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Abstract 

Accurate analysis of precision ranges to the Moon has provided several tests of gravita- 
tional theory including the Equivalence Principle, geodetic precession, parameterized post- 
Newtonian (PPI?) parameters y and 0, and the constancy of the gravitational constant G. 
Since the beginning of the experiment in 1969, the uncertainties of these tests have de- 
creased considerably as data accuracies have improved and data time span has lengthened. 
We are exploring the modeling improvements necessary to proceed from cm to mm range 
accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation 
(APOLLO) currently under development in New Mexico. This facility will be able to make a 
significant contribution to the solar system tests of fundamental and gravitational physics. 
In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity 
approaching 
v2/c2 general relativistic effects would be tested to better than O . l % ,  and measurements of 
the relative change in the gravitational constant, GIG, would be - 0.1% the inverse age of 
the universe. Having this expected accuracy in mind, we discusses the current techniques, 
methods and existing physical models used to process the LLR data. We also identify the 
challenges for modeling and data analysis that the LLR community faces today in order to 
take full advantage of the new APOLLO ranging station. 

yielding sensitivity for the SEP violation parameter r] of - 3 x 

1 Introduction 

During more than 30 years of its existence Lunar Laser Ranging (LLR) has become a critical 
technique available for precision tests of gravitational theory. The  20th century progress in three 
seemingly unrelated areas of human exploration - quantum physics and optics, astronomy, and 
human space exploration, led to  the construction of this unique interplanetary instrument t o  
conduct very precise tests of fundamental physics in our solar system. LLR offers very accurate 
laser ranging (currently N 2 cm or - 4 x IO-'' in fractional accuracy) to  retroreflectors on 
the Moon. Analysis of these very precise data contributes to  many areas of fundamental and 
gravitational physics. Thus, these high-precision studies of the Earth-Moon-Sun system provide 
the most sensitive tests of several key properties of the weak-field gravity, including Einstein's 
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Strong Equivalence Principle (SEP) (the way gravity begets gravity) on which general relativity 
rests (in fact, LLR is the only means currently available for testing SEP). LLR also provides the 
strongest limits to date on variability of the gravitational constant (the way gravity is affected 
by the expansion of the universe), the best measurement of the de Sitter precession rate, and 
is relied upon to generate accurate astronomical ephemerides. 

In the next few months LLR is poised to take a dramatic step forward, enabled both 
by detector technology and access to a large-aperture astronomical telescope. The Apache 
Point Observatory Lunar Laser-ranging Operation (APOLLO) is a unique instrument devel- 
oped specifically to improve accuracies of LLR ranges to retroreflectors on the Moon. Using 
a 3.5 m telescope the APOLLO project will push LLR into a new regime of multiple photon 
returns with each pulse, enabling millimeter range precision to be achieved [l]. The project will 
exploit a large, high-quality modern astronomical telescope at an excellent site to determine the 
shape of the lunar orbit with a precision of one millimeter. Converting APOLLO’s raw range 
measurements into scientific results requires corresponding improvement in the models used for 
the data analysis. These improvements, made in parallel with the startup and checkout of the 
accurate ranging hardware for the Apache Point Observatory, would permit improved solutions 
for parameters describing the Equivalence Principle, relativity theories, and other aspects of 
gravitation and solar system dynamics. 

This paper focuses on the current techniques, methods and existing physical models that are 
used to conduct the LLR tests of G and other PPN parameters. It is also discusses the modeling 
and data analysis improvements necessary to make the order-of-magnitude improvement in these 
tests that the next-generation of LLR technique enables. Because of the dramatic increase in 
the range accuracy anticipated from the APOLLO instrument, today there is an urgent need 
to develop substantially improved analysis models. Therefore, we consider the challenges for 
modeling and data analysis needed to take full advantage of this new instrument. The upgraded 
analysis, combined with APOLLO data, should yield an order-of-magnitude improvement in 
tests of SEP and the time-variation of Newton’s constant, as well as more precise values for 
the parameterized post-Newtonian (PPN) parameters y and p, and for the geodetic precession 
rate of the lunar orbit. This paper addresses these and related issues that are pivotal in taking 
the full advantage of the newly acquired LLR capabilities. 

