
Components, the Common Component Architecture, and the 
Climate/Ocean/Weather Community 

J. Walter Larson, Boyana Norris, and Everest T. Ong 
Mathematics and Computer Science Division, Argonne National Laboratory 
9700 S. Cass Avenue, Argonne, IL 60439 
{larson,norris,eong}@mcs.anl.gov 
David E. Bernholdt, John B. Drake, Wael R. El Wasif,, and Michael W. Ham 
Computer Science and Mathematics Division, Oak Ridge National Laboratory 
P.O. Box 2008, Oak Ridge, TN 37831-6367 
{bernholdtde,drakejb,hamw,elwasifwr}@ornl.gov 
Craig E. Rasmussen 
Advanced Computing Laboratory, Los Alamos National Laboratory 
MS B287, LAS Alamos, NM 87545 
rasmussn@lanl.gov 
Gary Kumfert 
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 
Box 808, L-365, Livermore, CA 94551 
kumfertl@llnl.gov 
Daniel S. Katz 
Jet Propulsion Laboratory, California Institute of Technology 
4800 Oak Grove Drive, Pasadena, CA 91 109 
Daniel.S.Katz@jpl.nasa.gov 
Shujia Zhou 
Northrop Grumman ITITASC 
4801 Stonecroft Blvd., Chantilly, VA 20151 
szhou@pop900.gsfc.nasa.gov 
Cecelia Deluca 
Scientific Computing Division, National Center for Atmospheric Research 
P.O. Box 3000, Boulder, CO 80307 
cdeluca@ucar.edu 

Climate/ocean/weather applications abound with challenges in high-performance 
computing, software development, and data management. Forecasters require highly 
reliable software. Researchers require analysis tools that offer ease-of-use and 
flexibility. Modelers desire access to powerful numerical schemes and acceleration of 
the model developmenthalidation cycle. The existence of millions of lines of legacy 
Fortran code, and the advent of modern programming languages such as C++ introduce a 
language barrier to be surmounted. We believe these requirements can be met through 
component-based software engineering (CBSE). 

CBSE is an emerging approach to help manage software complexity and increase the 
productivity of software developers and users. In CBSE, units of software are 
encapsulated as “components,” interacting with other components only through well- 
defined interfaces, and allowing the component’s internal implementation to remain 
opaque. Components can be composed to form applications, using either a GUI or a 

mailto:larson,norris,eong}@mcs.anl.gov
mailto:bernholdtde,drakejb,hamw,elwasifwr}@ornl.gov
mailto:rasmussn@lanl.gov
mailto:kumfertl@llnl.gov
mailto:Daniel.S.Katz@jpl.nasa.gov
mailto:szhou@pop900.gsfc.nasa.gov
mailto:cdeluca@ucar.edu


scripting language such as Python. Often, well-designed components will be reusable 
across a number of different applications. CBSE builds on object-oriented programming 
concepts, and extends and refines the common practice of using widely shared software 
libraries. CBSE has many similarities with "domain-specific'' computational 
frameworks, but is a more general and flexible approach; unlike domain-specific 
infrastructure, CBSE by its nature yields more readily reusable software. 

The availability of many components of various functionalities dramatically simplifies 
the construction of applications. A diversity of components sharing the same 
functionality means adaptation to different computational environments can be as easy as 
replacing one component implementation with another that is more appropriate. In 
addition to productivity increases, CBSE frees researchers to shift focus from low-level 
details of their applications to more relevant issues, and simplifies group software 
development because components are natural units of work. 

The Common Component Architecture (CCA, http://www.cca-forum.org) project strives 
to bring the benefits of CBSE to high-performance scientific computing. It is specifically 
designed to impose little performance overhead, support both tightly-coupled parallel and 
distributed computing, and lower barriers to incorporating legacy code into the CCA 
environment. The CCA uses the Babel http://www.llnl.gov/CASC/components/) 
language interoperability tool to support components written in various languages 
(currently Fortran, C, C++, Java, and Python). 

DOE supports CCA under the Scientific Discovery through Advanced Computing 
(SciDAC, http://www.scidac.org) program. Outreach to the climate community is multi- 
faceted, including collaborations with the DOE Climate Change Prediction 
Program (CCPP, http://www.scidac.org/climate.html), the NASA Earth System 

Modeling Framework (ESMF, l.lttp://WWW.esmf.ucar.edu) project, and other projects. 

