s, and in
this case the predicted uplift rates reduce to the level of 0.1 mm/yr. It is important to consider
reduced upper mantle viscosity and thinner lithosphere due to the late Cenozoic tectonics of the
Antarctic Peninsula. In particular, the mantle environment has absorbed a series of subducting ridge
segments during the past 45 to 6 Myr BP (Barker, 1982; Hole et al., 1991; Scarrow et al., 1998).
However, present-day rifting is limited to crust well north of Alexander Is. (Bell and King, 1998) and,
consequently, solid earth structure might not be required to be as weak, for example, as constrained
recently by James et al. (2000) for southern British Columbia n< 10 pa s, h <50 km) where
Neogene arc-related tectonics occur. We should note that Studinger and Miller (1999) have recently
estimated an effective elastic flexural thickness of 35 km for the lithosphere at the inner margins of

the Weddell Sea. Currently, estimates of the regional upper mantle viscosity do not exist.

2.2 Rebound Caused by mid-Holocene to Present-day Mass Balance State.

Analyses of atmospheric energy and moisture transport indicate that the Antarctic Peninsula and
environs is susceptible to relatively extreme precipitation conditions (Cullather et. al., 1998: Genthon
and Krinner, 1998). It is estimated that the Peninsula receives roughly 25% of the total Antarctic
mean annual surface accumulation, while accounting for only 6.8% of the total Antarctic ice sheet

surface area (Drewry and Morris, 1992). The present mass flux of regional glacier systems into the
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oceans may be substantial and non-steady, possibly as evidenced by the recent breakup of the Larsen
Ice Shelf near Robertson Island along the eastern flanks of the Peninsula (Doake et al., 1998).
Vaughan et al. (1999) recently determined that the Peninsula north of 75 °S sustains an accumulation
input of roughly 2390 Gt/yr. Partitioning 1/3 of this input to grounded ice and taking the imbalance
(capable of contributing to a secular 20th Century sea level rise) to be 6%, yields a value of —48
Gt/yr. We shall use this value for the mass imbalance of grounded ice in the Antarctic Peninsula in
order to demonstrate how large present-day imbalances, and their associated isostatic dlsethbnum

tradeoff with isostatic changes associated with earlier ice mass variability.

2.3 Oscillatory Load Examples.

Figure 3 shows the present-day vertical uplift rate for the Antarctic Peninsula region using the
disc-load distribution indicated in mapview. This calculation assumes a purely elastic response to the
load shown in Figure 4 with mass loss of -48 Gt/yr at present-day. The discs vary only in height and
not in radius. Note that the maximum uplift is coincident with the disc coverage, a feature which
diminishes when the viscous response is accounted for. In spite of the substantial mass loss that is
assumed (equivalent to a 0.133 mm/yr contribution to secular sea level rise), this vertical response
would be difficult to detect even under ideal conditions. For example, for a quasi-continuous time
series having a scatter in the vertical component identical to the average of two southern hemisphere
IGS stations, Perth (32 °S) and Yarragadee (29 °S), of 9.4 mm (Herring, 1999), then GPS observa-
tions at the SCAR site FOS1 (see Figure 1) would require 10 years of data in order for a linear trend

to have an amplitude standout above the r.m.s. scatter in the vertical by more than 60%.

If the solid earth rheology, however, involves ductile flow then the prediction is altered substan-
tially. For example, for a strength-depth profile similar to that of northern Europe, such that the man-
tle viscosity, 1, is near 4 x 10%° Pa s and the lithospheric thickness, 4, is 70 km (Lambeck et al.,
1998), then the expected signal increases 4 to 5-fold. Assuming the same present-day mass loss as
used in the purely elastic computation of Figure 3, Figure 5 shows the vertical rates for the same solid
earth model as in the LGM-load case shown in Figure 2, but now with the saw-toothed load of Figure
4. Of interest in Figure 5 is the phase-lagged behavior of the solid earth response: note that the sign
of the vertical motion is reversed from that of the elastic response (Figure 3). This is caused by the
viscous memory of the 650-year load buildup. As these phase lags may be critical for correctly inter-
pretating solid earth geodetic signals driven by late-Holocene ice loading-unloading sequences, we are
obliged to provide an analysis of the pertinent viscoelastic-gravitational behavior. The basic physics

is analogous to that of a dissipative mechanical system in forced oscillation.