2 

2.1 Scientific Background 

LLR has a distinguished history [2, 31 dating back to the placement of retroreflector arrays on 
the lunar surface by the Apollo 11 astronauts (Figure la). Additional reflectors were left by 
the Apollo 14 and Apollo 15 astronauts (Figure lb),  and two French-built reflector arrays were 
placed on the Moon by the Soviet Luna 17 and Luna 21 missions. Figure 2 shows the weighted 
RMS residual for each year. Early accuracies using the McDonald Observatory’s 2.7 m telescope 
hovered around 25 cm. Equipment improvements decreased the ranging uncertainty to -15 cm 
later in the 1970s. In 1985 the 2.7 m ranging system was replaced with the McDonald Laser 
Ranging System (MLRS). In the 1980s ranges were also received from Haleakala Observatory 
on the island of Maui in the Hawaiian chain and the Observatoire de la Cote d’Azur (OCA) in 
France. Haleakala ceased operations in 1990. A sequence of technical improvements decreased 
the range uncertainty to the current w 2 cm. The 2.7 m telescope had a greater light gathering 
capability than the newer smaller aperture systems, but the newer systems fired more frequently 
and had a much improved range accuracy. The new systems do not distinguish returning 
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Figure 1: (a) The LLR retroreflector being carried across the lunar surface by Buzz Aldrin, an 
astronaut of the Apollo 11 mission. (b) The Apollo 15 array of laser retroreflectors. 

photons against the bright background near full Moon, which the 2.7 m telescope could do. 
There are some modern eclipse observations. 

LLR accurately measures the time of flight for a laser pulse fired from an observatory 
on the Earth, bounced off of a corner cube retroreflector on the Moon, and returned to the 
observatory. For a general review of LLR see Dickey et al. [2]. A comprehensive paper on tests 
of gravitational physics is Williams et al. [4]. A recent test of the Equivalence Principle is in 
Anderson and Williams [6] and other gravitational physics tests are in Williams et al. [7]. An 
overview of the LLR gravitational physics tests is given by Nordtvedt [8]. Reviews of various 
tests of relativity, including the contribution by LLR, are given in Will [9, lo]. 

The LLR measurements of the past have contributed to a wide range of scientific investi- 
gations [4, 6, 111, and are today solely responsible for production of the lunar ephemeris. On 
the fundamental scientific front, LLR provides the only means for testing SEP-the statement 
that all forms of mass and energy contribute equivalent quantities of inertial and gravitational 
mass. The SEP is more restrictive than the weak EP, which applies to non-gravitational mass- 
energy, effectively probing the compositional dependence of gravitational acceleration. It is the 
equivalence principle which leads to identical accelerations of compositionally different objects 
in the same gravitational field, and also allows gravity to be viewed as a geometrical property 
of spacetimeleading to the general relativistic interpretation of gravitation. In addition to 
the SEP, LLR is capable of measuring the time variation of Newton’s gravitational constant, 
G, providing the strongest limit available for the variability of this ‘constant’. LLR can also 
precisely measure the de Sitter precession4Tectively a spin-orbit coupling affecting the lunar 
orbit in the frame co-moving with the Earth-Moon system’s motion around the Sun. The LLR 
results are also consistent with existence of gravitomagnetism within 0.1% of the predicted level 
[8, 121, thus making the lunar orbit a unique laboratory for gravitational physics where each 
term in the relativistic equations of motion was verified to a very high accuracy. Finally, the 
interior, tidal response, and physical librations (rocking) of the Moon are all probed by LLR, 
making it a valuable tool for physical selenography [13]. 
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Figure 2: Historical accuracy of LLR data from 1970 to 2003. 

The APOLLO lunar laser-ranging project will yield a one order-of-magnitude improvement 
in the precision of three important tests of the basic properties of the gravitational interac- 
tion. Below we shall discuss some expected results and their significance for fundamental and 
gravitational physics. 

