
Architecting a Software Architect12
Brian Vickers

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91 109

brian.vickers@jpl.nasa.gov
8 18-393-0877

Abstract-Software architecture is a relatively new software
engineering discipline that has emerged as a response to the
growing complexity of software systems and the problems
these systems attempt to solve. Software is becoming the
dominant component of most aerospace systems and it is
necessary for the aerospace software development
community to develop new practices, principles, and
standards to manage this growing complexity. The Jet
Propulsion Laboratory (JPL) has developed and
implemented a year-long educational program designed to
develop expertise in software architectures and to train
future software architects. Now in its third year, the
Software Architect Program (SWAP) selects senior software
engineers and apprentices them as software architects. The
objective of this paper is to describe the structure of the
SWAP, the program’s background, how the program has
evolved, and the lessons learned from the implementation of
this educational program.

A software architect is responsible for formulating a
program’s or computing system’s design and
implementation philosophy and for communicating this
philosophy to developers, system engineers, and integration
and test personnel. A software architect must be more than
just a superb developer performing top-notch technical
activities. A unique combination of skills is required to be a
s o h a r e architect. A software architect must be a
communicator, strategist, consultant, leader, technologist,
cost estimator, cheerleader, politician, and salesperson. The
SWAP attempts to improve these skills in the senior
software engineers who are selected to participate in the
program.

The SWAP consists of three parts: classroom and
conference training, on-the-job apprenticeships and
internships, and opportunities to participate in mentoring
relationships. First, the program utilizes classroom training
from a variety of educational institutions including the
California Institute of Technology, the University of
Southern California, and Camegie Mellon University.
Participants are also sent to tutorials and conferences around

the USA to learn about current and developing software
architecture trends. Second, and often concurrently,
participants are provided with internships on NASA-funded
aerospace missions or apprentice with software architect
teams in order to become more familiar with the wide
variety of tasks a software architect is required to perform.
Lastly, participants may also be paired up with existing
software architects in order to foster a mentor-protege
relationship.

Two key elements were found to be the greatest contributors
to the program’s success. The first key element is that the
program is highly tailorable to the needs of the individual
participants. Through the use of several internally developed
skill and personality inventories, deficiencies are highlighted
for each SWAP participant and an individualized program is
prepared to address these deficiencies in the coming year.
The second key element is that the program utilizes frequent
feedback throughout its course to keep the individual
participants on track. Frequent team collaboration meetings
are held to review accomplishments and experiences,
provide feedback, and give regular guidance throughout the
12-month program.

The most valuable aspect of the Software Architect Program
has been the tailored, individualized educational program
combined with frequent feedback during skill acquisition
over a traditional structured learning environment.

TABLE OF CONTENTS

1. ~TRODUCTION 2

3. PROGRAM STRUCTURE 5

5. LESSONS LEARNED 6
6. CONCLUSION .. 6
REFERENCES .. 7
BIOGRAPHY .. 7

2. BACKGROUND AND APPROACH 2

4. EVOLUTION OF THE PROGRAM 6

’ 0-7803-8155-6/04/$17.00 0 2004 IEEE
IEEEAC paper #1206, Version A, Updated October 10,2003

mailto:brian.vickers@jpl.nasa.gov

1. INTRODUCTION
Development of the Software Architect Program (SWAP) at
the Jet propulsion Laboratory (JPL) began three years ago in
2000. The program is a year-long, half-time, training
program sponsored by JPL’s Center for Space Mission
Information and Software Systems (CSMISS).[S] The intent
of the SWAP is to help train the next generation of software
architects who will design and implement software for hture
JPL missions. These software architects will provide a
system-level view of software across a project or program.
They will help ensure consistent software architectures are
utilized across missions, that software components fit
together, and that the appropriate methodologies, tools,
practices and technologies are applied and utilized. They
will be an important part of the interface between technical
and managerial considerations for a project or program.

2. BACKGROUND AND APPROACH

Background

As a federal agency, NASA must vie with other federal
agencies as well as private industry for valuable information
technology (IT) workers in the midst of an IT-driven
economy. Challenges such as the recruitment and retention
of skilled IT professionals are issues that must be viewed as
problems that NASA and JPL will face for the long term.
The NASA IT Workforce Challenge is part of a proactive,
long-term strategy to develop integrated training and
development programs which will enable NASA and JPL to
meet these long term goals.

