The Earth's Ionospheric Response to the Complex Interplanetary Event of November 5-6, 2001


1Jet Propulsion Laboratory, Pasadena, CA
2INPE, Sao Jose dos Campos, SP, Brazil
3Kyoto University, Japan
4Utah State University
5CIRES, University of Colorado
6Univ.of Michigan, Ann Arbor
7Millstone Hill Radar MIT

Abstract: At ~115 UT 6 November, a fast forward shock overtook a magnetic cloud composed of a steady southwardly directed interplanetary magnetic field. The shock compression of this field caused intense Bz fields leading to a strong (dayside) eastwardly directed magnetospheric electric field and a major (Dn ~ < 300 nT) magnetic storm. The interplanetary sheath fields steadily increased over the next ~2 hrs to reach a maximum of ~80 nT. We explore the dayside ionospheric responses to this interplanetary event. We use GPS receivers onboard CHAMP (~400 km altitude, upward viewing), SAC-C (~700 km altitude, upward viewing), dual frequency altimeter data from TOPEX (~1300 km altitude) and ~100 ground based GPS receiver data to determine the global ionospheric total electron content (TEC) as a function of the phase of the interplanetary event/magnetic storm. It will be shown that the shock generated prompt electric fields cause an immediate uplift of the entire dayside low latitude ionosphere. A few hours later, equatorial and low latitude ionospheric TEC increases occur. About ~6 hrs after the shock, there is a significant dayside TEC decrease. Signatures of the bottomside of the plasmasphere are evident in the CHAMP (~7 pm LT) data, and the inward motion of the plasmapause during the storm main phase can be tracked/identified. The interpretation of the results will be discussed in detail.