2.2 Equivalence Principle Tests 

To date, the experimental evidence for gravitational physics is in agreement with Einstein's 
Theory of General Relativity (GR). However, there are a number of theoretical reasons to 
question the validity of general relativity. Despite the success of modern gauge field theories 
in describing the electromagnetic, weak, and strong interactions, it is still not understood how 
gravity should be described at the quantum level. In theories that attempt to include gravity, 
new long-range forces can arise in addition to the Newtonian inverse-square law. Even at the 
purely classical level, and assuming the validity of the Equivalence Principle (EP), Einstein's 
theory does not provide the most general way to generate the space-time metric. Regardless 
of whether the cosmological constant should be included, there are also important reasons to 
consider additional fields, especially scalar fields. Although the scalar fields naturally appear 
in the theory, their inclusion predicts a non-Einsteinian behavior of the gravitating systems at 
high energies. These deviations from GR lead to a violation of EP, modification of large-scale 
gravitational phenomena, and cast doubt upon the constancy of the "constants". As a result, 
this progress has provided new strong motivation for high precision relativistic gravity tests. 

The Equivalence Principle, the exact correspondence of gravitational and inertial masses, 
is a central assumption of general relativity and a unique feature of gravitation. EP tests can 
therefore be viewed in two contexts: tests of the foundations of the Standard Model of Gravity 
(i.e. general relativity), or as searches for new physics because, as emphasized by Damour (61, 
almost all extensions to the Standard Model of particle physics generically predict new forces 
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that would show up as apparent violations of the EP. Easily the most precise tests of the EP 
are made by simply comparing the free fall accelerations, a1 and a2, of different test bodies, 
with 

where MG and M I  represent gravitational and inertial masses of each body. The sensitivity of 
the EP test is determined by the precision of the differential acceleration measurement divided 
by the degree to which the test bodies differ (e.g. composition). 

2.2.1 The Weak Equivalence Principle 

The weak form the EP (the WEP) states that the gravitational properties of strong and electro- 
weak interactions obey the EP. In this case the relevant test-body differences are their fractional 
nuclear-binding differences, their neutron-tc-proton ratios, their atomic charges, etc. General 
relativity, as well as other metric theories of gravity, predict that the WEP is exact. However, 
extensions of the Standard Model of Particle Physics that contain new macroscopic-range quan- 
tum fields predict quantum exchange forces that will generically violate the WEP because they 
couple to generalized 'charges' rather than to mass/energy as does gravity [14, 151. WEP tests 
can be conducted with laboratory or astronomical bodies, because the relevant differences are 
in the test-body compositions. 

2.2.2 The Strong Equivalence Principle 

The strong form of the EP (the SEP) extends the principle to cover the gravitational properties 
of gravitational energy itself. In other words it is an assumption about the way that gravity 
begets gravity, i.e. about the non-linear property of gravitation. Although general relativity 
assumes that the SEP is exact, alternate metric theories of gravity such as those involving 
scalar fields, and other extensions of gravity theory, typically violate the SEP 116, 17, 18, 191. 
For the SEP case, the relevant test body differences are the fractional contributions to their 
masses by gravitational self-energy. Because of the extreme weakness of gravity, SEP test bodies 
that differ significantly must have astronomical sizes. Currently the Earth-Moon-Sun system 
provides the best arena for testing the SEP. 

To facilitate investigation of a possible violation of the SEP, the ratio between gravitational 
and inertial masses, MG/Mz is expressed in the form 

where U is the gravitational self-energy of the body (U < 0), Mc2 is its total mass-energy, and 
7 is a dimensionless constant. U/Mc2 is proportional to M, so testing the SEP requires bodies 
the size of the Moon and planets. For the Earth-Moon system, 

Ue. um - -4.45 x 
Mec2 Mmc2 (3) 

where the subscripts e and m denote the Earth and Moon, respectively. Therefore, a violation 
of the SEP would produce an Earth-Moon differential acceleration of A a / a  = -4.45 x 10-loq. 

In general, q is a linear function of seven of the ten Parameterized Post-Newtonian (PPN) 
parameters, but considering only p and y 

(4) q = 4p - y - 3 
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In general relativity q = 0. A unit value for q would produce a displacement of the lunar orbit 
about the Earth [20, 211, causing a 13 meter monthly range modulation. 