In response to the NASA IT Workforce Challenge,[101 the
JPL Chief Information Officer (CIO) identified four key IT
workforce issues: 1) retention of current IT workers, 2)
recruitment of new IT workers, 3) training of current IT
workers, and 4) building a sense of community within JPL’s
IT workforce. JPL developed many pay-oriented and non-
pay-oriented strategies to fiuther its retention of IT workers.
Two of the non-pay-oriented strategies included providing
1) mentoring and consulting and 2) targeted training
opportunities for its IT workforce. JPL’s Institutional
Computing and Information Services (ICIS) Office
(operated under the JPL CIO) through its Information
Technology Education and Training (ITET) Program
addresses these IT-related training issues for the JPL
workforce.

The CSMISS is an internal Center of Excellence for IT at
JPL and serves as the voice for its IT practitioners. The
objectives of the CSMISS are to investigate new software
and IT areas of critical importance to the JPL mission set
and to create an environment which fosters a world-class IT
and software workforce at JPL. It is a strategic arm of JPL’s
IT Program Office and conducts ongoing gap analysis and

investigations of emerging or mission supporting software
technology and engineering. The CSMISS highlights
challenges, successes, and the criticality of JPL IT
excellence while exposing the workforce to a steady flow of
IT tools, training, methodologies, and best practices used in
industry and academia.

While developing the JPL Software Design Principles as
part of its Mission Software Process task, CSMISS noted the
need for and began to define the role of a Software Architect
at JPL. As a result of this need and in response to the NASA
IT Workforce challenge CSMISS created, in conjunction
with the JPL CIO and its resources, a training and mentoring
program targeted to train and develop software architects at
JPL, the Software Architect Program (SWAP).

Software Architecture and the Role of a Sofiare
Architect-The architecture of a software system is
comprised of its elements, its form, and its rationale. That is,
a software architecture is a set of architectural elements that
have a particular form. It provides the framework within
which to satisfy the system requirements and provides both
the technical and managerial basis for the design and
implementation of the system.[1 11

Architecture is defined by the recommended practice as “the
fundamental organization of a system, embodied in its
components, their relationships to each other and the
environment, and the principles goveming its design and
evolution.” This definition is intended to encompass a
variety of uses of the term architecture by recognizing their
underlying common elements. Principle among these is the
need to understand and control those elements of a system
design that capture the system’s utility, cost, and risk. In
some cases, these elements are the physical components of
the system and their relationships. In other cases, these
elements are not physical, but instead, logical components.
In still other cases, these elements are enduring principles or
patterns that create enduring organization a1 structures. The
definition is intended to encompass these distinct, but
related uses, while encouraging more rigorous definition of
what constitutes the fundamental organization of a system
within particular domains.[I]

Software architects must have accumulated significant
experience in software development, but at the same time,
they must be (or should become) knowledgeable in the
problem domain. These two kinds of expertise must be well
balanced. Software architecture projects will not succeed
without both.[9]

Clearly, the role has a core technical aspect to it, but this is
only sufficient to create a good architecture. To create the
right architecture, the architect also needs a good sense of
strategy-understanding business strategy and being able to
translate that into a compelling technical strategy. And that
is not sufficient to ensure that the architecture is successful.

2

First, it requires organizational politics to gain and sustain
the support of the management community throughout the
architecture’s creation and deployment to the developers. In So in addition to software development and domain
addition, to ensure the architecture doesn’t simply gather
dust on the engineers’ bookshelves, architects need to act as 0 Leadership skills (such as creating and
consultants to the engineering community, helping them to communicating an architectural vision);
understand the architecture and the rationale behind it. Consulting skills (such as interviewing architecture
Lastly, architects need to be strong leaders, aligning the stakeholders, leading architecture reviews, and
organization behind a powerful vision that motivates and

guides.[2]

knowledge, a software architect’s skills should include:

0

“People Skills”
1. Oral Presentations
2. Written Communication & Documentation

4.
3. Negotiation & Conflict Resolution

Leadership & Working in a Team Environment

Table 1. SWAP Skills Matrix

P
P
P
P

3

taking criticism constructively);
Political Awareness Building (such as
understanding organizational networks and
influencing); and
Strategy skills (such as building technology
roadmaps and scenario analysis).

Approach

In order to determine a set of desired skills and skill levels
to be achieved by a SWAP participant upon completion of
the program, interviews were conducted with a majority of
the JPL IT line managers, flight project managers, and
personnel deemed to be performing the tasks of a software
architect. These interviews yielded a set of common themes
and tasks which, in tum, yielded the Skills Matrix for the
CSMISS Software Architect Program provided in Table 1 .

