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Abstract- Evolutionary computing has proven to be a 
straightforward and robust approach for optimizing a wide 
range of difficult analysis and design problems. This paper 
discusses the application of these techniques to an existing 
space vehicle power subsystem resource and performance 
analysis simulation in a parallel processing environment. 
Our preliminary results demonstrate that this approach has 
the potential to improve the space system trade study 
process by allowing engineers to statistically weight 
subsystem goals of mass, cost and performance then 
automatically size power elements based on anticipated 
performance of the subsystem rather than on worst-case 
estimates. 
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1. INTRODUCTION 
At the Jet Propulsion Laboratory (JPL) the life cycle of a 
deep space mission normally goes through six phases, each 
culminating with a review by project management and its 
funding agencies [ 11: 

Pre-Phase A: Advanced Studies 
Phase A: Mission & System Definition 
Phase B: Preliminary Design 
Phase C: Design & Build 
Phase D: Assembly Test & Launch Ops 
Phase E: Operations 
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The process starts with Pre-Phase A where the goals and 
objectives of the mission are defined and several plausible 
mission concepts are created. These early mission concepts 
will trade off various elements in the design so that project 
managers can choose between different altematives for 
mass, cost, performance and risk. This cycle of goal 
definition, mission concept creation and design trade study 
is repeated many times with each pass refining and 
improving the resolution of the design. The product of this 
process is a mission architecture characterized such that its 
effectiveness in achieving mission objectives can be 
properly evaluated. One important aspect of the mission 
architecture is the flight system. 

The purpose of the space vehicle flight system is to transport 
the payload safely to its destination. Typically the flight 
system is composed of several subsystems [ 11: 

Power Subsystem 
Command & Data Handling Subsystem 
Telecommunications Subsystem 
Propulsion Subsystem 
Mechanical Subsystem 
Thermal Subsystem 
Guidance Navigation and Control Subsystem 
Spacecraft Flight Software 

Each subsystem is responsible for a particular function, such 
as electrical power distribution, and has design 
characteristics like solar array size, solar cell technology, 
secondary battery size and battery cell technology. 
Designing these subsystems to meet payload, trajectory, 
communication and activity requirements within the mass, 
cost and performance constraints of the project is vital for 
mission success and if this process can be automated, we can 
ensure consistent design quality while at the same time allow 
experts to spend less time on routine tasks and more time 
evaluating various design options. 
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This paper discusses how we applied evolutionary 
computing to a power subsystem simulation to automate the 
design search and optimize space vehicle subsystem 
elements for given set of project requirements and 
constraints. It will also show how this allows engineers to 
use anticipated performance of the subsystem rather than the 
usual worst-case estimates. The paper begins with a brief 
overview of the simulation used on this effort, the Multi- 
Mission Power Analysis Tool (MMPAT). It then discusses 
evolutionary computing and how it was applied to the 
MMPAT simulation. It goes on to describe features of the 
evolutionary computing framework, PERSON, and 
concludes with the results of this effort and outlines areas 
for future work. 

2. MMPAT OVERVIEW 
In order to develop a system that would allow engineers to 
statistically weight subsystem goals of mass, cost and 
performance then automatically size elements based on 
anticipated performance of the subsystem, we required a 
simulation that could seamlessly handle multiple mission 
types and phases, and that could be integrated with an 
optimizer in a parallel processing environment. More 
specifically, the simulation needed to be a multiplatform 
library deployment with all of its design characteristics and 
state variables parameterized, and accessible through an 
Application Programming Interface (API). The API would 
also need to allow the user to enter an activity plan and 
trajectory. Moreover, the simulation would need to use 
actual flight project data to quickly predict the resources and 
performance of the subsystem over the mission timeline, and 
would need to run in a closed loop manner with environment 
models that were, preferably, already integrated. Lastly, 
while not specifically required for this task, we wanted the 
simulation to be able to respond dynamically to inputs from 
other subsystems for compatibility with future research 
efforts. Given these requirements we choose to use the 
Multi-Mission Power Analysis Tool (MMPAT). 