2.3 

In essence, LLR tests of the EP compare the free-fall accelerations of the Earth and Moon 
toward the Sun. Lunar laser-ranging measures the time-of-flight of a laser pulse fired from 
an observatory on the Earth, bounced off of a retroreflector on the Moon, and returned to the 
observatory [a, 31. If the Equivalence Principle is violated, the lunar orbit will be displaced along 
the Earth-Sun line, producing a range signature having a 29.53 day synodic period (different 
from the lunar orbit period of 27 days). Since the first LLR tests of the EP were published 
in 1976 [22, 231, the precision of the test has increased by two orders-of-magnitude [4, 5, 6, 71. 
(Reviews of contributions to gravitational physics by LLR are given by Nordtvedt [8] and Will 

From the viewpoint of the EP, the Earth and Moon 'test bodies' differ in two significant 
ways: in composition (the Earth has a massive Fe/Ni core while the Moon has a much smaller 
core) and in their gravitational self-energies (the Earth is much more massive than the Moon). 
Therefore, LLR tests the total Equivalence Principle - composition plus self-energy - for the 
Earth and Moon in the gravitational field of the Sun. Two recent results yield A a / a  values 
of (-1 5 2) x [6]. The latter corresponds to a 2 f 4 mm 
amplitude in range. 

The LLR result is a null test so it can be argued that it is unlikely that there would 
be two compensating violations of the Equivalence Principle - composition and self-energy - 
that essentially cancel. However, because of the fundamental importance of a good SEP test, 
laboratory tests of the WEP are used to separate with certainty any composition-dependent and 
self-energy effects. Recent WEP tests performed at the University of Washington (UW) using 
laboratory test bodies whose compositions are close to those of the actual Earth and Moon set 
upper limits on any composition-dependent Earth-Moon differential acceleration [ll , 241. The 
random and systematic A a / a  uncertainties of [24] are 1.4% respectively. 
Anderson and Williams [6] used the earlier of these WEP results [113 to limit the SEP parameter 
q = 0.0002 5 0.0008. If one adopts the more recent WEP test by the UW Eot-Wash group [24], 
one gets an 7 uncertainty of 0.0005. Note that the current intrinsic LLR accuracy, if the WEP 
were known perfectly, is 0.0003. Therefore, with its 1 mm range accuracy, APOLLO has the 
capability of determining q to a precision of approximately 3 x 

LLR Tests of the Equivalence Principle 

[9, 101.) 

[7] and (-0.7 f 1.5) x 

and 0.2 x 

2.4 

In addition to the SEP constraint based on Eq.(4), the PPN parameters y and ,O affect the 
orbits of relativistic point masses, and y also influences time delay [4]. LLR tests this p and y 
dependence, as well as geodetic precession, and G/G. Recent work by Williams et al. [7] gives 
uncertainties of 0.004 for ,Ll and y deduced from sensitivity apart from and the SEP, 0.35% for 
the geodetic precession, and 1.1 x 

Orbital precession depends on ,Ll and y, so their sensitivity depends on time span of the data. 
The uncertainty for G/G is improving rapidly because its sensitivity depends on the square of 
the time span. So 1 mm quality data would improve the G rate uncertainty by an order-of- 
magnitude in - 5 yr while y and geodetic precession would depend on orbital precession time 
scales: 6.0 yr for argument of perigee, 8.85 yr for longitude of perigee, and 18.6 yr for node. 

LLR also has the potential to determine the solar Jz [7], PPN a1 [25, 261, hunt for influences 
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yr-' for G/G test. 
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of dark matter [20, 271, and to test the inverse square law at the scale of ae - 20,000 km. A 
long-range Yukawa interaction has been tested by Muller et al. [28]. 

3 Overview of APOLLO 
The Apache Point Observatory Lunar Laser-ranging Operation is a new LLR effort designed 
to achieve millimeter range precision and corresponding order-of-magnitude gains in measure- 
ments of fundamental physics parameters. The APOLLO project design and leadership re- 
sponsibilities are shared between the University of California at San Diego and the University 
of Washington. In addition to the modeling aspects related to this new LLR facility, a brief 
description of APOLLO and associated expectations is provided here for reference. A more 
complete description can be found in [l]. 

The principal technologies implemented by APOLLO include a robust Nd:YAG laser with 
100 ps pulse width, a GPS-slaved 50 MHz frequency standard and clock, a 25 ps-resolution 
time interval counter, and an integrated avalanche photo-diode (APD) array. The APD array, 
developed at Lincoln Labs, is a new technology that will allow multiple simultaneous photons 
to be individually time-tagged, and provide two-dimensional spatial information for real-time 
acquisition and tracking capabilities. 

