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Abstract

Current quantum computing hardware is unable to sustain
quantum coherent operations for more than a handful of
gate operations. Consequently, if near-term experimental
milestones, such as synthesizing arbitrary entangled states,
or performing fault-tolerant operations, are to be met, it
will be necessary to minimize the number of elementary
quantum gates used.

In order to demonstrate non-trivial quantum computa-
tions experimentally, such as the synthesis of arbitrary en-
tangled states, it will be useful to understand how to de-
compose a desired quantum computation into the shortest
possible sequence of one-qubit and two-qubit gates. We
contribute to this effort by providing a method to construct
an optimal quantum circuit for a general two-qubit gate
that requires at most 3 CNOT gates and 15 elementary one-
qubit gates. Moreover, if the desired two-qubit gate corre-
sponds to a purely real unitary transformation, we provide
a construction that requires at most 2 CNOTSs and 12 one-
qubit gates. We then prove that these constructions are
optimal with respect to the family of CNOT, y-rotation,
z-rotation, and phase gates.

1 Introduction

It is known that any n-qubit quantum computation can
be achieved using a sequence of one-qubit and two-qubit
quantum logic gates {13, 2]. However, even for two-qubit
gates, finding the optimal circuit with respect to a particu-
lar family of gates is not easy [9]. This is unfortunate be-
cause, at the current time, quantum computer experimen-
talists can only achieve a handful of gate operations within
the coherence time of their physical systems [5). With-
out a procedure for optimal quantum circuit design, exper-
imentalists might be unable to demonstrate certain quan-
tum computational milestones even though they ought to

be within reach. For example, a current experimental goal
is the synthesis of any two-qubit entangled state [1]. Al-
though it is known, in principle, how to synthesize any
such state [17], the resulting quantum circuits can be sub-
optimal, requiring excessive numbers of CNOT gates, if
done injudiciously [8]. The current solution to this prob-
lem uses rewrite rules to recognize and eliminate redun-
dant gates. However, a better solution would be to perform
optimal design from the outset.

In this paper we give a procedure for constructing an
optimal quantum circuit for achieving a general two-qubit
quantum computation, up to a global phase, which requires
at most 3 CNOT gates and 15 elementary one-qubit gates
from the family {R,,, R,}. We prove that this construction
is optimal, in the sense that there is no smaller circuit, us-
ing the same family of gates, that achieves this operation.
In addition, we show that if the unitary matrix correspond-
ing to our desired gate is purely real, it can be achieved
using at most 2 CNOT gates and 12 one-qubit gates.

A flurry of recent resuits on gate-count minimization for
general two-qubit gates, report similar findings to us. Vidal
and Dawson proved that 3 CNOTs are sufficient to imple-
ment a general U € SU(4) and that two-qubit controlled—
V operations require at most 2 CNOTs [16]. Vatan and
Williams proved that any U € SU(4) requires at most
3 CNOTs, and 16 elementary one-qubit {R,, R} gates,
that any U € SO(4) (i.e., real gate) requires at most 2
CNOTs and 12 one-qubit {R,, R,} gates, and that these
constructions are optimal [15]. Later, Shende, Markov,
and Bullock reported similar results on circuit complexity
for U € SU(4), and specialized the complexity bounds de-
pending on which families of one-qubit gates were being
used [14]. Fundamentally, all these results rest upon the
decomposition of a general U &€ SU(4) given in [11, 12]
and used in the GQC quantum circuit compiler [6].

The remainder of the paper is organized as follows. Af-
ter introducing some notation, we discuss the magic basis
[11], and prove (in Theorems 1 and 2) its most important



property, namely, that real entangling two-qubit operations
become non-entangling in the magic basis. We also prove
(via the circuit shown in Figure 2, first introduced in [15])
that the magic basis transformations require at most one
CNOT to implement them explicitly. This is in contrast
to Figure 3 in [7], which required three CNOTs. It turns
out that this compact quantum circuit for the magic basis
transformation is the cornerstone of our subsequent con-
structions for generic two-qubit gates, and our proofs of
their optimality. Next, in Theorem 3, we present the first
such construction, which proves that any two-qubit gate
in SO(4) can be implemented in 12 elementary (i.e., Ry,
R,) gates and 2 CNOTs. Theorem 4 extends this results to
any two-qubit gate in O(4) with determinant equal to —1,
and proves that any such gate requires 12 elementary gates
and 3 CNOTs. Theorem 5 then generalizes these results
to generic two-qubit gates in U(4), and provides an ex-
plicit construction that requires 15 elementary gates and 3
CNQTs. Finally, we prove that our construction for generic
two-qubit gates is optimal by showing that there is at least
one gate in U(4), namely the two-qubit SWAP gate, which
cannot be implemented in fewer than 3 CNOTs.

