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Abstract 

Dynamic scene perception is currently limited to de- 
tection of moving objects from a static platform or scenes 
with flat backgrounds. We discuss novel methods to seg- 
ment moving objects in the motion field formed by a 
moving camerahobotic platform in real time. Our solu- 
tion does not require any egomotion knowledge, thereby 
making the solution applicable to a large class of mobile 
outdoor robot problems where no IMU information is 
available. We address two of the toughest problems in 
dynamic scene perception on the move, first using only 
2D monocular grayscale images, and second where 3 0  
range information +om stereo is also available. Our so- 
lution involves real-time optical flow computations, fol- 
lowed by optical flow field preprocessing to highlight 
moving object boundaries. In the case where range data 
from stereo is computed, a 3 0  optical flow field is esti- 
mated by combining range information with 2 0  optical 
flow estimates, followed by a similar 3 0  flow field pre- 
processing step. A segmentation of the flow field using 
fast floodfilling then identifies every moving object in the 
scene with a unique label. This novel algorithm is ex- 
pected to be the criticalfirst step in robust recognition of 
moving vehicles and people from mobile outdoor robots, 
and therefore offers a general solution to the field of dy- 
namic scene perception. It is envisioned that our algo- 
rithm will benefit robot scene perception in urban envi- 
ronments for scientific, commercial and defense applica- 
tions. Results of our real-time algorithm on a mobile 
robot in a scene with a single moving vehicle are pre- 
sented. 

Keywords: Computer vision, dynamic scenes, moving 
object detection, optical flow, robotics, segmentation, 
scene understanding. 

1. Introduction 
The robotics community to date has mostly focused on 

autonomous robot operation in static scenes [ 11, or highly 
constrained dynamic scenes [2]. Autonomous operation 
in urban scenes, however, realistically involves operation 
in the presence of moving objects, either to avoid hitting 
or being hit by moving vehicles/people, or detect, track, 

and approach moving people and vehicles in the scene. 
Moving object detection from fixed cameras using opti- 
cal flow algorithms [3] that employ region-based corre- 
spondence measures or feature-based matching have 
been discussed extensively. However, 2D optical flow 
information by itself is insufficient to locate rigid moving 
objects on the move due to the effective motion of back- 
ground pixels, as shown in Figure lb. Conversely, it is 
unrealistic and uneconomical to stop a robot frequently to 
enable it to localize moving objects. Therefore, we pro- 
pose new techniques that will allow moving object de- 
tection on the move in real time. 

We classify the problem of moving object detection 
into four categories: - 

Detection of moving objects from a static camera 
Detection of moving objects from a moving cam- 
era with known egomotion (from IMU, etc.), and 
knowledge of 3D/depth/range information (from 
stereo) 
Detection of moving objects from moving camera 
without any knowledge of egomotion, and knowl- 
edge of 3D/depth/range information (from stereo) 
Detection of moving objects from moving camera 
without any knowledge of egomotion, and 
knowledge of 3D/depth/range information 

As mentioned previously, prior work on moving object 
detection has mostly concentrated on the first category 
using 2D optical flow-based EM segmentation and 

(a) Input observed image (b) 2D Optical flow vectors 
Figure I :  Typical estimated 2 0  optical flow image of a 
moving car observed from a moving robot platform 

graph-based normalized cuts [8], and 3D scene flow es- 
timates [7] from multiple calibrated static cameras. The 
last two scenarios where no egomotion information is 
available are the toughest problems to solve, and have 
been addressed to a limited extent [4,5,6] in previous 
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research efforts. In [4], the expected image motion was 
computed using vehicle odometry. In [5] ,  a quadratic 
motion model is used to compute car motion on flat road 
surfaces and outliers are detected using robust multire- 
solution techniques. Stereo disparity measures with flow 
estimates using Kalman filters [9] have been used for 
vehicle tracking on the move but requires expensive 
computing power and does not account for vehicle vi- 
bration on uneven surfaces. Vibration and abrupt motion 
of the robot vehicle on uneven surfaces, coupled with 
errors in optical flow estimates causes spurious optical 
flow vectors, as shown in Figure 2 .  These issues signifi- 
cantly complicate the problem of robustly detecting 
moving objects from mobile platforms. 