The overwhelming advantage APOLLO has over current LLR operations is a 3.5 m astro- 
nomical quality telescope at a good site. The site in the Sacramento Mountains of southern New 
Mexico offers high altitude (2780 m) and very good atmospheric “seeing” and image quality, 
with a median image resolution of 1.1 arcseconds. Both the image sharpness and large aper- 
ture enable the APOLLO instrument to deliver more photons onto the lunar retroreflector and 
receive more of the photons returning from the reflectors, respectively. Compared to current 
operations that receive, on average, fewer than 0.01 photons per pulse, APOLLO should be well 
into the multi-photon regime, with perhaps 5-10 return photons per pulse. With this signal 
rate, APOLLO will be efficient at finding and tracking the lunar return, yielding hundreds of 
times more photons in an observation than current operations deliver. In addition to the signif- 
icant reduction in statistical error (- f l  reduction), the high signal rate will allow assessment 
and elimination of systematic errors in a way not currently possible. 

The principal range signature for the EP tests has a 29.53 day synodic period (lunar phase 
period the associated argument is called 0). The current LLR data is not uniformly sampled, 
there are no observations near new Moon, and, for recent years, the only observations near 
full Moon occur during eclipses. The older, less accurate 2.7 m McDonald ranging system was 
strong enough to get full Moon ranges. APOLLO will also be able to range during full Moon. 

There is an important term with half of the synodic period that depends on the product 
of G and mass, M, of the Earth-Moon system. The non-uniform sampling causes a correlation 
(0.34) between the EP test and GM.  Nordtvedt has studied the D selection and consequences 
[29]. Reference [6] lists several influences on the separation of the EP parameter. APOLLO’s 
data will be taken at lunar phases that will improve the separation of the EP and GM parame- 
ters. In addition, APOLLO plans to incorporate a precision superconducting gravimeter and a 
GPS receiver that will measure crustal motions at the telescope site with millimeter precision. 
This information will significantly enhance our ability to model site displacements from tides, 
atmosphere and ocean loading, and ground-water infusion. 
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3.1 

The new LLR capabilities offered by the newly developed APOLLO instrument offer a unique 
opportunity to improve accuracy of a number of fundamental physics tests. Some of them 
would have a profound effect on our understanding of the evolution of our universe. Thus, 
in the search for experimentally testable predictions of the scalar-tensor theories of gravity, 
Damour and Nordtvedt [34] recently considered the evolution of tensor-scalar theories following 
the inflation era. They conclude that the coupling between the scalar and tensor fields weakens 
with time so that GR is approached, but not reached. They consider a range of possibilities 
resulting in a deviation from GR described by - Additionally, Damour and 
Nordtvedt note that there exists a connection between GIG and 7. If G changes at a rate 
comparable to the reported change in the fine structure constant (&/a N yr-') [30], 7 
would be approximately Thus, an order-of-magnitude LLR range improvement would 
give an uncertainty within reach of the predictions by Damour and Nordtvedt, and comparable 
to the value implied by &. 

It is already known via LLR that the Moon's orbit is not displaced by a violation of the 
SEP at the w 4 mm level of precision-based on 2 cm raw range precisions-constraining the 
SEP violation parameter 7 at the level of about 5 parts in lo4 (see Section 2.3). The high 
quality data from APOLLO should permit sub-millimeter determinations of the SEP-induced 
polarization of the lunar orbit, thereby achieving a few parts in lo5 precision on the potential 
SEP violation. Various alternative theories of physics (string, or iM-theory, for example) predict 
new particles such as the dilaton and moduli that couple with gravitational strength and whose 
exchange violates the SEP. 

The SEP relates to the non-linearity of gravity (how gravity affects itself), with the PPN 
parameter p representing the degree of non-linearity. Thus LLR provides the best way to 
measure p, as suggested by the strong dependence of 7 on p in Eq. (4). The parameter y has 
been measured independently via time-delay and gravitational ray-bending techniques. The 
published Viking [30] and Very Long-Baseline Interferometry (VLBI) [31, 321 uncertainties for 
y are 0.002, 0.002, and 0.0022, respectively. Combining the above limits on 7 from LLR and 
laboratory WEP tests with the Viking and VLBI results for y gives Ip - I1 < 0.0005, the limit 
given by [6] .  The uncertainty in p determined in this way is dominated by the uncertainty in 
y. A much more accurate result for y is expected from the Cassini conjunction experiment [33] 
and would lead to a significant improvement of parameter ,B determination. 

