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Abstract 

Current quantum computing hardware is unable to sustain 
quantum coherent operations for more than a handful of 
gate operations. Consequently, if near-term experimental 
milestones, such as synthesizing arbitrary entangled states, 
or performing fault-tolerant operations, are to be met, it 
will be necessary to minimize the number of elementary 
quantum gates used. 

In order to demonstrate non-trivial quantum computa- 
tions experimentally, such as the synthesis of arbitrary en- 
tangled states, it will be useful to understand how to de- 
compose a desired quantum computation into the shortest 
possible sequence of one-qubit and two-qubit gates. We 
contribute to this effort by providing a method to construct 
an oprimal quantum circuit for a general two-qubit gate 
that requires at most 3 CNOT gates and 15 elementary one- 
qubit gates. Moreover, if the desired two-qubit gate corre- 
sponds to a purely real unitary transformation, we provide 
a construction that requires at most 2 CNOTs and 12 one- 
qubit gates. We then prove that these constructions are 
optimal with respect to the family of CNOT, y-rotation, 
z-rotation, and phase gates. 

1 Introduction 

It is known that any n-qubit quantum computation can 
be achieved using a sequence of one-qubit and two-qubit 
quantum logic gates [ 13,2]. However, even for two-qubit 
gates, finding the optimal circuit with respect to a particu- 
lar family of gates is not easy [9]. This is unfortunate be- 
cause, at the current time, quantum computer experimen- 
talists can only achieve a handful of gate operations within 
the coherence time of their physical systems [5]. With- 
out a procedure for optimal quantum circuit design, exper- 
imentalists might be unable to demonstrate certain quan- 
tum computational milestones even though they ought to 

be within reach. For example, a current experimental goal 
is the synthesis of any two-qubit entangled state [l]. Al- 
though it is known, in principle, how to synthesize any 
such state [ 171, the resulting quantum circuits can be sub- 
optimal, requiring excessive numbers of CNOT gates, if 
done injudiciously [8]. The current solution to this prob- 
lem uses rewrite rules to recognize and eliminate redun- 
dant gates. However, a better solution would be to perform 
optimal design from the outset. 

In this paper we give a procedure for constructing an 
optimal quantum circuit for achieving a general two-qubit 
quantum computation, up to a global phase, which requires 
at most 3 CNOT gates and 15 elementary one-qubit gates 
from the family {&,, Rz}. We prove that this construction 
is optimal, in the sense that there is no smaller circuit, us- 
ing the same family of gates, that achieves this operation. 
In addition, we show that if the unitary matrix correspond- 
ing to our desired gate is purely real, it can be achieved 
using at most 2 CNOT gates and 12 one-qubit gates. 

A fluny of recent results on gate-count minimization for 
general two-qubit gates, report similar findings to us. Vidal 
and Dawson proved that 3 CNOTs are sufficient to imple- 
ment a general U E SU(4) and that two-qubit controlled- 
V operations require at most 2 CNOTs [16]. Vatan and 
Williams proved that any U E SU(4) requires at most 
3 CNOTs, and 16 elementary one-qubit {R,,R,} gates, 
that any U E SO(4) (Le., real gate) requires at most 2 
CNOTs and 12 one-qubit {R,,  R,} gates, and that these 
constructions are optimal [15]. Later, Shende, Markov, 
and Bullock reported similar results on circuit complexity 
for U E SU(4), and specialized the complexity bounds de- 
pending on which families of one-qubit gates were being 
used 1141. Fundamentally, all these results rest upon the 
decomposition of a general U E SU(4) given in 111, 121 
and used in the GQC quantum circuit compiler [6]. 

The remainder of the paper is organized as follows. Af- 
ter introducing some notation, we discuss the magic basis 
[ 111. and prove (in Theorems 1 and 2) its most important 
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property, namely, that real entangling two-qubit operations 
become non-entangling in the magic basis. We also prove 
(via the circuit shown in Figure 2, first introduced in [IS]) 
that the magic basis transformations require at most one 
CNOT to implement them explicitly. This is in contrast 
to Figure 3 in [7], which required three CNOTs. It turns 
out that this compact quantum circuit for the magic basis 
transformation is the comerstone of our subsequent con- 
structions for generic two-qubit gates, and our proofs of 
their optimality. Next, in Theorem 3, we present the first 
such construction, which proves that any two-qubit gate 
in SO(4) can be implemented in 12 elementary (i.e., R,, 
R,) gates and 2 CNOTs. Theorem 4 extends this results to 
any two-qubit gate in O(4) with determinant equal to -1, 
and proves that any such gate requires 12 elementary gates 
and 3 CNOTs. Theorem 5 then generalizes these results 
to generic two-qubit gates in U(4), and provides an ex- 
plicit construction that requires 15 elementary gates and 3 
CNOTs. Finally, we prove that our construction for generic 
two-qubit gates is optimal by showing that there is at least 
one gate in U(4). namely the two-qubit SWAP gate, which 
cannot be implemented in fewer than 3 CNOTs. 