Skills Matrix-The SWAP Skills Matrix lists a number of
skills a software architect should have. Each skill is assigned
a level to show its importance to the regularly performed
tasks of a software architect. Each skill level is assumed to
encompass the skill levels before it. These skill levels are:

0 Cursory-the software architect has a cursory
knowledge of the concepts and terminology of the
skill or subject area;
Working-the software architect has a working
knowledge of the details and routine applications of
the skill or subject area;
Proficient-the software architect has an operational
proficiency in and can solve routine problems in
the skill or subject area;
Expert-the software architect has expertise in the
skill or subject area, and can solve complex or
unusual problems and consults in the skill or
subject area.

0

0

0

The SWAP Skills Matrix is M e r divided into four skill or
subject areas a software architect needs to have at least a
“Working” level of skill or knowledge of Software
Engineering, Systems Engineering, Software Management,
and “People Skills.” Within these areas, it was determined
that a software architect needed an “Expert” level of skill or
knowledge in the areas of

0 Software Architectures;
0

0 Tradeoffs, Tailoring, and Prioritizing.
Requirements Definition and Analysis; and

Further, a software architect was deemed to have at least a
“Proficient” level of skill or knowledge of:

At least one JPL Mission Software Application
Domain

0

o Navigation,
o Avionics-Guidance and Control,
o Command and Data Handling,
o Sequencing,
o Telemetry,

o Monitoring and Control, or
o Science Data Processing

Management;
Operating Systems;
Computer Languages, Middleware,
Groupware;
Performance Modeling and Optimization;
Real-time and Parallel Systems;
System Architectures;
Methodologies and Case Tools;
Software Cost Estimation; and
“People Skills” including:

o Oral Presentations;
o Written Communication

Documentation;

and

and

and

o
o Leadership and Working in a Team

Negotiation and Conflict Resolution; and

Environment.

Curriculum-Once the SWAP Skills Matrix was completed,
a gap analysis was performed against existing training
opportunities at JPL. Existing JPL or NASA training that
was applicable to the SWAP Skills Matrix was identified
and adopted. Training gaps were identified and sorted into
two categories 1) extemal training to be procured and 2)
opportunities for intemal curriculum development.

One such opportunity for intemal curriculum development
was a graduate-level class in software architectures tailored
for JPL by Dr. Nenad Medvidovic at the University of
Southern California’s (USC) Center for Software
Engineering (CSE). Dr. Medvidovic worked with JPL
personnel to adapt his standard semester-long class into an
intensive, 40-hour series of ten lectures specifically targeted
to the JPL IT workforce. Topics of these lectures include:

0 Domain-specific Software Architectures;
0 Architectural styles;
0 Architecture Description Languages;
0 Software connectors;
0 Dynamism in Architectures; and

Architecture-based Testing and Analysis.

Mentoring and Internships-In Constructivist cognitive
theory, a culture of expertise can be cultivated, where
learners come to think like experts by observing experts in
action, and by gaining insight into their thought
processes.[4] In the traditional apprenticeship model,
students are guided through a process of modeling,
coaching, and fading. The master models expert behavior by
demonstrating how to do a task while explaining what is
being done and why it is done that way. The apprentice
observes the master, then copies the observed actions on a
similar task with the master coaching the apprentice through
the task by providing hints and corrective feedback. As the
apprentice becomes more skilled in the task, the master
gives more and more authority to the apprentice by “fading”
into the background. [71

4

The cognitive apprenticeship approach proposes a transition
from modeling, to scaffolded problem solving, to
independent problem solving, in which instructional support
fades during the transition. [4] Cognitive apprenticeships
have the instructor verbalize the activity while they are
modeling it and verbally coach the student during
completion of the task. In this “think aloud modeling”
instructors describe what they are thinking and doing, why
they are doing what they are doing, and verbalize their self-
correction process.[5]

Engineering design education based on constructivist
theories of cognitive science suggests that effective leaming
can occur in a project-based situation that is authentic,
supportive of the learning process, and scaffolded.
Authenticity is a factor in increasing student motivation that
increases the likelihood of transfer between learning
situations and real world situations. SWAP participants
should be asked to solve problems that are similar in
complexity and in components to problems that they will be
facing in a real world environment.[6] When authentic
situations are created during learning that are similar to the
situations in which the knowledge will be ultimately applied
(Le., the closer the match between the learning situation and
the ultimate workplace situation), the easier the transfer of
knowledge will be.[3]

SWAP mentoring and internships were designed to
maximize learning based on this notion. Coordination
meetings were held and arrangements were made to leverage
lessons learned from previous mentoring and internship
programs such as NASA’s Mentor-Protkge program at JPL
and several JPL-internal programs (e.g. the Principals as
Gurus program, the Mission Architect program, and the
Technical Leadership program).