The APOLLO project will push LLR into the regime of millimetric range precision which 
translates to an order-of-magnitude improvement in the determination of fundamental physics 
parameters. For the Earth and Moon orbiting the Sun, the scale of relativistic effects is set 
by the ratio (GM/rc2)  - v2/2 N Relativistic effects are small compared to Newtonian 
effects. The Apache Point 1 mm range accuracy corresponds to 3 x of the Earth-Moon 
distance. The resulting LLR tests of gravitational physics would improve by an order of mag- 
nitude: the Equivalence Principle would give uncertainties approaching tests of general 
relativity effects would be < O . l % ,  and estimates of the relative change in the gravitational 
constant would be 0.1% of the inverse age of the universe. This last number is impressive 
considering that the expansion rate of the universe is approximately one part in 10" per year. 

Therefore, the gain in our ability to conduct even more precise tests of fundamental physics 
is enormous, thus this new instrument stimulates development of better and more accurate 
models for the LLR data analysis at a mm-level. In the next section we shall discuss the 
current state and the needed future improvements in these models in more details. 

APOLLO Contribution to  the Tests of Gravity 

< 7 < 
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4 Current Formulation of Range Model 

LLR measures the range from an observatory on the Earth to a retroreflector on the Moon. 
The center-to-center distance of the Moon from the Earth, with mean value 385,000 km, is 
variable due to such things as eccentricity, the attraction of the Sun, planets, and the Earth’s 
bulge, and relativistic corrections. In addition to the lunar orbit, the range from an observatory 
on the Earth to a retroreflector on the Moon depends on the positions in space of the ranging 
observatory and the targeted lunar retroreflector. Thus, orientation of the rotation axes and the 
rotation angles of both bodies are important with tidal distortions, plate motion, and relativistic 
transformations also coming into play. To extract the gravitational physics information of 
interest it is necessary to accurately model a variety of effects. 

The existing model formulation, and its computational realization in computer code, is the 
product of many years of effort. Most of the sensitivity to gravitational physics parameters 
is through the orbital dynamics, though PPN y also influences relativistic time delay. The 
successful analysis of LLR data requires attention to geophysical and rotational effects for the 
Earth and the Moon in addition to the orbital effects. The existing model and computer codes 
fit the recent range data with a root-mean-square (RMS) residual of 17 mm (150 mm in the 
one-way distance corresponds to 1 ns in two-way time of flight). A number of few-millimeter- 
sized effects are not presently modeled, and we plan to carry out such improvements in model 
accuracy. This effort should improve both random and systematic influences on the fits. 

4.1 Existing Range Model 

In the current model the time-of-flight (‘range’) calculation consists of the round-trip ‘light 
time’ from a ranging site on the Earth to a retroreflector on the Moon and back to the ranging 
site. The vector equation for the one-way range vector p’ is: 

p” F- Re + & (5) 

where Fis the vector from the center of the Earth to the center of the Moon, Be is the vector from 
the center of the Earth to the ranging site, and is the vector from the center of the Moon 
to the retroreflector array. The times at the Earth and Moon are different: transmit, bounce, 
and receive times. Due to the motion of the bodies the light-time computation is iterated for 
both the up and down legs. The orbits and lunar rotation come from the numerical integration. 
The solar system barycenter is the coordinate frame for relativistic computations. The total 
time of flight is the sum of the up and down leg geometry plus delays due to atmosphere and 
relativity. 

It is convenient to represent the model as a sum of its major components, including the 
description of the dynamics of the lunar orbit and rotation, the Earth’s and Moon’s finite size 
effects as well as the relativistic corrections. For illustrative purposes we shall discuss each of 
the components separately, in particular the existing range model accounts for: 

4.1.1 

The lunar and planetary orbits and the lunar rotation result from numerical integration of the 
differential equations of motion. The existing model for orbital motion accounts for: 

Orbit  Dynamics & Lunar Rotation 

0 Newtonian and relativistic point mass gravitational interaction between Sun, Moon, and 
nine planets. This is parameterized for the tests of EP, G and PPN ,B and y. 
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0 Newtonian attraction of the largest asteroids. 