Notation 
Throughout this paper we identify a quantum gate with the 
unitary matrix that defines its operation. 

Throughout this paper we identify a quantum gate with 
the unitary matrix that defines its operation. We use the 
usual rotations about the y and z-axis as one-qubit elemen- 
tary gates: 

We also use the following standard notation for one-qubit 
Hadamard and phase gates: 

H = - (  1 1 1  ) ,  S = ( i  p). 
Jz 1 -1 

We denote the identity matrix of order 2 by 112. 
We define two CNOT gates, CNOTl a standard CNOT 

gate with the control on the top qubit and the target on 
the bottom qubit, and CNOT2 with the control and target 
qubits flipped. Thus 

/1 0 0 0) /1 0 0 0) 

x 
Figure 1: The SWAP gate. 

The two-qubit gate SWAP = CNOTl CNOT2 . 
CNOTl gate, is defined by the matrix 

(1 0 0 0) 

and is denoted by the symbol of Figure 1 in the figures. 
We use the notation the A 1 (V)  for the controlled-lr gate, 

where V E U(2). Throughout this paper we assume that 
for the AI (V) gate the control qubit is the first (top) qubit. 
Therefore, 

In the special case of the A1 (az) gate, we use the notation 
CZ. For any unitary matrix U, we denote its inverse, i.e., 
the conjugate-transpose of U, by U*. 

2 Magicbasis 
There are different ways to define the magic basis [3, 10, 
121. Here we use the definition used in [3, 101: 

/1 a 0 o \  

The circuit of Figure 2 implements this transformation. 

+-Y+ 
Figure 2: A circuit for implementing the magic gate M. 

Theorem 1 For every real orthogonal m r i x  U E S0(4), 
the matrix of U in the magic basis, i.e., M . U. M 8  is tensor 
product of two 2-dimenswnal special unitary matrices. In 
other words: M . U . M *  E SU(2) @ SU(2). 
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Proof: We prove the theorem by showing that for every 
A @ B E SU(2) @ SU(2), we have M *  (A @ B )  M E 
SO(4). It is well-known that every matrix A E SU(2) can 
be written as the product &(a) Ry(8) R,(P), for some 
a,p, and 8. Therefore any matrix A €3 B E SU(2) €3 
SU(2) can be written as a product of the matrices of the 
form V €3 1 2  and l2 €3 V, where V is either Ry(8) or 
&(a). Thus the proof is complete if M *  (V €3 112) M 
and M* ( 1 2  @ V )  M ,  are in SO( 4). We have 

M-' (Ry(@)  @ n2)M 
cos8/2 0 0 -sin8/2 

0 -sin812 cos8/2 0 
0 cos8/2 sin812 

0 cos8/2 sin812 0 

and 

M-' (&(a) @ 1 2 )  M 

) .  
cosa/2 s ina l2  0 

0 cosa/2 -s ina/2 
0 0 s ina l2  cosa/2 

We have similar results for the cases of 112 @ %(e) and 

Since the mapping A €3 B I+ M *  ( A  @ B) M is one- 
to-one and the spaces SU(2) @ SU(2) and SO(4) have the 
same topological dimension, we conclude that this map- 
ping is an isomorphism between these two spaces. 

1 2  63 R% (4. 

Note that the above theorem is not true for all orthogonal 
matrices in O(4). In fact, for every matrix U E 0(4),  
either det(U) = 1 for which the above theorem holds, or 
det(U) = -1 for which we have the following theorem. 

Theorem 2 For every U E O(4) with det(U) = -1, the 
matrix M U M *  is a tensor product of 2-dimensional uni- 
tary matrices and one SWAP gate in the form of the fol- 
lowing decomposition: M . U - M *  = ( A  @ B )  . SWAP . 
(112 @ oz), where A ,  B E U(2). 

Pmoj First note that det(CNOT1) = -1 and 
det(U . CNOT1) = 1. Then M (CNOTl) M *  = 
(S* @ S*)SWAP(12 @ cz). Since M U M *  = 
( M  (U . CNOTl)M*) . ( M  (CNOTl) M * ) ,  the theo- 
rem follows from Theorem 1. I 

Figure 3: The action of the magic basis on U E O(4) with 
det(U) = -1. 