Notation

Throughout this paper we identify a quantum gate with the

unitary matrix that defines its operation.

Throughout this paper we identify a quantum gate with
the unitary matrix that defines its operation. We use the
usual rotations about the y and z-axis as one-qubit elemen-

tary gates:
cos8/2

m0 = (Sairts mary) @ = (75 )

We also use the following standard notation for one-qubit
Hadamard and phase gates:

w501 569

We denote the identity matrix of order 2 by 1.

We define two CNOT gates, CNOT1 a standard CNOT
gate with the control on the top qubit and the target on
the bottom qubit, and CNOT2 with the control and target
qubits flipped. Thus
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CNOT1 = 000 1| CNOT2 = 001 0
0010 0100

X

Figure 1: The SWAP gate.

The two-qubit gate SWAP = CNOT1 - CNOT2 .
CNOQT!1 gate, is defined by the matrix

00
01
10
00

SWAP =

oo O =
=)

and is denoted by the symbol of Figure 1 in the figures.
We use the notation the A, (V) for the controlled-V gate,

where V' € U(2). Throughout this paper we assume that

for the A1 (V') gate the control qubit is the first (top) qubit.

Therefore,
1.
nMV) = ( 2 V) .

In the special case of the A; (o) gate, we use the notation
CZ. For any unitary matrix U, we denote its inverse, i.e.,
the conjugate-transpose of U, by U™*.

2 Magic basis

There are different ways to define the magic basis 3, 10,
12]. Here we use the definition used in 3, 10]:

1 « 0 0

1 0 0 ¢ 1
M=o o i 21
1 -2 0 0

The circuit of Figure 2 implements this transformation.
o—
—sHHz—

Figure 2: A circuit for implementing the magic gate M.

Theorem 1 For every real orthogonal matrix U € SO(4),
the matrix of U in the magic basis, i.e., M-U-M™ is tensor

" product of two 2-dimensional special unitary matrices. In

other words: M - U - M* € SU(2) ® SU(2).



Proof. We prove the theorem by showing that for every
A ® B € SU(2) ® SU(2), we have M* (A® B)M €
SO(4). It is well-known that every matrix A € SU(2) can
be written as the product R, (a) R,(0) R,(8), for some
a, B, and 0. Therefore any matrix A ® B € SU(2) ®
SU(2) can be written as a product of the matrices of the
form V ® 1; and 1; ® V, where V is either Ry (6) or
R,(a). Thus the proof is complete if M* (V @ 12) M
and M* (1 ® V') M, are in SO(4). We have

M~ (Ry(6) ® Tp) M

cos8/2 0 0 —sinf@/2
0 cos8/2 sing/2 0
0 —sinf/2 cos@/2 0 ’
8ind/2 0 0 cosf/2
and
cosaf2 sinaf2 0 0
_ | —sina/2 cosa/2 0 0
- 0 0 cosaf2 —sina/f2
0 0 sina/2 coso/2

We have similar results for the cases of 13 ® Ry(6) and
1, ® R, {a).

Since the mapping A ® B — M* (A ® B) M is one-
to-one and the spaces SU(2) ® SU(2) and SO(4) have the
same topological dimension, we conclude that this map-

ping is an isomorphism between these two spaces. I

Note that the above theorem is not true for all orthogonal
matrices in O(4). In fact, for every matrix U € O(4),
either det(U) = 1 for which the above theorem holds, or
det(U) = —1 for which we have the following theorem.

Theorem 2 For every U € O(4) with det(U) = —1, the
matrix MU M?* is a tensor product of 2-dimensional uni-
tary matrices and one SWAP gate in the form of the fol-
lowing decomposition: M -U - M* = (A ®B) -SWAP .
(1; ® 0,), where A, B € U(2).

Proof  First note that det(CNOT1) = -1 and
det(U - CNOT1) = 1. Then M (CNOTI) M* =
(S* ® S*)SWAP (1; ® 0;). Since MUM* =
(M (U - CNOT1)M*) - (M (CNOT1) M?*), the theo-
rem follows from Theorem 1.
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Figure 3: The action of the magic basis on U € O(4) with
det(U) = -1.

