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1. APPLYING MATHEMATICS TO ENGINEERING 

1.1 Engineers need more Mathematics? 
PROBLEMS 

Engineering mathematics is generally considered as a 
collection of mathematical methods adapted for the solution of 
physical and engineering problems. Because of their fundamental 
importance, the following mathematical methods are commonly 
included in the mathematics curriculums of engineering schools: 

Vector differential and integral calculus, 
Solution of a system of linear equations, 
Linear system theory, 
Laplace transformation, 
Power series, Taylor and Laurent series, 
Matrices and Eigen-value problems, 
Calculus of variations and “hill-climbing” optimization 
techniques, 
Methods of approximation, 
Statistical methods, 
Fourier series, Fourier integrals, and Fourier transformation, 
Boolean algebra, 
Numerical solutions of ordinary and partial differential equations, 
Legendre and Chebyshev polynomials, and Bessel functions. 
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The list is incomplete, but even so it is quite comprehensive. 
Solutions to physical and engineering problems often might require 
lengthy numerical calculations but they seldom require the use of 
advanced methods of mathematical analyses. This is especially true when 
only an approximate solution (instead of an exact solution) to the 
problem in hand is all that interested the engineer/scientist involved. If 
this is the case, why is it often said that engineers nowadays need more 
and more mathematics? 

1.2 Weaknesses in the Mathematical Education of Engineers 

The application of mathematics to physical problems involves 

( 1 )  Idealization of a physical situation and formulation in 

(2) Manipulation of the mathematical symbolism, and 
(3) Interpretation of the solution in physical terms. 

three stages: 

mathematical terms, 

In a past survey, it was reported that the majority of engineers 
considered the formulation of a physical problem in mathematical terms 
(Step 1) the hardest step. A contributory reason may be that much 
mathematics teaching stresses the manipulative aspect (Step 2) at the 
expense of the model building aspect. Additionally, it is the observation 
of this author that many practicing engineers have difficulty in drawing 
conclusions from the mathematical solution of the problem. They also do 
not know how to interpret the solution in physical terms (Step 3). In other 
words, it seems that in many cases the amount of mathematics taught in 
engineering schools is quite adequate, but the ability to find the proper 
mathematical setup for a given physical or engineering problem is not 
taught to the students to a sufficient degree. Therefore, the need is not so 
much for “more” mathematics as for a better training in problem 
formulation. 

If these observations are valid, steps must then be taken to 
improve the current state of affairs. For what good it is to be able to 
correctly solve an incorrectly formulated problem? In the opinion of this 
author, at a minimum, mathematicians who teach engineering 
mathematics must be aware of the engineering applications of the 
mathematics they teach and be prepared to present the subject in a way 
that the engineering students will find relevant and stimulating. To this 
end, the mathematicians involved must establish contact with professors 
from the engineering departments from which the majority of their 
students come. Together, they should demonstrate how a complex “real- 
life” engineering problem can be simplified and then solved using a 
mathematical method the mathematician has just introduced. The 
engineering staffs have the added responsibility of ensuring that students 
be aware of the limitations imposed on the results of a mathematical 
application by the assumptions imposed on the original physical situation 
in reducing it to a reasonable mathematical model. The relevancy 
between a mathematical technique and the engineering problems that the 
students must solve must be convincingly established. 
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Yet one more way to supplement the teaching of mathematics to 
engineering students is for practicing engineers to share their experience 
with their teaching colleagues. This can take the forms of invited guest 
speakers, published books and articles in engineering magazines, 
organized workshops, and others. The objective of this paper is to 
illustrate how common mathematical methods could be used in the 
effective solutions of aerospace engineering problems. To this end, we 
use three engineering problems that are related to the design of the 
Attitude and Articulation Control Subsystem (AACS) of the 
Cassini/Huygens spacecraft. These examples are selected because of the 
author’s familiarity with them. They are by no mean the most important 
or most mathematical challenging problems. The problems addressed are: 

(1) In-flight estimation of the Cassini spacecraft’s inertia tensor, 
(2) The design of a Cassini thruster leakage detection monitor, and 
(3) The design of the Cassini spacecraft pointing control system. 