3 Realizing two-qubit gates from O(4) 

Let U E SO(4). Then Theorem 1 shows that M U M *  = 
A @ B, where A, B E SU(2). Therefore, U = M *  ( A  63 
B )  M .  We use the circuit of Figure 2 for computing the 
magic basis transform M to obtain a circuit for comput- 
ing the unitary operation U. This circuit can be simpli- 
fied by using the decompositions S = e"/4RRp(?r/2) and 
H = 0% 4 ( ~ 1 2 ) .  Note that 112 63 0% and the CNOT2 gates 
commute, and the overall phases earl4 and e-i*/4 from S 
and S* cancel out. Hence we obtain the circuit of Figure 4 
for computing a general two-qubit gate from SO(4). Thus 

Figure 4: A circuit for implementing a general transform 
in S0(4), where A, B E SU(2), S1 = R,(n/2) and R1 = 
R,(?r/2). 

we have proved the following theorem. 

Theorem 3 Every two-qubit quantum gate in SO(4) can 
be realized by a circuit consisting of 12 elementary one- 
qubit gates and 2 CNOT gates. 

A similar argument and Theorem 2 imply the following 
construction for gates from O(4) with determinant equal 
to -1. 

Theorem 4 Every two-qubit quantum gate in O(4) deter- 
minant equal to - 1 can be realized by a circuit consisting 
of 12 elementary gates and 2 CNOT gates and one SWAP 
gate. 

The circuit that realizes this construction is shown in 

Next, we generalize these results to construct circuits for 
Figure 5. 

gates in U(4). 
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Figure 5: A circuit for implementing a transform in O(4) 
determinant equal to -1. 

4 Realizing two-qubit gates from U(4) 
In is known that every U E SU(4) can be written as U = 
(A1 €9 A2) N . (A3 €9 A4), where A j  E SU(2) and 

N = [ exp (C(a a, €9 0, + P 0, @ 0, + 7 0% €9 .,I)] 

A simple calculation shows 

N = exp (a(ao,€9~,+pa,,u~+ya,€9o,)) = eir 

for a,P,cy E W (see, e.g., [ l l ,  12, 191). 

0 i sin(o - 8 )  

i sin(a - 8 )  0 0 cos(0 - 8 )  
: ). (=o“’”- O)  e-liT con(a O + 8 )  - ie-zi’s in(o + P )  

cos(a + 0 )  -ic-ai, sin(a , + 8 )  

Then D = M* . N . M is a diagonal matrix of the form 

diag ( ei(a-8+7), ,-i(a-8-7) ,i(a+P-r) , e  -i(a+O+-r)). 

Therefore, N = M D . M*. Utilizing the circuit of Fig- 
ure 2 for M, we get the circuit of Figure 6 for computing 
U,whereD1 = (S@S).D.(S*€9S8). Then wesubstitute 

Figure 6: A circuit for implementing a transform in SU(4). 

the right hand-side Hadamard gate of Figure 6 by 3 gates, 
using the following identity: 112 €9 H = CNOTl ( 1 2  €9 
H) CZ. Now, the matrix D2 = CZ . D1 is a diagonal ma- 
trix, and for some t we have D2 = A1 (V) * (112 €9 R,(t)) ,  
where V E U(2). Note that det(D2) = det(V) = -1. On 
the other hand, we have (n,€9 H) Al(V) . (112 €9 H) = 
Al(Vl), for some VI E U(2) with det(V1) = -1. Let 
A l ( h )  = eir/4 A1 (Vz), where fi E SU(2). Theresult of 
[8] shows that 

A t ( V z ) =  (1, @Rz(81))  .CNOTl.(&@&).CNOTl.(&@h), 

where v3 = Rz(P1).Ry(~l) and v4 = 4(-al)’&(fl3). 
These substitutions lead to the circuit of Figure 7, where 

Figure 7: A circuit for implementing a transform in SU(4). 

V5 = V4 . H . R,(t) . H E SU(2). Now we focus on the 
sequence CNOTl a ( 1 2  @&(el)) . CNOTl of operations. 
We have the following identity 

CNOTl . ( 1 2  @ Rz(el)) * CNOTl = 

CNOT2. (Rz(&) €9 n 2 )  . CNOT2. 

