
Science Opportunity AnalyzerTM (SOA):
Everything Including the Kitchen Sink

R. Jay Torres
Jet Propulsion Laboratory / California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91 109
M / S 301-250D

November 2 1 , 2003

Abstract

Science Opportunity Analyzer (SOA) assists scientists in planning a space mission through
parameter computation and visualization. SOA is not your typical “run-of-the-mill” Java
application since it requires a language that provides powerful APIs and must be multiplatform
as well. SOA would also push the limit of some of these MIS . The APIs include used by SOA
include: the Java Native Interface (JNI), Java3D, Java2D, Remote Method Invocation (RMI),
and Reflection. This number and complexity of APIs in one package has provided SOA with
several unique challenges that had to be resolved.

SOA combines many different APIs into one single application. JNI is used so that the Java
portion of SOA can access a complicated navigation library, in C, that performs coordinate
transformations written by experts. In visualization, the decision to use the Java APIs for
graphics has allowed SOA to take advantage of Java3D’s scenegraph structure and Java2D’s
simple yet powerful API. Reflection plays an important role in SOA in that it allows different
Space Missions to add their specific components to SOA “on-the-fly” without having to
recompile the application. RMI is used in SOA to allow a client to access a complex, third party
mathematical software application. In general, these APIs give the programmers the ease of
developing in Java and not having to worry about different standards for different languages on
different plat forms.

Integrating the various APIs has not been as simple as it sounds. Error trapping techniques for
using JNI have created various issues including reporting errors. Using Java3D and Java2D also
has some drawbacks including memory leaks and slow performance in early releases. Another
major problem stems from having to visualize many objects that are very far away. Reflection
was a new concept to the programmers at the start of the development phase requiring time to
fully understand the API. Getting these APIs together made the software more complex. The
difficulty of tracing null pointers, memory leaks, and plain old bugs in using the APIs proved
overwhelming at times. There were countless sleepless nights that, in the end, resulted in finding
ways to overcome these obstacles.

Some tools such as, Sun’s jvmstat, freeware JSwat, Rational’s OptimizeIt, and Quest Software’s
JProbe suite have been used with varying results. Though they provide assistance to many
problems, they are also lacking in debugging some of the APIs including Java3D and JNI.

The Java development team has provided many useful MIS. It can be a bumpy road integrating
these APIs together, but SOA has proved it can be done successfully and efficiently.

Science Opportunity AnalyzerTM (SOA):
Everything Including the Kitchen Sink

R. Jay Torres
Jet Propulsion Laboratory / California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91 109
M I S 301-250D

November 2 1,2003

Abstract

Science Opportunity Analyzer (SOA) assists scientists in planning a space mission through
parameter computation and visualization. SOA is not your typical “run-of-the-mill” Java
application since it requires a language that provides powerful APIs and must be multiplatform
as well. SOA would also push the limit of some of these APIs. The APIs include used by SOA
include: the Java Native Interface (JNI), Java3D, Java2D, Remote Method Invocation (RMI),
and Reflection. This number and complexity of APIs in one package has provided SOA with
several unique challenges that had to be resolved.

SOA combines many different APIs into one single application. JNI is used so that the Java
portion of SOA can access a complicated navigation library, in C, that performs coordinate
transformations written by experts. In visualization, the decision to use the Java APIs for
graphics has allowed SOA to take advantage of Java3D’s scenegraph structure and Java2D’s
simple yet powerful API. Reflection plays an important role in SOA in that it allows different
Space Missions to add their specific components to SOA “on-the-fly” without having to
recompile the application. RMI is used in SOA to allow a client to access a complex, third party
mathematical software application. In general, these APIs give the programmers the ease of
developing in Java and not having to worry about different standards for different languages on
different platforms.

Integrating the various APIs has not been as simple as it sounds. Error trapping techques for
using JNI have created various issues including reporting errors. Using Java3D and Java2D also
has some drawbacks including memory leaks and slow performance in early releases. Another
major problem stems from having to visualize many objects that are very far away. Reflection
was a new concept to the programmers at the start of the development phase requiring time to
fully understand the API. Getting these APIs together made the software more complex. The
difficulty of tracing null pointers, memory leaks, and plain old bugs in using the MIS proved
overwhelming at times. There were countless sleepless nights that, in the end, resulted in finding
ways to overcome these obstacles.

Some tools such as, Sun’s jvmstat, fi-eeware JSwat, Rational’s OptimizeIt, and Quest Software’s
JProbe suite have been used with varying results. Though they provide assistance to many
problems, they are also lacking in debugging some of the APIs including Java3D and JNI.

The Java development team has provided many useful MIS. It can be a bumpy road integrating
these APIs together, but SOA has proved it can be done successhlly and efficiently.