0 Newtonian attraction between a point mass and a body with gravitational harmonics: 
Earth (J2 ,  J3, J4),  Moon (2-nd through 4 t h  degree spherical harmonics), and Sun (J2) .  

0 Attraction from tides on Earth and Moon including both elastic and dissipative compo- 
nents. 

Numerical integration of the rotation of the Moon accounts for: 

0 Torques from point mass attraction of Earth, Sun, Venus and Jupiter. The lunar gravity 
field is included with its spherical harmonics of 2-nd through 4 t h  degree. 

0 Figure-figure torques between Earth ( J 2 )  and Moon (J2 and C22). 

0 Torques from tides raised on the Moon include elastic and dissipative components (a time 
delay formulation) [35, 361. 

0 The fluid core of the Moon is considered to rotate separately from the mantle. A dis- 
sipative torque at the lunar solid-mantle/fluid-core interface couples the two [36]. The 
rotations of both mantle and core are integrated. 

4.1.2 Finite-size Earth Effects 

0 The ranging station coordinates include rates for plate motion. 

0 Tidal displacements on Earth are scaled by terrestrial Love numbers h 2  and 12 with a 
core-flattening correction for a nearly diurnal term. There is also a “pole tide” due to the 
time-varying part of the spin distortion. 

0 The orientation of the Earth’s rotation axis includes precession and nutation. The body 
polar axis is displaced from the rotation axis by polar motion. The rotation includes UT1 
variations. 

0 Atmospheric time delay follows [37]. It includes corrections for surface pressure, temper- 
ature and humidity which are measured at the ranging site. 

A useful reference for Earth effects is [39]. 

4.1.3 Finite-size Moon Effects 

0 The Moon-centered coordinates of the retroreflectors are adjusted for tidal displacements 
on the Moon. Tides are scaled by the lunar Love numbers h 2  and 12.  

0 The rotation matrix for the Moon depends on three Euler angles that come from the 
numerical integration. 
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4.1.4 Relativistic Corrections 

The frame for computations is the solar system barycenter and relativistic corrections are needed 
to convert that position and time to and from geocentric position and station time. There are 
also light-time delays due to gravity. 

0 The motion of the Earth and Moon with respect to the solar system barycenter requires 
a Lorentz contraction for geocentric ranging station and Moon-centered reflector coordi- 
nates. 

’ 
0 In the relativistic time transformation there are time-varying relativistic terms due to the 

motion of the Earth’s center with respect to the solar system barycenter. 

0 The displacement of the ranging station from the center of the Earth causes relativistic 
time variations. 

0 The propagation of light in the gravity fields of the Sun and Earth causes a relativistic 
time delay. 

4.2 

For each fit parameter there must be a partial derivative of the “range” with respect to that 
parameter. The partial derivatives may be separated into two types: geometrical and dynami- 
cal. Geometrical partials are explicit in the model for the time of flight. Examples are partial 
derivatives for geocentric ranging station coordinates, Moon-centered reflector coordinates, sta- 
tion rates due to plate motion, tidal displacement Love numbers h2 and 12, nutation coefficients, 
diurnal and semidiurnal UT1 coefficients, angles and rates for the Earth’s orientation in space, 
ranging biases and many more. 

Dynamical partials are for parameters that enter into the model for numerical integration 
of the orbits and lunar rotation. Examples are dynamical partial derivatives for the masses and 
initial conditions for the Moon and planets, the masses of several asteroids, the initial conditions 
for the rotation of both the lunar mantle and fluid core, Earth and Moon tidal parameters, lunar 
moment of inertia combinations ( B  - A)/C and (C - A)/B,  lunar third-degree gravity field, 
a lunar core-mantle coupling parameter, Equivalence Principle MG/MI,  PPN parameters ,B 
and y, geodetic precession, solar J2, and a rate of change for the gravitational constant G. 
Dynamical partial derivatives for the lunar and planetary orbits and the lunar rotation are 
created by numerical integration. At the time of the range calculation a file of integrated 
partial derivatives for orbits and lunar rotation with respect to dynamical solution parameters 
is read and converted to partial derivatives for range with respect to those parameters. The 
partial derivative for PPN y has both dynamical and geometrical components. Useful references 
may be found in [4, 35, 36, 381. 