MMPAT is one tool in a suite of Multi-Mission Subsystem 
Analysis Tools at JPL [2] .  It is a multiplatform software 
simulator currently used in Mars Exploration Rover (MER) 
operations to predict the performance and resources of space 
vehicle electrical power subsystems before a sequence of 
activities is uploaded. The simulation is variable fidelity and 
produces dynamic time and sequence dependent results 
rather than static point solutions. As such, it models the 
behavior of power sources and energy storage devices as 
they interact with the spacecraft loads and the environment 
over a mission timeline at a level of detail appropriate to 
each stage of the project lifecycle, which in MER’S case is 
operations. The models in MMPAT include: 

Solar Array Model 
Solar Array Thermal Model 
Orbital Mechanics 

Astrodynamics Model 
Pointing Model 
Atmospheric Model 
Secondary Battery Model 
Secondary Battery/ThermostaticaIly Controlled Heater 
Thermal Model 
Power Bus Model 
RTG Model 
Power Equipment List Model 

All of the models were developed by power subsystem 
experts or adapted from validated heritage models. The tool 
itself comes with models for many of the most commonly 
used power sources, storage devices and power bus control 
methods used on space vehicles today. All of these models 
have been validated on previous or current missions, such as 
Pathfinder and MER, and give an accurate prediction of the 
system performance and resources. 

The simulation is controlled by model parameters and was 
designed to be data-driven, modular and multiplatform. This 
means the models can be expanded to include additional 
hardware types. It also means that the application can be 
deployed stand-alone or as a library in another application, 
which in our case means integrated with an optimizer in a 
parallel processing environment. Moreover, the 
parameterized interface on MMPAT can also be used to 
change the mission type and analyze different mission 
phases since the tool supports the analysis of planetary 
landers, planetary orbiters, heliocentric orbiters and rovers 
as well as cruise, landed and orbiting phases and special 
events like flyby, TCM and EDL. 

3. APPLYING EVOLUTIONARY COMPUTING 
Evolutionary computing seeks an optimal solution for a 
given system by using a computer program to simulate the 
biological processes of natural selection [3,4]. This means 
that by using a process of random variation and selection 
through competition in an environment, the quality of 
solutions will iteratively improve. Simply put, the process 
involves generating a population of candidate solutions, 
evaluating how well they satisfy the requirements and 
constraints, then randomly mating the solutions to create 
children for the next generation. The selection of mates is 
weighted toward the better solutions so that they will have a 
reproductive advantage. Implicit in this process is the notion 
of a particulate mechanism of inheritance. 

In biology, organisms have a genetic coding referred to as a 
genotype, and morphology, physiology and behavior known 
as a phenotype [ 5 ] .  They are related to each other in that an 
organism’s genotype describes, influences and controls its 
phenotype. This means that changing an organism’s genes 
will change its function, structure or behavior, and will 
oftentimes affect several characteristics at once since genes 
are typically pleiotropic. So in our application the design 
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parameters are the genotype of the system, which succinctly 
describe and influence the structure and behavior of the 
subsystem or phenotype. Reproducing in this instance 
means contributing some design parameters from each 
parent to the child thus creating a combination of both of 
them that is hopefully better. This evolutionary process 
continues until some number of iterations has occurred or 
until the solution converges. 

Given that we had an analysis tool that modeled the 
relationship of design parameters to the structure and 
behavior of the subsystem, and that it could be deployed as a 
library that we could send design parameters to, execute, 
and retrieve results from, our task consisted of: 

1. 
2. Defining the objective function 
3. 

Defining the parameters to operate on 

Utilizing an evolutionary computing framework 

For this initial prototype we selected three parameters to 
vary. They consisted of: 

0 

0 

Maximum Capacity of Secondary Battery (amp-hrs) 
Number of Cells Per String in the Solar Array 
Number of Strings Per Segment in the Solar Array 

Where the capacity of secondary battery is a real number 
greater than zero and the number of cells and strings are 
integer values greater than zero. All other design parameters, 
such as Ni-H2 battery chemistry and triple junction solar cell 
technology, were set at initialization and remained fixed 
throughout the optimization. 