3 Realizing two-qubit gates from O(4)

Let U € SO(4). Then Theorem 1 shows that MU M* =
A ® B, where A, B € SU(2). Therefore, U = M* (A®
B) M. We use the circuit of Figure 2 for computing the
magic basis transform M to obtain a circuit for comput-
ing the unitary operation U. This circuit can be simpli-
fied by using the decompositions S = e*/4R,(x/2) and
H = 0, Ry(n/2). Note that I ® o, and the CNOT2 gates
commute, and the overall phases ¢"/4 and e~**/4 from S
and S* cancel out. Hence we obtain the circuit of Figure 4
for computing a general two-qubit gate from SO(4). Thus

Figure 4: A circuit for implementing a general transform
in SO(4), where A, B € SU(2), S] = R,(nr/2) and R; =
Ry(n/2).

we have proved the following theorem.

NP

Theorem 3 Every two-qubit quantum gate in SO(4) can
be realized by a circuit consisting of 12 elementary one-
qubit gates and 2 CNOT gates.

A similar argument and Theorem 2 imply the following
construction for gates from O(4) with determinant equal
to —1.

Theorem 4 Every two-qubit quantum gate in O(4) deter-
minant equal to —1 can be realized by a circuit consisting
of 12 elementary gates and 2 CNOT gates and one SWAP
gate.

The circuit that realizes this construction is shown in
Figure 5.

Next, we generalize these results to construct circuits for
gates in U(4).
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Figure 5: A circuit for implementing a transform in O(4)
determinant equal to —1.

4 Realizing two-qubit gates from U(4)

In is known that every U € SU(4) can be written as U =
(A1 ® A2) -N. (A3 ® A4), where Aj € SU(2) and

N = [exp (i(c0o; ® 0z + Boy @0y + 70, ®7,))]

for o, 3,7 € R (see, e.g., [11, 12, 19)).
A simple calculation shows

N =exp (i(@0; @0, + oy @y +70,®0;)) = €'

cos(a — 8) .o .0 i gin(a — 8)
( 1} e~% 7 cos{a + 8) —ie~ 2 7 gin(a + 8) ] )

—ie~ %7 gin(a + 8) =27 cos{a + B) [}
0 0

0
i sin(a — 8) cos{a — 8)

Then D = M* - N - M is a diagonal matrix of the form
diag (ei("‘ﬂ+7), e~ila=B-7) gilats-7) e-i(a+ﬂ+7)) i
Therefore, N = M - D - M*. Utilizing the circuit of Fig-

ure 2 for M, we get the circuit of Figure 6 for computing
U, where D; = (S®S)-D-(5*®S5"*). Then we substitute

Figure 6: A circuit for implementing a transform in SU(4).
the right hand-side Hadamard gate of Figure 6 by 3 gates,
using the following identity: 1, ® H = CNOT1- (1; ®
H) - CZ. Now, the matrix D = CZ- D; is a diagonal ma-
trix, and for some ¢ we have Dz = Ay (V) - (1 ® R.(t)).
where V € U(2). Note that det(D3) = det(V) = —1. On
the other hand, we have (1, ® H) - Ay(V) - (I, ® H) =
A1(V1), for some V1 € U(2) with det(Vi) = —1. Let
AM(V) = ™4 Ay (V3), where Vs € SU(2). The result of
[8] shows that

Am(e) = (I; @ R:(1)) -ONOT1 - (I, @ v3) - cNOT1L - (1; @ Va),

where V3 = R,(61) - Ry(a1) and V4 = Ry(—a1)- R.(83).
These substitutions lead to the circuit of Figure 7, where

Figure 7: A circuit for implementing a transform in SU(4).

Vs = V4 - H - R,(t) - H € SU(2). Now we focus on the
sequence CNOT1- (12 ® R,(6,)) - CNOT!1 of operations.
‘We have the following identity

CNOT1 - (]l2 ® R;(91)) -CNOT1 =
CNOT2 - (R,(61) ® 1) - CNOT2.

Then two consecutive CNOT?2 gates on the right hand side
of the circuit reduce to the identity, and the gate R,(6;)
will be “absorbed” by the gate A3. With these simplifica-
tions we get the circuit of Figure 8.

Figure 8: A circuit for implementing a transform in SU(4).

Van

Now let V5 = R, (53) . R,,(ig) . Rz(il) The R, (21)
operation of V5 commutes with the CNOT?2 gate on its left,
and will be “absorbed” by A;. The final result is the circuit
of Figure 9.

Theorem 5 Every two-qubit quantum gate in U(4) can be
realized, up to a global phase, by a circuit consisting of 15
elementary one-qubit gates and 3 CNOT gates.