2.4 Single Saw-tooth Load.

Consider a single disc of radius o and a single saw-tooth load history which would include only

the final two linear segments of the history shown in Figure 4. For the example in Figure 4, such a
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load would initiate at AD 1200, reach a maximum (M max) at AD 1850, and then unload at a mass

loss rate M pd tO the present-day. Analysis shows that the present-day vertical uplift rate is;

€

. g vyt y ’ ’ K2
Wo= - STy | Moy | etk +
TS o pd ? 4 k' uf
+ le(k/) { Mpd ’:1 . e_’Yp(k,)(t - Atl)J
M , ,
- max (1 _ er(k)Atl ) e"'Yy(k)t } } > , (1)
A,

with an implied sum over the two decay modes (r). The convolution from wavenumber (k’) to radial

position r” away from the disc center is

< - > = C Jolkry Jyk'o) dk”

o — 3

with J, the Bessel functions of order n and the prime indicating the scaling by % as discussed by
Ivins and James (1999). Here the final phase (post-1850 AD, see the youngest saw-tooth portion of
Figure 4) is of duration A, and the time at present-day is ¢ = Aty + At,, with Ar| representing the
duration of the assumed single growth phase. Equation (1) is a time-derivative of expression (36) of
Ivins and James (1999) for the vertical displacement at the surface of a hydrostatically pre-stressed,
two-layered gravitational half-space with the deepest layer of an incompressible Maxwell rheology
with elastic shear modulus pj, density p, and viscosity . The model top layer (lithosphere) has
thickness #, shear modulus uf and density of P;- All of these layered earth parameters are implicitly
retained in the amplitude factors I'"(k") and V', (k”) and the inverse decay times Y, (k”). The explicit

expressions are given in Ivins and James (1999). Equation (1) has a simple physical interpretation:
w = Present—-day Mass Balance Rate x
( Elastic Deformation + Viscous Memory of Current Evolution ) +
( Most Recently Terminated Mass Balance Rate X
Viscous Memory of Most Recently Terminated Change ) .

Note the existence of two competing terms in parentheses. If the present-day rate of surface displace-
ment is to be "in-phase” with the present-day mass balance, then there must be sufficient time (At5) to
generate a viscous memory of the "current" (i.e., interdecadal) linear evolution in ice mass. Both the

ability to "remember" (or "forget") the earlier phase and to establish a sufficiently robust present-day
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To illustrate this fundamental difference in the vertical motion prediction between monotonic and
oscillatory cases, we now explore a continuous drawdown of a late-Holocene load having the same
disc structure as in Figures 3, 5 and 6. The final linear segment in each of the oscillatory cases (i.e.,
since AD 1850) are identical in mass change. The drawdown case also contains an identical final seg-
ment. Although the load is unrealistic in the sense that it utilizes the same 146 discs throughout a
simulated 108,000 year evolution, it serves the purposes of a systematic comparison to the oscillatory
load cases. The assumed total volume change over the complete 100 kyr glacial cycle is quite small;
a mere 0.72 meters of e.s.l.r. and only an equivalent 0.26 meters since 11 kyr BP. The present-day
response is predicted in Figures 7a-c for three different mantle viscosity values, all other parameters
being identical. Note the sensitivity to mantle viscosity, with the 1 = 4 x 10! Pa s case (Figure 7a)
predicting more than double the uplift rates of the case of viscosity that is increased by one order of
magnitude (Figure 7c). However, even in the case of Fennoscandian-like viscosity 1 = 4 x 1020 Pa s
(Figure 7c), the relatively small deglaciation (< 1 m of e.s.lr.) predicts a surprisingly large uplift
rate at the present-day. While this has been noted in previous calculations of Antarctic deglaciation,
this is the first systematic study of alternative styles of late-Holocene ice mass change. Here the last
150 years of evolution for the computation of Figure 7 is identical to that assumed in Figures 3, 5 and
6. It would appear that a continuous drawdown mode of deglaciation has important implications for
geodetic observational strategies on solid bedrock due to the relatively large predicted signatures.
Possibly as important is the fact that the continuous drawdown response is relatively uncomplicated
by the strong sensitivity to mantle viscosity, load sequencing and wavenumber-dependence that the

oscillatory load cases exhibit.