We present a general solution (Figure 3) for the prob- 
lem of object detection in dynamic scenes where no 
knowledge of robot egomotion is available. Our algo- 

(a) Moving car (b) Spurious flow (vibrating platform) 
Figure 2: Moving car in scene and spurious computed 
optical flow caused by vibrating robot vehicle. 
rithm is capable of detecting moving objects during 
translational robot motion (up-down vibrations, side- 
wards movement, etc.), and rotational robot motion 
(pitchholl) during normal turns at low-medium speeds. 
We address this problem for two cases: (a) a stereo- 
camera robot system, where range information is avail- 
able, and (b) a monocular camera platform with no range 
information. While our proposed algorithms for dynamic 
object detection should be sufficiently robust to require 
no prior knowledge of robot egomotion, they are required 
to run in real-time on a mobile robot platform moving at 
up to 0.75 m / s  with a camera frame rate of up to 15 Hz. 
These system constraints pose a formidable challenge 
algorithmic requirements 
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Figure 3: Proposed general solution for real-time detec- 
tion of moving objects in dynamic scenes from moving 
robotic platforms 

The paper is organized as follows. In Section 2 ,  we 
discuss our real-time optical flow algorithm that is used 
to estimate temporal-spatial motion patterns in dynamic 
scenes. In Section 3, we detail our real-time segmentation 
algorithm to segment moving objects in the presence of 
robot egomotion using monocular cameras, and in Sec- 
tion 4, we discuss moving object segmentation on the 
move with stereo-cameras. Results are presented in Sec- 
tion 5.  

2. Real-time Optical Flow 
Optical flow computation involves estimation of image 

motion fields from temporal variations of spatial image 
data. Optical flow fields correspond to 2D projections of 
3D movements of surfaces in a scene, either due to dy- 
namic objects in the scene being imaged, or due to ego- 
motion of the robotic platform on which the camera is 
placed. Optical flow traditionally involves feature or re- 
gion tracking [3], coupled with velocity smoothness con- 
straints. Feature tracking solutions, such as the LK 
tracker, are fast, but yield sparse flow maps that may be 
insufficient for moving object detection on the move; 
therefore, we use a region-based flow technique. A 
smoothing constraint is not used, since artificially 
smoothing the flow field could disrupt moving object 
segmentation. We briefly discuss our implementation of 
the real-time flow algorithm below. 

Our real-time optical flow algorithm is based on the 
sum of absolute difference (SAD) and is implemented 
using a vectorized sliding sum method. Each correlation 
score is generated by computing the SAD of a window in 
the current image with a window of the same size in the 
previous image. The resulting unsigned value is our cor- 
relation score. To compute multiple scores we start with 
the window in the upper left corner of our flow search 
window. A sliding correlation window is used, moving 
left-right, top-down over the entire search area. This left 
to right, top to bottom progression aids in the cache effi- 
ciency of our algorithm as well as allows the position of 
the minimum score to be stored as an index into this 
search space. The minimum score is computed by com- 
paring vectors of correlation scores from each position in 
the search window. The index of the minimum correla- 

Figure 4: Real-time optical flow (blue arrows) esti- 
mates on rotating sphere and true flow vectors, 
tion score is then used in a lookup table to determine the 
pixel offsets for the best matching correlation window. 

A sub-pixel flow estimate at each pixel is generated by 
computing a quadratic fit on the center and neighboring 



correlation scores. This provides a fixed point estimate of 
the flow vectors. Each estimate is represented as two 
eight bit values allowing us to search a 15x15 pixel flow 
window and limiting the precision of our estimate to 1/16 
of a pixel. This implementation results in optical flow- 
computations at 6.8 Hz for 320x240 images. Figure 4 
shows our real-time flow results on a rotating sphere. The 
correct flow field is also shown for comparison. 