The construction given in Theorem 5 is optimal. To
prove this it is sufficient to place a lower bound on the
number of CNOT gates needed to implement a generic
two-qubit gate. This is because {7] already shows that we
need at least 15 elementary one-qubit gates, to implement a
generic two-qubit gate. So we need only concern ourselves
with the minimum required number of CNOT gates.

—Ai-< o—{As—
s () {R: (2 )Ry (ta)—

Figure 9: A circuit for implementing a transform in SU(4).
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5 Three CNOT gates are needed

To show that the construction of Theorem 5 is optimal,
we prove that there is at least one gate in U(4), namely
the two-qubit SWAP gate, a real unitary matrix having a
determinant of —1, which requires no less than 3 CNOT
gates. Hence we prove the following statement.

Theorem 6 To compute the SWAP gate at least 3 CNOT
gates are needed.

Proof. We construct a proof by contradiction. Suppose
that there is a circuit computing SWAP and consists of less
than three CNOT gates. We enumerate the possible cases.

Case 1. Suppose that '

SWAP = (U; ® Uz) - CNOTI - (U3 ® Us) - CNOT1 - (Us ® Us),
1
where U; € U(2). The above argument shows that we can
assume, without loss of generality, that U3 = R, (). Then

SWAP - (U, ® Uz)" - SWAP - (Us ® Us)”
= SWAP - CNOT1 - (U3 ® Uy) - CNOT1.

Since SWAP - (V1 ® V;) - SWAP = V, ® V;, and SWAP -
CNQOT1 = CNOT1 - CNOT?2, we have

CNOT1-CNOT2-(Ry(a)®Us)-CNOT1 = A®B, (2)

for some A, B € U(2). Now suppose that Uy = R,(6;) -
Ry(9)-R.(52). Note that CNOT1- (1,®R;(a))-CNOT1
is a diagonal matrix. Thus we can rewrite the above equa-
tion as follows:

CNOT1-CNOT2 - (Ry(a) ® (Ry())) - CNOT1
=D:-(A®B)-Ds, (3)

where Dy, Dy € U(4) are diagonal matrices. Then we
have D - (A ® B) - D, € O(4), which implies that the
only possible way that the identity (3) holds is that D; -
(A® B) - D; = Ry(t1) ® Ry(t2), for some t,t,. Now
we consider the entangling power of quantum gates (see,
e.g., [18]). We have

entangling-power [CNOT1 - CNOT2 - (R, (o) ® (Ry(6))) - CNOT1]
= $(3 - cos(2a) — 2cos(28) cos’ @), (4)

and entangling-power [Ry(t) ® Ry(t2)] = 0. Therefore,
the only way that (2) could be satisfied is by having a =

0 = 0. In this case, the identity (3) implies that SWAP =
Ry(t1) ® Ry(t2), which we know is not possible.
Case 2. Suppose that

SWAP = (U; ® U3) - CNOT2 - (Us ® Us) - CNOT1 - (Us ® Us),
3
where U; € U(2). We apply an argument similar the one
we applied to the previous case. First we note that, without
loss if generality, we can assume that U3 = R,(8:) Ry(a)
and Uy = Ry (0) R.(B2). Then, by argument similar to the
previous case, we arrive to the following identities:

CNOT2- CNOT1 - (R;(5) Ry()®
Ry (0) R,(52))) -CNOT1=AQ®B, (6)

CNOT2-CNOT1 - (Ry(a) ® Ry(6))) - CNOT1
= Ry(t1) ® Ry(tz). (1)

As for the entangling power, (7) implies that

entangling-power [CNOT2 - CNOT1]] - (Ry(a) ® Ry(6))) - CNOT1]
= 3(3+cos(2a) + 2cos(28) cos’ a). (8)

This implies that = @ = 7; and with assumption, (6)
implies that

entangling-power [CNOT2 - CNOT1.
(R.(B1) Ry(3) ® Ry(5) R:(B2))) - CNOT1]]
= (3 —cos(281) — 2cos(28z) cos® B1). (9)
The identity implies that 3; = 32 = 0. Then, since
CNOT2- (Ry(3) ® Ry(3)) - CNOT1 = Ry(3) ® H,

the identity (5) implies that SWAP = U ® V, which is
impossible.
Case 3. Suppose that

SWAP = (U; ®U») - CNOT1- (Us @ Uy),  (10)

where U; € U(2). Then the method of the previous cases
implies that CNOT1 - CNOT2 = U ® V. This is im-
possible, since, for example, entangling-power [CNOTI .

cNot?) = 4.1
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