Collaboration with CCPP centers on the NCAR Community Climate System Model 
(CCSM, http://www.ccsm.ucar.edu). CCSM is a coupled climate model, comprising 
several mutually interacting component models (atmosphere, ocean, sea ice, land-surface, 
river routing, flux coupler). Main focus areas are introducing components to the CCSM's 
atmosphere and flux coupler, and the development of a river routing model based on 
CCA components. 

CCSM's atmosphere is the Common Atmosphere Model 
(CAM, http : //w ww . cc sm. ucar .ed u/model s/atm-cam/). CAM has been refactored to 
disentangle its dynamical core from its subgridscale physics parameterizations. This 
physics/dynamics split allowed a proliferation of dynamical cores, and CAM currently 
has three: a pseudo-spectral method; the Rasch-Williamson semi-Lagrangian method; 
and the finite-volume Lin-Rood scheme. Standardization of the interfaces to these 
dynamical cores and the overall subgridscale physics package is underway. Once 
complete, these software modules can be packaged as CCA components. This will allow 
one to use CCA to compose and invoke a stand-alone version of CAM in which the user 
may plug in the dynamical core of choice. Furthermore, the developer of a new 

http://www.cca-forum.org
http://www.llnl.gov/CASC/components
http://www.scidac.org
http://www.scidac.org/climate.html
http://www.ccsm.ucar.edu


dynamical core need only code it to the interface standard and it will be ready for 
immediate validation. 

The current CCSM flux coupler was implemented using the Model 
Coupling Toolkit (MCT, httd/www.mcs.anl.gov/mct). MCT is a software package for 
implementing coupling between messaging-passing parallel applications. MCT is 
implemented in FortranBO, and its programming model is based on F90 module use to 
declare MCT-type variables, and invocation of MCT routines to create couplings. We are 
using Babel to create interlanguage interfaces to MCT, which will allow other languages 
to use MCT. We are repackaging major MCT services as CCA components, most 
notably the parallel sparse matrix-vector multiplication scheme used to implement 
intergrid interpolation. Componentization of MCT will export some MCT services to 
CCA, and will allow MCT-based applications to replace some MCT services with other 
equivalent components. We are also using MCT to construct a parallel, directed-graph- 
based river transport model, which will subsequently be built using MCT-inspired CCA 
components. Finally, MCT’s services offer CCA a more detailed picture of model 
coupling requirements. 

NASA supports ESMF to specify and develop a domain-specific framework for earth 
system model interoperability. The ESMF comprises an infrastructure and a 
superstructure. The infrastructure includes low-level utilities and a data model used to 
define component interfaces. The superstructure comprises ESMF components and the 
means to manage them. ESMF provides an environment for instantiation and 
composition of components and subsequent execution. We are working with ESMF to 
ensure interoperability between the ESMF and CCA frameworks; Le., to guarantee that 
ESMF components may be used within CCA, and that ESMF will be able to utilize the 
wide variety of CCA-compliant components that exist or are under development. An 
ESMF-CCA prototype has been developed that adopts the features of component 
registration and GUI for component connection from CCA. Each component is designed 
to meet the requirements for an ESMF component, and data exchange between 
components is through a standardized, self-describing datatype similar to the 
ESMF-S tate. 

Observational data streams and reanalysis data are vital to climate/ocean/weather 
applications, and we are developing component interfaces to meet this need. We have 
prototyped a netCDF (http://www.unidata.ucar.edu/packages/netcdf/) component, and 
will be extending this work to include the parallel I/O-enabled netCDF. We also wish to 
develop CCA components capable of handling other major geophysical data formats such 
as GRIB and HDF-EOS (http://hdfeos.gsfc.nasa.gov). Such data components would 
allow users to construct with great ease powerful data-intensive analysis and modeling 
applications. 

Web ave described CBSE, the CCA, and its outreach to the climate/ocean/weather 
communities. This is work in progress and we are seeking collaborators to expand is 
scope. We believe CCA can offer great benefits to the climate/ocean/weather 
community. 

http://www.unidata.ucar.edu/packages/netcdf
http://hdfeos.gsfc.nasa.gov



