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Outline:
Key Elements to NEMO
*NEMO Goal:
-Quantitative design and synthesis of resonant tunneling diodes
(RTD’s).

-Faster simulation than experimental turn-around (1 week).
«Anticipated / Expected:

«Scattering - origin of the valley current.

Charge self-consistency - position of voltage peak.
- Unexpected / Breakthroughs:

«Treatment of extended contact regions

Full bandstructure - Empirical tight binding: sp3s*, sp3d5s”

-Non-parabolicity, complex band warping, indirect gaps

«Putting it all together
NEMO - testmatrix
The next step: automated analysis and SYNTHESIS
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NEMO:

A User-friendly Quantum Device Design Tool

+ NEMO 1-D was developed under a NSA/NRO contract to Texas Instruments and Raytheon from ‘93-
'98 (>50,000 person hours, 250,000 lines of code). :

« NEMO 1-D maintained and NEMO 3-D developed at JPL ‘98-'02 (>12000 person hours) under NASA
funding. Since ‘02 NSA and ONR funding.
 NEMO is THE state-of-the-art quantum device design tool.
* First target: transport through resonant tunneling diodes (high speed electronics).
» Second target: electronic structure in realistically large nano devices (detectors).
« Newly set target: gbit device simulation.
 Bridges the gap between device engineering and quantum physics.
» Based on Non-Equilibrium Green function formalism NEGF - Datta, Lake, and Klimeck.
» Used at Intel, Motorola, HP, Texas Instruments, and >10 Universities.
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Outline:
Key Elements to NEMO
*NEMO Goal:
*Quantitative design and synthesis of resonant tunneling diodes
(RTD’s).

Faster simulation than experimental turn-around (1 week).
* Anticipated / Expected:

*Scattering - origin of the valley current.

*Charge self-consistency - position of voltage peak.
 Unexpected / Breakthroughs:
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*Putting it all together

*NEMO - testmatrix

*The next step: automated analysis and SYNTHESIS
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(infinite sequential scattering)
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acoustic phonon-scattering

Single sequential scattering
treatment of
polar optical phonon scattering
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Outline:
Key Elements to NEMO
*NEMO Goal:
*Quantitative design and synthesis of resonant tunneling diodes
(RTD’s).
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Outline:

-~ duey Elements to NEMO
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" "extended contact regions
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Symmetric RTD’s:
Charge Self-Consistency Still Important!
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD
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Generalized Boundary Conditions:
Boundaries as a Scattering Problem

+ Left and right regions are treated as reservoirs.
s Quantum structure of reservoirs is included exactly.
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Treatment of the Electron Reservoirs

Typical Methods:
« Injection from reservoirs with flat bands

New Method:
« Injection of carriers from reservoirs with bent bands
 Modified densities of states
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD

Single band with scattering

POP = Polar Optical Phonons

=== no POP
== tridiag POP |}
full POP
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Where does the valley current
current come from?
POP is the only efffective scattering
\_ mechanism - not enough
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QOutline:

«wodiey Elements to NEMO

‘.;',Full s bandstructure
Non- " parabolicity
band warping

indirect materials
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD
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Single band with scattering

POP = Polar Optical Phonons

== no POP
== tridiag POP
w— full POP
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Single Band vs. Multiband

Muitiband without scattering Single band with scattering

POP = Polar Optical Phonons

=== 1 Band
== 2 Bands
== 10 Bands

‘tridiag POP
full POP
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Comparison of 1 and 10 Band
Densities of States
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Current Flow through the

Second Resonance
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Resonance State Lowering due to
Band Non-Parabolicity
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Wave Attenuation in Barriers
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Transport in Indirect Gap Barriers
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« [' -> X tunneling in the collector
* quantized states in the ‘barriers’
* [ and X resonances interact

Density of States
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GaAs / AlAs RTD Simulation

Single Band Model Current Density vs. Voltage
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Outline:
Key Elements to NEMO
*NEMO Goal:
*Quantitative design and synthesis of resonant tunneling diodes
(RTD’s).

«Faster simulation than experimental turn-around (1 week).
 Anticipated / Expected:

«Scattering - origin of the valley current.

«Charge self-consistency - position of voltage peak.
* Unexpected / Breakthroughs:
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Genetically Engineered

Nanoelectronic Structures (GENES)
Objectives:
» Automate nanoelectronic device synthesis, o
analysis, and optimization using genetic 5
algorithms (GA). ©
Approach: 2
* Augment parallel genetic algorithm -‘E,
(PGApack). <
* Combine PGApack with NEMO.
* Develop graphical user interface for GA.
How do you know what you have built? _eXB_1e18_1e15_7_16_16 :
00 Sel?_2el6_6_16_18 &
o 1 Results: g :
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Key Elements to NEMO
Conclusions
‘NEMO Goals Achieved:

*Quantitative design and synthesis of resonant tunneling
diodes (RTD’s).

Faster simulation than experimental turn-around (1 week).
‘Lessons Learned:

Comprehensive theory approach really did work.

*Needed close coupling to well controlled test matrices.

Contact treatment and full bandstructure approach
brought breakthrough.

Scattering (in central RTD) was not the most important
(against all predictions).

Scattering in the contacts is the most important effect, but
we need to fake it through relaxation time approximation.

Can perform automated device synthesis and analysis.
\_ W,
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Basic Genetic Algorithm

» Genetic algorithm parameter optimization is based on:
» Survival of good parameter sets
* Evolution of new parameter sets
« Survival of a diverse population

» Optimization can be performed globally, rather than locally.

\ J
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Basic Evolution Operations
Fach set (S1) consists of several parameters (Pj)
The parameters Pj can be of different kinds: real, integers,

SymbOISGr'ds',é Exploration Fine Tuning

* Creation of new gene values.

Crossover explores different

J
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Global Optimization:
Genetic Algorithm Development

Genetic Algorithm Convergence
pop = 100, 300 generations, steady-state (10%), 2-point crossover p = 0.85, mutatation p = 1/2

QuickTime™ and a
Video decompressor
are needed to see this picture.
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Outline: ‘
Key Elements to NEMO

‘Unexpected / Breakthroughs:

‘Treatment of
extended contact regions
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Outline:
Key Elements to NEMO

‘Unexpected / Breakthroughs:

<*Full bandstructure
Non-parabolicity
band warping
indirect materials
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