3. Monocular Moving Object Detection on the 
move 

Monocular camera-based moving object detection on 
the move involves extraction of signatures of moving 
objects from the 2D optical flow field in the presence of 
2D motion flow caused by robot egomotion. This is sig- 
nificantly tougher than detection of moving objects from 
static cameras, where optical flow magnitude can be used 
to segment the moving objects in the scene. Moving ob- 
jects are characterized by discontinuities in the 2D robot 
motion flow field. Algorithms that inherently use region 
homogeneity criteria and locate such discontinuities are 
therefore useful for segmenting moving objects from a 
optical flow field. 

MRF and watershed algorithms have been used for 
outlier estimation in flow fields, but consume too much 
memory and computational resources to be run on our 
real-time robot platform that also computes stereo and 
the optical flow vector field at the same time. We pro- 
pose the use of fast, yet robust, segmentation techniques 
that will efficiently segment out moving objects in the 
presence of robot egomotion. We preprocess the com- 
puted optical flow image to highlight boundary regions 
between moving objects and background pixels. This 
preprocessed image is then segmented to yield labeled 
moving object regions, as discussed below. 

3.1. Monocular Optical Flow Image Preprocessing 
Moving objects in an image are typically characterized 
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Figure 5: Real-time monocular moving object segmenta- 
tion concept 

by a discontinuity in the orientation of the 2-D optical 
flow at the object pixel, and a change in magnitude of the 
2-D flow at the object pixel, relative to background pix- 
els. A change in flow magnitude is observed since typi- 
cally the moving object moves in a different direction 
and with a different velocity than perceived motion in 
background pixels due to robot egomotion. However, the 

flow magnitude gradient is not completely sufficient, 
since the presence of a distinct static vertical background 
structures closeby, with neighboring (2D adjacent) dis- 
tant background pixels will yield large 2D optical flow 
gradients because of the smaller flow vectors on distant 
pixels, relative to the larger displacement of nearer pix- 
els. Therefore, regions that have large changes in flow 
orientation coupled with large flow gradients are labelled 
as potential moving objects. This amounts to doing a 
consistency check on both. the velocitv gradient and ori- 

(a) Flow with moving car (b) Laplacian of 
(marked) the orientation flow map 

Figure 6: Laplacian of orientation map from flow field 

entation gradient at each point. Pixels that do not satisfy 
both criteria are discarded. 

The orientation map of the optical flow field F2 = (um, 
vn) at pixel (x,y) is defined as 0 +, = tan - I  ( v,, / u , ,  ). 
High-pass filtering the orientation map with a 3x3 Lapla- 
cian filter highlights region boundaries with sharp varia- 
tions in flow orientation. We denote this image as DO + , 
The Laplacian of an orientation map (Figure 6b) for a 
car moving horizontally forward (marked with a circle in 
Figure 6a) as the robot moves is shown in Figure 6. 

The gradient of a vector field can be computed in sev- 
eral ways. The divergence of a vector field & = (um, vn) 
at (x,~), V& = au/ax + av/ h measures the ratio of the 
incoming vectors to outgoing vectors at that point. In 
other words, it measures the net outflow at every point in 
the vector field. The curl of a vector, V x Ea measures 
the rotational component at every point in the vector 
field. Both these definitions are inadequate to extract the 
gradient information for moving object detection. We 
compute the gradient in the following manner: 

vE2 = rwaX adhi 
Lav/ax av/ayJ 

The determinant of this matrix measures the volume 
spanned by the gradient vectors. However, if one of the 
vectors has zero components, the resultant volume of the 
gradient matrix will be zero; therefore, the determinant is 
not a suitable measure. We use the I-norm of a matrix 
I V& I I = max( ladaxl + lav/dxl, lav/axl + (dv/dy). The 
gradients, adax, &/ax, etc. are computed using a Sobel 
operator on each of the horizontal and vertical flow com- 
ponent fields. The gradient of the flow field in Figure 6a 
is shown in Figure 7a. 