3. Conclusions

In this paper we have examined three different types of ice load changes for the Antarctic Penin-
sula in order to predict present-day vertical rebound that could be measured using GPS. The three
different load types are: (1) no evolution (constant ice mass) since 5.5 kyr BP, but having a model for
LGM ice mass that is consistent with the reconstructions by Payne et al. (1989) and Denton et al.
(1991); (2) oscillatory evolution since 4.0 kyr BP which includes a realistic (albeit large) mass change
rate since the year AD 1850; and, finally; (3) a model having a small LGM buildup, but a continuous
drawdown of ice mass with the final 150 years identical to case (2). The first case (1) is similar to
the classical study of rebound wherein the time elapsed since deglaciation, size of the ice load, mantle
viscosity and lithospheric thickness are the main parameters that influence the prediction of present-
day uplift rate and pattern. A single mapview of one prediction is given in Figure 2. In the second
case, one must add the details of the last millennial to centennial-scale oscillation(s), including the
duration of loading and unloading sequences and net volume exchange with the ocean to this list. If

the mantle viscosity is in the range 10! to 4 x 10?0 Pa s, then much of the wavenumber-dependent
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Figure Captions

Figure 1. Map of the Antarctic Peninsula. Locations of dated glacial retreat from LGM, as summar-
ized by Ingdlfsson et al. (1998), are indicated. The southernmost six SCAR GPS sites (Dach and
Dietrich, 2000) and the continuously operating IGS station (O Higgins) are shown as large solid
dots and a solid diamond, respectively. The complete SCAR network is shown at the website

http://www.tu-dresden.de/ipg/tpgsc98.html.

Figure 2. Uplift rate, w, in mm/yr predicted from a continent-wide model of Antarctic deglaciation.
The load model terminates evolution at 5.5 kyr BP. The load is modified from D91’ of James

and Ivins (1998) as discussed in the text.

Figure 3. Vertical motion due to present-day mass loss at rate M pd = —48 Gt/yr with elastic theology.
Unloading occurs on all 146 circular discs. The rate is equivalent to a regional imbalance of 6%,
corresponding to a 0.133 mm/yr contribution to present-day sea level rise. The assumption of a

purely elastic rheology means that the crustal motion is sensitive only to M pd (see Eq. 1).

Figure 4. The load history for generating Figures 3 and 5. All phases are included in the model for
Figure 5, but only phase "IV" with a 4500 year-long growth period is included in Figure 6.

Figure 5. Uplift rate predicted for multiple late-Holocene oscillations, the last having a growth phase
duration of 650 years (see Figure 4). The rate of mass loss for the combined 146 discs since AD

1850 is identical in Figures 3, 5, 6 and 7.

Fighre 6. Uplift rate predicted for a single oscillation having growth phase duration of 4500 yr. The
combination of longer growth phase and lower viscosity (versus the oscillatory case of Figure 5)
allows isostatic equilibrium to be approached by 1850 AD. Post-1850 ice loss is identical to the

cases shown in Fig. 2, 3 and 5.

Figure 7. Uplift rate prediction maps from non-oscillatory (continuous drawdown) deglaciation. The
LGM load has a volume equivalent to 0.72 meters of e.s.l.r., with approximately 0.26 meters
eustatic equivalent since 11 kyr BP. Disc positions are identical to those shown in Figure 3.
Note the stronger signature (by about 3 x ) predicted by a mantle viscosity that is reduced by
one order of magnitude and note the consistent uplift pattern, a feature which does not appear in

the oscillatory load cases (contrast Figures 5 and 6). The following volumetric evolution is
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assumed: 0 (108), 4.5 (25), 5.0 (18), 4.9 (17), 4.1 (15), 3.8 (13), 3.19 (11), 2.65 (9), 2.15 (8),
1.6 (7), 1.3 (6), 1.0 (5.5), 1.1 (5.0), 1.0 (0.15), where the first value represents a factor x (V..

~ Vimin) and the second (in parentheses) is the corresponding time in kyr BP. The value of the
volume difference, V.. — V.. (=5.65x 10* km?), is identical to Figures 5 and 6.
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