In order to support the learning process, students need
opportunities to identify and articulate problems, reflect on
these problems until they reach a solution, and then
articulate their solution and what they learned. Articulation
and reflection occur frequently in collaborative
environments in which knowledge sharing is occurring. The
audience in such environments can provide feedback, offer
contrasting views, ask for clarification, or extend ideas-all
of which improves student understanding and leaming
through increased reflection and often additional
articulation. [61

To satisfy the need for problem articulation and reflection in
a collaborative working environment and to facilitate
scaffolding, SWAP participants are required to meet
frequently and regularly with the SWAP Coordinator so that
they may:

0 Interact with one another and thus elicit articulation
and reflection about their designs and design
process

0 Model the process of design through introduction
of case studies;

0 Be provided with tools which communicate and
facilitate good design process;

0 Facilitate or guide design activities of each other
0 Facilitate interaction with each other by suggesting

useful ways to collaborate;
0 Prompt each other to describe a design problem;
0 Coach each other about how to abstractly interpret

a design problem;
0 Model other processes through example

interpretations of design problems.

3. PROGRAM STRUCTURE
The SWAP is a year-long, half-time funded program.
Toward the end of each fiscal year, a call for participants is
announced and applications are accepted for the next fiscal
year’s (FY) program. Each of the applicants is screened via
an interview process and a gap analysis is performed for
each applicant against the SWAP Skills Matrix. Based on
budget for the FY, the top N candidates are selected to
participate in the SWAP. The SWAP coordinator and the
SWAP participants develop a personal training schedule for
each participant to address deficiencies against the
completed SWAP Skills Matrix gap analysis.

There are three main components to the SWAP. Each of the
participant’s SWAP Skills Matrix deficiencies is addressed
and corrected by one of these components:

Classes and Conferences;
0

Mentoring.
On-the-Job Training and Internships; or

Classes and conferences-Participants are sent to attend a
variety of classes and conferences around the contiguous
United States. Every effort is made to ensure that classes and
conferences are organized in a spiral manner so that the
participant continually builds upon what has already been
learned, so that the new knowledge can most readily be
grasped.

Since the developed training schedule is based on the
specific needs of each participant, the number of classes and
conferences attended varies with each individual participant.
On average though, each participant attends nine external
and six internal classes or conferences during the FY.

In addition to a variety of IEEE and ACM sponsored
conferences, external training has been provided by:

Bredemeyer Consulting;
0 California Institute of Technology;

Software Engineering lnstitute;
0 University of Southern California;
0

0 University of California, Irvine.
University of California, Los Angeles; and

5

On-the-Job Training (OJT) and Internships-All participants
are assigned to JPL-managed flight projects that still in the
early portion or the life cycle.

The JPL project life-cycle is broken into six “phases”:
pre-Phase A-Advanced Studies;

Phase B-Preliminary Design;
Phase C-Design and Build;

0

Phase E-Operations.

Phase A-Mission and Systems Definition;

Phase &Assembly, Test, Launch, and Operations;
and

Each internship varies in length from three months to ten
months depending on the tasks to be accomplished by the
participant on the project. By placing SWAP participants in
“Phase A” or “Phase B” projects, participants are given the
best opportunity to work directly on authentic problems with
established software architects. Over time and through
succeeding placements, SWAP participants are given
increasingly complex and diverse tasks and provided with an
environment which promotes intrinsic motivation,
cooperation, and competition.

Mentoring-Mentors are found for a participant at the
participant’s request. The SWAP will match a participant
with an existing JPL software architect who becomes the
mentor. The SWAP Coordinator asks the mentor to share
relevant experiences with the assigned SWAP participant
and to provide the participant with career coaching. The
mentor and SWAP participant then proceed to meet in
individual sessions throughout the remainder of the
program.

4. EVOLUTION OF THE PROGRAM

Currently in its third year of execution, the SWAP has
changed over time. One of the largest changes to the SWAP
was to focus on the individual needs of the participants.
When originally developed, the SWAP was planned to be a
static form of instruction for all participants much like a
series of required classes and electives at a university.
Shortly after the first year of the program began, this generic
approach was changed into to the tailorable program it is
today. This was done in order to maximize instructional
value for each participant and to target each participant’s
specific skill deficiencies.

Another big change for the program was to alter the SWAP
Skills Matrix. Originally, the “People Skills” and several
other skills were listed as one category lower. For example,
Software Planning, Quality Assurance, and Configuration
Management were all listed as “Cursory” when the program
began. These and others have moved up to a higher skill
category.