Since boundaries of moving objects are marked by 
sharp changes in velocity and orientation gradient, the 
orientation flow field is  used to mask the gradient flow 
field by clippings its values when the orientation gradient 



is low, to generate a moving object boundary image M in 
the following manner: 

M, = I 0x2 I I IF DO x..v > T 
= o  Otherwise 

3.2. Monocular moving object labelling 
After the preprocessing steps, moving object bounda- 

ries have high values whereas static background and the 
inside of moving objects are suppressed. Therefore, re- 
gions inside closed boundaries would correspond to 
moving objects. While adaptive thresholding followed by 
closed-contour detection or a binarylgrey watershed are 
feasible solutions, they are computationally expensive. 

Flood filling of the moving object boundary image M, 
using neighboring gradient thresholds as a stopping con- 
dition is a robust solution. The procedure used to fill a 
neighboring pixel from a filled pixel (x,y) at each itera- 
tion in the flood-filling process is: 

where M(x:y’) is the value of one of pixel neighbors, and 
T, is the gradient threshold that should be exceeded in 
order for the flood filling to stop. Therefore, to be added 

M(x:Y~ - T M  <= M(x,Y) <= M(X:Y~ + T,, . 

(a) Gradient of flow field (b) Segmented image 
Figure 7: (a) Flowfieldgradient ofthe image in Figure 
4a.b and (b) monocular sepnented moving object 

(a) (b) 
Figure 8: 3 0  velocivfields (U, v) with (a) right-moving 
car (Figure la) for smooth robot motion; (b) moving car 
(shown in Figure 2a) with vibrating robot motion 
to the connected component, a pixel should have at least 
one neighbour with similar value. 

Flood filling from within a moving object would fill 
the inside of that object. However, this would require a 
seed inside every moving object. Not only would this 
require a-priori knowledge about the number of moving 
objects and the approximate location of the center of 
each moving object, but additionally N independent flood 
filling runs would need to be done, thereby increasing 
computation time. Instead, flood-filling of the moving 
object boundary image M starting from a background 
pixel would fill every background pixel, and yields a 

labeled image where the insides of every moving object 
have not been filled. Figure 7b shows the final segmented 
moving object regions for the scene shown in Figure 4a 
after flood-filling. A flow consistency check on every 
unfilled region is then used to discard false background 
regions, and retain true moving objects. 

4. Stereo-based moving object detection on the 
move 

4.1. 3D velocity estimation 
Before discussing the stereo-based algorithm for dy- 

namic scene detection, we need to define the notation for 
3D scene velocity, and 2D image velocity. Optical flow 
typically estimates 2D pixel motion, but when combined 
with range/depth information can yield estimates of true 
3D pixel velocity. The 2D flow (2D velocity) at pixel 
(x,y) in an image can written as f2 = (uv, vJ. The corre- 
sponding 3D velocity of the pixel in 3D space is denoted 
in caps: ES = ( U ,  Vv Wm). We will ignore the subscripts 
(spatial dependencies) for 2D and 3D velocities in the 
discussion for ease of notation, and refer to the 2D ve- 
locities at (x,y) as (u,v) and 3D velocity at (X,Y,Z) as 
(U, V, W) respectively. In our notation, X corresponds to 
the horizontal axis, Y is the vertical axis, and Z increases 
with depth. Note that the relation between a point (X, Y,Z) 
in 3D space and its projection (x,y) in 2D image space is 
given by: 

x = k X / Z ,  y = k Y / Z  (1)  
where k is dependent on camera optics. Ignoring k, we 

can denote the 3D velocity along the X and Y axes as: 
U = dX/dt = d ( x .  Z)/dt ; U = Z .  dddt + x . dZ/dt 
V = dY/dt = d(y . z)/dt; V = Z .  &/dt + y . d z d t  (2) 

If we assume that W=dZ/dt is small relative to z, the 3D 

u = z . u  

In other words, scaling the 2D flow velocities at each 
pixel bv its deDtWranee vields an approximation to the 
3D flow velocitv at that pixel. Figure 8a shows the hori- 
zontal and vertical components of the 3D velocity vec- 
tors, U and V, for the moving car in Figure 6a. Note that 
the background motion vectors due to the moving cam- 
erdrobot tend to have similar 3D velocity components, 
compared to the 2D velocity vectors in Figure 6a where 
closer objects have larger 2D velocity magnitudes. 
Therefore, segmenting the moving car from a moving 
robot now becomes much easier using 3D velocity esti- 
mates. Figure 8b shows the 3D velocity field for a vi- 
brating downwards robot motion shown in Figure 2. The 
3D velocities of most of the background pixels now uni- 
formly reflect the downwards robot motion, independent 
of range. 