1.3 Huygens and Cassini: the Applied Mathematicians 

The great Dutch philosopher Christiaan Huygens (1629- 1695) 
was both a physicist and a mathematician. He invented the pendulum 
clock in 1656. He discovered the rings of Saturn in 1655-1656 and the 
largest moon of Satum, Titan, in 1655. In his studies of mechanics, he 
introduced the important concepts of “moment of inertia” (1673) and 
“centrifigal force.” He also made the first accurate determination of the 
value of acceleration due to gravity and showed that it varied with 
latitude. 

In 1676, Huygens conceived his geometrical theory of wave 
propagation in optics. In this theory, he considered light as the effect of 
“waves’’ propagating spherically in ether. In 1678, Huygens established 
the Huygens ’ principle of wave front propagation. This principle 
recognizes that each point of an advancing wave front is in fact the center 
of a fresh disturbance, and the source of a new train of waves. Put in 
another way, a wave front may be divided up into an infinite number of 
point sources. The contributions due to this distribution of point sources, 
when summed together, is then the contribution of the original 
disturbance source. Today, this same idea is used in numerous branches 
of engineering and physics (from electromagnetic scattering to digital 
signal processing), though now it generally goes by the name, the 
Superposition Theory. Superposition theory is applicable to only physical 
phenomena (such as wave propagation) that are described by linear 
partial diflerential equations. 

Huygens work in physics is so grand that his mathematics is apt to 
be overlooked. In fact, in the years 1660-1680, he was undoubtedly 
Europe’s greatest mathematician. Newton thought that Huygens is “ the 
most elegant mathematician” of their time. Huygens contributed many 
elegant results in the infinitesimal calculus leading toward the invention 
of calculus. Related to his work on the pendulum clock, he published the 
Huygens’ formula: “The length of an arc of a circle is approximately 
equal to twice the chord subtending half the arc plus one-third of the 
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difference between twice this chord and the chord subtending the entire 
arc.” In the theory of numbers, Huygens contributed to the solution of 
the Pel1 equation. The Pell equation was examined by W. Brounker, P. de 
Fermat, J. Wallis, and L. Euler, and is a Diophantine equation of the form: 

x 2 - r  y 2 = 1  

Here, r is a positive integer, & is an irrational number, and the 
unknowns x and y are integers. Huygens’ solution to the Pell equation 
involved the use of continued fraction, a mathematical technique he 
pioneered. Let PIQ (s = O,l,..) be the convergent fractions for the 
expansion of & in a continued fraction with period k, then the positive 
solutions to the Pell equation take the form: 

If k is even, x = PknPl, y = Qh-l (n = 1,2,3 ,... ), 

For example, since* = [3;1,2,1,6], it follows that the first five 
convergent fractions of f i  are 3/1, 4/1, lU3, 15/4, and 101/27. Since 
the continued fraction representation of ./14 has a period of 4, the 
convergent fraction [P41,Q4.,] = [15,4] provides the first solution of the 
Pell equation x2-14y2=1. The next convergent fraction is [449, 1201. 

Giovanni Domenico (later Jean Dominique) Cassini ( 1625 - 17 12) 
was a famous French-Italian astronomer. He discovered four of the 
eighteen Saturnian moons (Iapetus in 1671, Rhea in 1672, Dione in 1684, 
and Tethys in 1684). Cassini’s most important work concerned the size 
of the solar system. His published value of the Astronomical Unit (A.U.), 
the mean distance between the Sun and the Earth was 140 million km. 
This value is just a few percents lower than today best estimate of 149.5 
million km. 

Again, Cassini accomplishments in physics and astronomy are so 
grand that his mathematics is overlooked. In 1680, Cassini studied 
algebraic curves of the fourth and higher orders. This study was made in 
connection with his work on the relative motions of the Earth and Sun (in 
collaboration with Chistiaan Huygens and Robert Hooke in 1674). Some 
of these algebraic curves are now named the “Ovals of Cassini” or the 
“Cassinian Curve.” See Figure 1. 