The analytical model has its computational realization in a sequence of computer programs. 
Briefly these a) numerically integrate lunar and planetary orbits, lunar rotation, and dynamical 
partial derivatives, b) compute the model range for each data point, form the pre-fit residual, 
and compute range partial derivatives, c) solve the least-squares equations, and d) generate and 
plot post-fit residuals. All these programs would have to be updated in order to accommodate 
the new accuracy of the LLR data expected with the APOLLO instrument. 

Fit Parameters, Partial Derivatives, and Computation 
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5 Next Steps and Conclusions 

In order to respond to the technological challenge presented by the APOLLO project, there 
is an urgent need to improve the modeling accuracy by more than an order-of-magnitude in 
order to match the millimeter quality range accuracy expected from APOLLO. This requires 
investigating a number of effects that are ignored in the current model. Some effects may be 
precisely calculated while others require adjustable solution parameters. 

Planning for model improvement to accompany the high-quality range data is already un- 
derway. We have begun exploring components of the current model which deserve attention. 
The high-precision ranging data will help pinpoint deficiencies in the model, ultimately enabling 
the model to reach mm precision or better. 

There are a number of small influences on the Earth, Moon, and orbit. The larger effects 
generally have higher priority, but there are subtleties. Most serious are coherent effects that 
can mimic phenomena of interest. Thus, the effect of solar radiation pressure influences the 
orbit of the Moon. This causes a 3.7 mm synodic monthly periodicity which mimics the largest 
EP signature [40]. Additionally, the monthly thermal expansion cycle of retroreflector array 
heights is 1-2 mm for the Apollo retroreflector arrays which sit on the soil, but is at least 5 mm 
for the Lunokhod reflector which is -1 m above the surface. The thermal cycle also occurs at 
the synodic period which is important to the EP test. Solar tides on the Moon (- 2 mm) occur 
at half the synodic period. 

yr-l). 
For the Sun, changes in G and M cannot be distinguished. The solar mass loss relative to its 
mass is -7 x yr-’ 
thermal reradiation from the Earth and Moon should be considered. At present, the integration 
of the rotation of the Moon is Newtonian. There is an annual relativistic term of 8 mm amplitude 
at the equator, due to the time transformation, which would project into 3 mm or less in range 
(the projection depends on the reflector location). Also in the lunar rotation, the geodetic 
“precession” will alter the tilt rather than the precession rate because the precessing equator is 
a forced motion. 

For near future APOLLO data analysis, coherent effects need to be modeled with precisions 
better than 1 mm.2 The least trouble is caused by random noise and effects that act like random 
noise since large numbers of observations reduce their influence. An example is atmospheric 
variations that are unrelated to lunar position. Many effects are in between these extremes. 
They may have modest correlations with some solution parameters, but low correlation with 
the parameters of interest. So both size and signature determine the modeling priority. 

The expected improvement in the accuracy of LLR tests of gravitational physics expected 
with the new APOLLO instrument will bring significant new insights to our understanding of 
the fundamental physics laws that govern the evolution of our universe. The scientific results 
are significant which justify the more than 35 years of history of LLR research and technology 
development. It also imposes a need to  develop the accurate range models and data analysis 
techniques that will sustain this new technological challenge. 

In conclusion, LLR provides the most precise way to test the EP for gravity itself, the 
best way to test for non-gravitational long-range fields of dark matter as well as for time 
variation of Newton’s constant. With technology improvements and substantial access to a 
large-aperture, high-quality telescope, the APOLLO project will take full advantage of the 

There are also two interesting effects influencing G/G tests (current uncertainty 

yr-l and can be accurately computed. For accuracies below 

21t may be argued that, in order to achieve the 1 mm aggregate RMS, a modeling accuracy considerably 
better than the expected range accuracy of the instrument is justified for individual effects. 
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lunar retro-reflectors and will exploit the opportunity provided by the unique Earth-Moon 
“laboratory” for fundamental gravitational physics. 
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