4.2. 
Knowledge of 3D velocity at every pixel greatly aids 

moving object segmentation on the move, as we now 

velocities simplify to the following: 

v = z .  v (3) 

3D flow-based segmentation of moving objects 



discuss. For a moving robot platform, the dominant mo- 
tion in the scene would be due to egomotion, if much of 
the scene was occupied by static background pixels (Le. 
moving objects in the scene occupy relatively fewer pix- 
els than background). Therefore, estimation of the domi- 
nant motion, followed by detection of regions with out- 
lier velocities would assist robust segmentation of mov- 
ing objects on the move. 

Least-median squares, Graph partitioning schemes [XI 
or robust estimation [5] can be used for outlier detection. 
Many of these solutions, while being powerful, are not 
suitable for real-time outlier detection with limited com- 
putation and memory. Therefore, we use a fast Gaussian- 
model based outlier detection method, where we assume 
a Gaussian distribution for the estimated robot 3D veloc- 
ity. If the true robot velocity vector in the X,Y directions 
is given as (Vm,UJ, the estimated velocity vector at a 
background pixel (x,y) is modeled as ( V ,  UJ = (Vm, U,,J + 
N(O,z,$,  where N( ) is a zero mean, normally distributed 
random variable with variance Z-y (2x2 matrix). As- 
suming uncorrelated noise, the estimated background 
velocity at (x,y)simplifies to: 

(Vxr U v )  = (Vmj  u,,J i- N(0, ~ , . v ) .  

The variance is generally independent of robot ve- 
locity, but is a function of depth; pixels at a greater dis- 
tance could have larger uncertainties in depth estimates 
than closer pixels. We assume uniform uncertainty at all 
depths, which further simplifies the expression for the 3D 
velocity of a background pixel due to robot egomotion: 

(V,, UJ = ( V m ,  UJ + N(0, @, 
We use a 95% confidence interval test to generate a 

nocular case, that rejects regions with smooth 3D veloc- 
ity field gradients thereby ensuring that false background 
regions are correctly assigned as background pixels. The 
preprocessing steps involve velocity field orientation 
estimation and velocity field gradient computations 
(Section 3.1) followed by flood filling (Section 3.2). 

5. Results 
We present results of our real-time optical flow algo- 

rithm and real-time moving object segmentation tech- 
nique. The optical flow algorithm was developed and 
implemented in-house at JPL, and currently runs at 6.5 
Hz on a 320x240 image on a 1.7GHz PC platform using 
a 11x1 1 correlation window. On a stereo camera system, 
simultaneous optical flow and stereo computations for 

Figure 9: OpticalJow field (superimposed) and range 
dataJi-om a moving robot in a static scene 

stereo-based moving object detection run at 4.2 Hz on 
the same PC (with 36 disparity searches and a 7x7 win- 
dow size). The monocular and stereo-based optical flow 
segmentation algorithms were implemented in C++, and 
they use the Intel OpenCV library primitives. The seg- 

(a> (b) (c) ( 4  (e) 
Figure 10: (a) Smooth robot motion with moving car and 2 several stationaly cars (b) 2DJowfield and (c) monocular 
segmented image; (d) 3DJowfieldJi-om stereo and (e) stereo-based segmented moving object. 

hypothesis for a valid background pixel as: 
(x,y) = Background IF ( V ,  UJ E (Vm, UJ f 2a; 

In practice, (Vm,U,J is a measure of the dominant 3D 
computed velocity in the scene. We use the mean 3D 
velocity in the scene as (Vm,UJ estimates; more robust 
measures such as the median velocity are computation- 
ally more expensive. Labeling regions with outlier 3D 
velocities as moving objects &d yield incorrect results, 
due to the inaccuracies in the outlier estimation process 
(background pixels could be classified as outliers if a 
conservative outlier threshold is chosen), and range esti- 
mation errors created during the stereo-matching process. 
Therefore, we also apply a flow consistency-based seg- 
mentation to these outlier regions, similar to the mo- 

(x,y) = Outlier Otherwise (4) 

mentation algorithms currently run at 10 Hz on a 900 
MHz PC, and it is expected that they can be sped up after 
further optimization. 