Then two consecutive CNOT2 gates on the right hand side 
of the circuit reduce to the identity, and the gate R,(Bl) 
will be “absorbed” by the gate AB. With these simplifica- 
tions we get the circuit of Figure 8. 

Figure 8: A circuit for implementing a transform in SU(4). 

Now let V5 = Rz(j3) R,(Z2) . R,(Z1). The R,(Z1) 
operation of Vs commutes with the CNOT2 gate on its left, 
and will be “absorbed” by A2. The final result is the circuit 
of Figure 9. 

Theorem 5 Every two-qubit quantum gate in U(4) can be 
realized, up to a global phase, by a circuit consisting of 15 
elementary one-qubit gates and 3 CNOT gates. 

The construction given in Theorem 5 is optimal. To 
prove this it is sufficient to place a lower bound on the 
number of CNOT gates needed to implement a generic 
two-qubit gate. This is because [7] already shows that we 
need at least 15 elementary one-qubit gates, to implement a 
generic two-qubit gate. So we need only concern ourselves 
with the minimum required number of CNOT gates. 

Figure 9: A circuit for implementing a transform in SU(4). 
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TO show that the construction of Theorem 5 is optimal, 
we prove that there is at least one gate in U(4). namely 
the two-qubit SWAP gate, a unitary matrix having a 

Three CNOT gates are needed 8 = 0. In this case, the identity (3) implies that SWAP = 
&(tl) @ &(tz) ,  which we know is not possible. 

C u e  2. Suppose that 

= (ul @ u2)  . CNoT2. (u3 €9 u4) ' CNoTl ' (us €9 us), ,r\ 

determinant of -1, which requires no less than 3 CNOT (3) 
where Uj E U(2). We apply an argument similar the one 
we applied to the previous case. First we note that, without 

gates. Hence we prove the following statement. 

Theorem 6 Tu compute the SWAP gate at least 3 CNOT 
gates are needed 

loss if generality, we Can assume that U3 = Rz (PI ) &(a) 
and U4 = &(e) R,(&). Then, by argument similar to the 
previous case, we arrive to the following identities: 

P m $  We construct a proof by contradiction. Suppose 
that there is a circuit computing SWAP and consists of less 
than three CNOT gates. We enumerate the possible cases. 

CNOT2. CNOTl * (Rz(/31) &(a)@ 

& ( 8 ) R z ( h ) ) )  CNOTl = A@.,  (6) 
Case 1. Suppose that 

CNOT2 . CNOTl . (&(CY) @ Ry(8)) )  CNOTl 
= &(td  @ & @ P I .  (7) 

SWAP= (Vi €~U~).CNOT~.(U~@CJ~).CNOT~~(LT~@ULT~), 

(1) 
where U, E U( 2). The above argument shows that we can As for the entangling power, (7) implies that 
assume, without loss of generality, that U3 = &(a). Then 

entangling-power [CNOTP . CNOTl]] . (&(a) €9 &(e))) . CNOTl] 

SWAP. (U1 @ UP)* . SWAP * (Us @ Us)* = $ (3  + cos( 2 a) + 2 cos( 2 e) cos2 a). (8) 

This implies that a = 8 = 5; and with assumption, (6) = SWAP. CNOTl . (Us @ U4) . CNOT1. 
implies that 

SinceSWAP.(V1@b).SWAP = b@Vl,andSWAP- 
CNOTl = CNOTl CNOT2, we have entangling-power [CNOTZ . CNOT1. 

the identity (5) implies that SWAP = U @ V, which is 
impossible. 

tion as follows: 

CNOTl . CNOT2. (&(a) @ (&(e))) CNOTl Case 3. Suppose that 

where D1, D2 E U(4) are diagonal matrices. Then we 
have DI . (A @ B) . D2 E O(4). which implies that the 
only possible way that the identity (3) holds is that D1 . 
(A @ B )  - D2 = Ry(t1) @ & ( t 2 ) ,  for some tl,  t 2 .  Now 
we consider the entangling power of quantum gates (see, 
e.g., [18]). We have 

entangiing-power [CNOTl . CNOTP . (&,(a) €9 (&,(e))) . CNOTl] 

= (3  - ~ 0 4 2  a) - 2 c0s(2 e) cos2 .), (4) 

and entangling-power [&(tl) @ % ( t z ) ]  = 0. Therefore, 
the only way that (2) could be satisfied is by having a = 

where Uj E U(2). Then the method of the previous cases 
implies that CNOTl . CNOT2 = U @ V. This is im- 
possible, since, for example, entangling-power [CNOTl 
CNOTZ] = 8 .  I 
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