The objective function is created to assign a non-negative 
figure of merit for a system, so that we can evaluate which 
solutions should have a reproductive advantage. For our 
application we developed this as a minimization function, 
decomposed as a superposition of simpler functions for cost, 
mass and performance. The battery and solar array cost 
functions attempt to minimize the cost of the system and get 
as close to free as possible. These equations are shown 
below: 

BattCostFit = Wk(BatteryCapacity * CostPerAmpHr)’ (1) 

SACostFit = W,,(NumberSolarCells * CostSolarCell)2 (2) 

Where W, and W,, are real numbers greater than zero that 
represents a statistical weight that can be applied to the cost 
fitness to adjust how steep the parabolic curve is, thereby 
adjusting the importance of this aspect of fitness. A similar 
set of equations were developed for the mass fitness except 
that here we were attempting to minimize the mass of the 
system to get as light as possible. These equations are shown 
below: 

BattMassFit = Wbm(BatteryCapacity * MassPerAmpHr)’ (3) 

SAMassFit = W,,(NumberSolarCells * MassSolarCell)2 (4) 

Where W,, and W,, are real numbers greater than zero that 
represents a statistical weight that can be applied to the mass 
fitness. 

To determine how well the system performed we needed to 
run the MMPAT simulation by initializing it with design 
parameters, giving it an activity plan and trajectory, and then 
execute it while storing the battery state of charge (SOC) at 
each time step. Power subsystem engineers want to use as 
much of the battery as possible yet have the SOC remain 
above a certain minimum. They also do not want to charge 
the battery to full capacity since it is not energy efficient. To 
take these considerations into account we defined two 
performance functions, one that penalizes not using the 
battery effectively and one that rewards going toward a 
desired SOC. For the battery utilization function we simply 
stored the lowest SOC achieved over the simulation run and 
used this value in the performance equation shown below: 

Where Wmin is a real number greater than zero that 
represents a statistical weight that can be applied to this 
minimum aspect of performance fitness. SOC,in is a non- 
negative real in amp-hrs that is the lowest SOC achieved 
during the simulation run and SOCminallowed is a user-defined 
non-negative real in amp-hrs representing the lowest 
desirable SOC. To reward the battery for approaching the 
target SOC we needed to take into account the fact that the 
maximum battery capacity may be different for any 
architecture. So we calculated the average fraction SOC 
over the entire run with the following equation: 

AverageSOC = (I/N)c (SOCi/ BatteryCapacity) (6 )  

Where N is the number of time steps, SOCi is the battery 
state of charge in amp-hrs at time step i, and 
BatteryCapacity is the maximum battery state of charge 
possible in amp-hrs. Since we did not want to penalize a 
solution that went over the desired percent SOC, we made 
this function conditional as shown below: 

if AverageSOC > FractionSOC 

PerformanceFif,, = 0.0 (7) 
else 

PerformanceFit,, = Wtgt(AverageSOC - FractionSOC)’ (8) 
Where W,, is a real number greater than zero that represents 
a statistical weight that can be applied to target aspect of 
performance fitness and FractionSOC is user-defined real 
number between 0.0 and 1.0 that represents the target 
percentage that the user desires. 
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So given these simple functions, the objective function for 
the system is: 

ObjectiveFunction = BattCostFit + SACostFit + BattMassFit 
+ SAMassFit + PerformanceFit,,,i, + PerformanceFittg (9) 

Now having defined the parameters to operate on and the 
objective function, we were ready to integrate MMPAT and 
the objective function into the PERSON evolutionary 
computing framework. 

4. EVOLUTIONARY COMPUTING ENVIRONMENT 
PERSON is an acronym for Parallel Evolvable and 
Revolutionary Synthesis and Optimization Environment. It 
provides a software framework that is suitable for the large 
class of design optimization problems. At its core, PERSON 
is an optimization package that follows a sequence of 
procedures common among all genetic algorithms. This 
sequence is outlined below and diagramed in figure 1 .  

1. 
2. Initialization of population 
3. 
4. 
5.  
6.  

Model parameterization and gene encoding 

Evaluation of fitness function for population 
Selection of subset of population 
Reproduction through crossover and mutation 
Evaluation of fitness function and convergence check 

At the integration layer, PERSON uses the Python scripting 
language to facilitate the integration of new applications into 
the framework and to allow rapid development and tuning of 
the fitness functions without recompilation of the whole 
source code. PERSON also provides several encoding 
schemes that are alongside typical binary encodings as well 
as explicit real, integer, and exponential number encodings 
with mutation and crossover operations that can be 
customized to the physical problem. These encodings are 
handled by the VO interface and can be changed on the fly. 