Figure 9 shows results of a moving robot in a static 
scene. The monocular and stereo-based moving object 
segmentation algorithms correctly label all pixels in the 
scene as background pixels. 

We then tested our optical flow algorithm and the 
moving object segmentation algorithms on scenes with 
forward motion of the robot and one moving object with 
translational motion. To analyze the accuracy of the algo- 
rithms, tests were done when the robot had smooth for- 
ward motion, and also when it was subjected to vibra- 
tional upward and downward motion, caused by uneven- 
ness on the road surface. 



Figure 10a shows a moving car with forward smooth 
robot motion on an even road surface. The 2D optical 
flow image is shown in Figure 10b and the monocular 
segmentation algorithm (Figure 1Oc) detects the moving 
car and discards the stationary ones in the background. 
The false alarm regions can be discarded based on region 
size and optical flow consistency measures. Figure 10d 
shows the estimated 3D velocity field from stereo-range, 
where the background pixels have similar 3D velocity, 
which simplifies moving object detection. The 3D stereo- 
based segmented car is shown in Figure 10e. Note the 
absence of any false alarms, compared to the monocular 
segmentation case. 

Figure 1 l a  illustrates the performance of our algo- 
rithms on an uneven road surface where the camera un- 

into the segmentation scheme will definitely result in 
better detection of moving objects on the move. 

Acknowledgements 

The research described in this paper was carried out by 
the Jet Propulsion Laboratory, California Institute of 
Technology, and was sponsored by the DARPA-IPTO 
Mobile Autonomous Robot Software (MARS) Robotics 
Vision 2020 Program through an agreement with the 
National Aeronautics and Space Administration. Refer- 
ence herein to any specific commercial product, process, 
or service by trade name, trademark, manufacturer, or 
otherwise, does not constitute or imply its endorsement 
by the United States Govemment or the Jet Propulsion 
Laboratory, California Institute of Technology. 

(a) (b) (c) ( 4  (e) 
Figure 11: (a) Vibrational robot motion on uneven road with moving car (b) 2DjlowJield and (c) monocular seg- 
mented image; (d) 3Dflowfieidfrom stereo and (e) stereo-based segmented moving object. 

dergoes downwards vibrational motion. The monocular 
segmentation algorithm (Figure 1 1 b) locates the moving 
car but also falsely detects ground regions due to spuri- 
ous 2D flow vectors caused by camera motion on the 
uneven surface. The stereo-based algorithm handles the 
robot vibrations much better, as shown in Figure 1 le. 

6. Conclusions and Future Work 
We have presented a real-time algorithm to detect 

multiple moving objects as the robot undergoes egomo- 
tion. Our technique does not require any knowledge 
about robot egomotion from IMU and handles a range of 
normal camerdrobot motions, including vibrations (due 
to uneven surfaces), translational motion, and rotational 
motion due to robot tums at low-to-medium speeds, 
thereby making the solution general and applicable to 
various dynamic perception problems. This technique 
represents a clear improvement to traditional dynamic 
perception procedures. Initial tests with single and mul- 
tiple moving objects in the scene show excellent results. 
Several improvements can be done to improve the gener- 
ality and robustness of the system. Better outlier detec- 
tion methods can be employed for monocular and 3D- 
stereo based optical flow to better locate moving objects 
in the presence of robot vibrations during motion. Better 
3D velocity estimates by considering the velocity in the 
2-direction can significantly improve moving object de- 
tection accuracy. Improved region growing (such as the 
watershed) could improve performance. Additionally, 
incorporating robot egomotion information, either from 
visual odometry or IMU information if it is available, 
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