Additionally, the USC-developed, JPL-tailored class in
Software Architectures was removed as a gateway
requirement to apply to the program. Originally, applicants
had to complete the class prior to applying to the program.
Now, with the program’s focus on the individual needs of
the participants, if a participant has not completed the class
prior to acceptance in the program, the class becomes part of
the program for that participant. This allows for a broader
population of the IT workforce to potentially be a part of the
SWAP.

5. LESSONS LEARNED
Now in its third year, six people have completed the SWAP
to date with two more currently in the program this FY.
Many lessons have been gleaned fiom JPL’s experience with
the program.

Effective learning requires attention and monitoring
of goals, processes and performance. Since the
SWAP is tailored to the individual needs of the
participant it is important that the goals for each
individual are planned and tracked accordingly.
SWAP participants attributed a high return on
investment to this approach.

Meet frequently and regularly to collaborate and
learn. SWAP participants listed the weekly
instructional and collaborative meetings with each
other and the SWAP Coordinator as the most
instructional aspects of the program.

Internships are best when they utilize the domain
expertise of the participant. Authentic work
environments outside of the participant’s domain,
while informative on an organizational and political
level, usually only yield a cursory level of new
domain knowledge.

Think aloud modeling is an effective technique in
both instructional and OJT environments. This
modeling technique was often used in the weekly
collaboration meetings with the SWAP Coordinator
and during internships. Participants attribute a high
educational value to this technique.

6. CONCLUSION
Overall, the SWAP is considered a success at JPL.
Applications for entry into the program increase each year as
more people exit the program with the appropriate skills to
hnction as software architects.

6

REFERENCES
[l] ANSVIEEE Std 1471-2000, Recommended Practice for
Architectural Description of Software Intensive Systems.

[2] Dana Bredemeyer and Ruth Malan, The Role of the
Architect in Software Development, Bredemeyer Consulting
Web site. httD://www.bredemeyer.com

[3] J. S. Brown, A. Collins, and P. Duguid, “Situated
cognition and the culture of learning.” Educational
Researcher, 18,3242, JanuaryIFebruary 1989.

[4] A. Collins, J. S. Brown, and S. E. Newman, “Cognitive
apprenticeship: Teaching the crafts of reading, writing, and
mathematics,” in Knowing, learning, and instruction: Essays
in honor of Robert Glaser, L. B. Resnick ed. Hillsdale, NJ:
Erlbaum, 1989.

[SI S. L. S. Duncan, “Cognitive apprenticeship in classroom
instruction: Implications for industrial and technical teacher
education,” Journal of Industrial Teacher Education, Vol 33
NO 3,66-86, 1996

[6] M. Guzdial, D. Carlson, and J. Turns, “Facilitating
Learning Design with Software-Realized Scaffolding for
Collaboration,” Frontiers in Education Conference
Proceedings, Nov. 1995.

[7] S. D. Johnson, “A framework for technology education
curricula which emphasizes intellectual processes,” Journal of
Technology Education, Vol3 No 2, 1-1 1, 1992.

[8] JPL Center for Space Mission Information and Software
Systems Web site. h~://csmiss,iul.nasa.gov

[9] Philippe Kruchten, “The Sottware Architect, and the
Software Architecture Team,” in Sofiware Architecture, P.
Donohue, ed. Boston: Kluwer Academic Publishers, 1999.

[101 NASA Office of the CIO-IT Workforce Challenge Web
site.
http://www.ha.nasa.gov/ofice/codea/codeao/workforce. html

[1 11 Dewayne E. Perry and Alexander L. Wolf, “Foundations
for the Study of Software Architecture,” ACM SIGSOFT
Sofiware Engineering Notes, Vol 17 No 4., 40-52, October
1992.

BIOGRAPHY
Brian Vickers is a senior member of the technical staff at

the Jet Propulsion Laboratory, where he
has worked since I989. He is currently
a member of the Mission Sofiare
Systems Engineering group in JPL s
Sofmare Systems and Operations

Engineering section. Brian administers the Soffware
Architect Program for JPL’s Center for Space Mission
Information and Sojbvare Systems. He is also responsible
for training and curriculum development for JPL ’s Sofiware
Quality Improvement Project. Brian has a MS in Computer
Science f iom Azusa Pacifc University, a MBA from
Woodbury University and a certificate in Engineering
Management >om the California Institute of Technology.
He is current& earning a JD fiom Loyola Law School of
Los Angeles.

7

http://httD://www.bredemeyer.com
http://www.ha.nasa.gov/ofice/codea/codeao/workforce