Because the calculations of the fitness function involve 
computations that can be quite intensive, executing the 
evolutionary computing algorithm on massively parallel 
computers is essential for high-fidelity models. These points 
are encapsulated in PGAPack, a parallel genetic algorithm 
library [7]. This package consists of a set of library routines 
supplying the user multiple levels of control over the 
optimization process. The levels vary from default 
encodings, with simple initialization of parameters and 
single statement execution, to the ability to modify, at a low- 
level, all relevant parameters in the optimization process. 
User written routines for evaluation or crossover and 
mutation can also be inserted if necessary. The package is 
written using the Message Passing Interface (MPI) for 
parallel execution on a number of processors. 

Figure 1 -Evolutionary Computing Flow Diagram [6] 

5. RESULTS 
We selected two power subsystem configurations to 
optimize: the cruise phase of Deep Impact, a mission set to 
launch in late 2003 or early 2004 and the surface operations 
phase of one of the Mars Exploration Rovers (MER), a 
mission set to land in the early part of 2004. To setup the 
analysis we had to give the PERSON framework some initial 
design parameters and a valid range of values as well as 
define the cost and mass constants, weight the objective 
function equations, create an activity plan and select a 
trajectory. 

For Deep Impact, we varied the number of cells per string 
and number of strings per segment for two solar array 
segments as well as the battery capacity. The PERSON 
framework chose the initial population based upon a random 
draw over a uniform distribution for each of the variable 
power subsystem design parameters before invoking 
MMPAT. As a starting point, the framework was instructed 
to use an anticipated Deep Impact solar array size and 
battery capacity as shown below: 

0 

0 

0 

0 

Cells per string in segment one: 22 
Strings per segment in segment one: 44 
Cells per string in segment two: 16 
Strings per segment in segment two: 1 12 
Battery capacity in amp-hrs: 16.0 
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For the Deep Impact optimization the following intervals were 
used for each of the variable design parameters: 

0 

0 

0 

Cells per string in segment one: [ 1,501 
Strings per segment in segment one: [ 1, 1001 
Cells per string in segment two: [ 1,401 
Strings per segment in segment two: [ 1,2001 
Battery capacity in amp-hrs: [8.0,40.0] 

The following cost and mass values were used and remained 
fixed throughout the analysis: 

0 Solar cell cost: $0.832k 
0 

0 Batterycost: 
0 

Solar cell mass: 0.01 kg per cell 

Battery mass: 0.0 1667 kg/watt-hr 

For the trajectory, we decided to have the spacecraft start 
from Earth or 1.0 Astronomical Units (AU) and travel an 
ellipse to 1.5 AU, which is about the distance to where the 
spacecraft will encounter Comet Tempe1 1. The orbital 
elements were set up in such a way that it would take 
approximately 8.3 months to traverse the distance. For the 
activity plan, we chose a simple constant load of 400 watts 
on the spacecraft and had the solar panels tilted at 23 
degrees off normal simulating the anticipated cruise 

configuration. We also simulated five trajectory correction 
maneuvers by having the MMPAT turn the solar array edge- 
on to the Sun for about three and a half minutes every 50 
days. This had the effect of forcing the battery to be the sole 
source of power to the spacecraft during this time. The 
PERSON framework was instructed to run with this 
trajectory and activity plan for 2000 generations with a 
population size of 200. The framework was also instructed 
to use the anticipated power subsystem configuration as the 
starting point. Therefore, for each generation there were 200 
invocations of MMPAT. Since it is possible to have 
parameterizations that did not crossover or mutate then 
approximately 70 percent, or 140, of the parameterizations 
were unique each generation. We ran two optimizations, 
one weighted more towards cost and mass, and the other 
weighted more towards the performance of the power 
subsystem. In the first cost and mass case, the following 
weighting were used and remained fixed throughout the 
analysis: 

0 Solar array cost: 1.0 
0 Solar array mass: 1 .O 

Batterycost: 
0 Battery mass: 1 .O 
0 Battery SOC min.: 1000.0 
0 Battery avg. SOC: 1000.0 

started with these 
design parameters 

Suggests different 
design parameters 
when optimizing 
this configuration 
for cost and mass 

Figure 2 - Deep Impact Case 1 - Statistically Weighted for Cost and Mass 

5 



Figure 3 - Deep Impact Case 2 - Statistically Weighted for Performance 

The optimization weighted more towards cost and weight 
resulted in both the solar array and battery size being 
reduced from the starting point. In figure 2, it can be seen 
how the configuration of the power subsystem changed as a 
h c t i o n  of generation. It is interesting to note that even 
though there is a period of about 250 generations where the 
configuration did not change, the evolution of the subsystem 
had not converged. This is indicative of a mutation breaking 
through a local optimum. 

In the second analysis weighted more towards performance, 
the following weightings were used and remained fixed 
throughout the analysis: 

0 Solar array cost: 0.000001 
0 Solar array mass: 0.000001 
0 Batterycost: 

Battery mass: 0.1 
0 Battery SOC min.: 1000000.0 
0 Battery avg. SOC: 1000000.0 

The size of the components did not change as much as in the 
analysis weighted more towards cost and weight. As can be 
seen from figure 3, it also converged much earlier. Both runs 
took approximately 8 hours each. 

For the MER mission optimization we varied the number of 
cells per string and the number of strings per segment for the 

six solar array segments as well as the battery capacity. As 
in the Deep Impact analysis, the PERSON framework chose 
the initial population based upon a random draw over a 
uniform distribution for each of variable power subsystem 
design parameters before invoking MMPAT. As a starting 
point, the framework was instructed to use an anticipated 
MER rover solar array size and battery capacity as shown 
below: 

0 

0 

0 

0 

0 

0 

Cells per string in all segments: 16 
Strings per segment in segment one: 4 
Strings per segment is segments two and three: 5 
Strings per segment in segment four: 6 
Strings per segment in segments five and six: 5 
Battery capacity in amp-hrs: 8.0 

For the MER optimization the following intervals were used 
for each of the variable design parameters: 

0 

0 

Cells per string in all segments: [ 1,401 
Strings per segment in all segments: [ 1,201 
Battery capacity in amp-hrs: [4.0, 16.01 

The rover was placed at 7 degrees south latitude, which is 
one of the possible landing sites for the mission and given an 
activity plan that lasted 90 days, the planned length of 
surface operations for the rover. The activity plan consisted 
of applying a 15-watt load to the spacecraft during local 
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Suggests different 
design parameters 
when optimizing 
this configuration 
for cost and mass 

Figure 4 - MER Case 1 - Statistically Weighted for Cost and Mass 

Suggests different 
design parameters 
when optimizing 
this configuration 
for performance 

1 

Figure 5 - MER Case 2 - Statistically Weighted for Performance 
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daytime for four hours a day and heater power for the 
remaining time. This simulated the load on the rover while it 
performed its duties during the day, and let the rover 
conserve battery power for the heaters at night. The same 
number of generations and population size were used as in 
the Deep Impact analysis. Once again, a possible power 
subsystem configuration was used as the starting point and 
two optimizations were performed, one weighted more 
towards cost and mass, and the other towards performance 
as show in figures 4 and 5, respectively. Each of these runs 
took approximately 16 hours to complete. 

6. CONCLUSIONS 
This work shows that evolutionary computing is a viable 
approach for the design search and optimization of space 
vehicle power subsystems and offers suggestions on how it 
may be introduced into the formulation phase of a flight 
project to improve the design quality and quite possibly 
lower the mission cost. It also illustrates that this 
methodology is practical in that it can be integrated with 
existing simulations and is relatively easier to implement 
than other methods like expert systems. Nevertheless, as 
promising as this field is, there is still much work to be 
done. 

On the implementation side, this prototype needs to include 
more variable power subsystem design parameters such as 
battery and solar cell technology. Then the software needs to 
be infused into the formulation phase of a flight project and 
metrics on process improvements need to be collected. Next, 
the evolutionary methodology needs to be applied to other 
subsystems. Finally, all of the subsystems need to be 
integrated together to provide a complete solution. 

On the theoretical side, the objective functions need to be 
scaled so that all of the equations use a similar weighting 
system. Also, an objective function for technical and mission 
risk will need to be developed and added. In addition, better 
objective functions for non-linear equations, like battery cost 
as a function of amp-hrs, will need to be integrated into the 
system. Finally, we will need to prove, theoretically and 
empirically, that the solutions we are producing are in fact 
optimal. 
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