The Cassini oval is described as the locus of a point such that the 
product of the distances from two fixed points is a constant. These ovals 
are sometimes called the Cassinian curves, and are described by the 
following formulae: 

((x - al2 + y2)((x + al2 + y2) = c4, a > 0, c > 0. 
Polar coordinates (r,@) : r4 + a4 - 2r2a2cos(2@) = c4. 
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For c > a, the Cassinian curve describes a closed curve that has a 
constriction in the neighborhood of x = 0. For a = c, the Cassinian curve 
becomes the Bernoulli lemniscate. For c < a, the curve splits into two 
separate closed curves. Such a unique characteristic of the Cassinian 
curves has been used to advantage in modeling cell division (however, cell 
division does not maintain the symmetries found in the mathematical 
curves) by biologists. 
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Figure 1. A Cassini ‘‘Oval’’ (Cassinian Curve) 

In 1680, Cassini published an interesting result that is related to 
the Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ,... In this 
sequence, each number is the sum of the preceding two. The numbers in 
the sequence are denoted by F,, and are formally defined by: 

F, = 0; Fl = 1; Fn+2 = F,+, +Fn, n 2 0. 

This famous sequence was published in 1202 by Leonard0 Fibonacci. 
The Fibonacci numbers have many interesting properties, one of which is: 

7G Limit + 2cos(-) = Golden Ratio 
F, 5 

Many artists and writers have said that the Golden Ratio is the 
most aesthetically pleasing proportion and there are many myths that are 
connected with it. In 1680, Cassini published the elegant identity: 



6 Allan Y. Lee 

which can be easily proved by induction. It is now named Cassini's 
Fibonacci Identity. 

1.4 The Organization of this Paper 

This paper is organized as follows. Section 2 gives brief 
descriptions of the Cassini/Huygens mission to Saturn and Titan as well as 
the functions of the Attitude and Articulation Control System (AACS). 
The formulations and solutions of the three Cassini AACS design 
problems are given in Section 3. Discussions on the philosophy 
employed and considerations taken in the solutions of these problems are 
given in Section 4. Conclusions are given in Section 5. 

2. CASSINI/HUYGENS MISSION TO SATURN AND 
TITAN 

The Cassini spacecraft was launched on 15 October 1997 by a 
Titan 4B launch vehicle. After an interplanetary cruise of almost seven 
years, it will arrive at Saturn in July 2004. To save propellant, Cassini will 
make several gravity-assist flybys: two at Venus and one each at Earth 
and Jupiter. Figure 2 shows the interplanetary trajectory design of the 
Cassini mission. 

CASSINI 
INTERPLANETARY TRAJECTORY 

'. 

I -; PERIHELIA 
i 27 MAR 4 0 0 8  0.m AU 

29 JUN19800.72AU 

Figure 2. Cassini Interplanetary Trajectory 

Unlike Voyagers 1 and 2, which only flew by Saturn, Cassini will 
orbit the planet for at least four years. Major science objectives of the 
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Cassini mission include investigations of the configuration and dynamics 
of Saturn’s magnetosphere, the structure and composition of the rings, 
the characterization of several of Saturn’s icy moons, and others. The 
Huygens probe, developed by the European Space Agency, will be 
released in December 25, 2004. It will study the atmosphere of Titan, the 
only moon in the solar system with a substantial atmosphere. Detailed 
descriptions of various science instruments carried onboard the Cassini 
spacecraft are given in Ref. 1.  Fig. 3 depicts the Cassini spacecraft in its 
“Cruise” configuration. 

Figure3. Cassini Cruise Configuration 

Cassini’s AACS estimates and controls the spacecraft attitude. It 
responds to ground-commanded pointing goals for the spacecraft’s 
science instrument and/or communication antennas with respect to targets 
of interest. The AACS also executes ground-commanded spacecraft 
velocity changes. Hardware that are used by AACS to perform these 
functions include two attitude control flight computers, an accelerometer, 
four Reaction Wheel Actuators (RWA), two Sun sensors, two stellar 
reference units (star trackers), two inertial reference units (each with four 
sensing axes), and others. This hardware is controlled using on-board 
flight software algorithms that reside in the flight computers. An overview 
of the Cassini attitude control algorithm designs is given in Ref. 2. 



8 Allan Y. Lee 

3. CASSINI ATTITUDE CONTROL SYSTEM DESIGN 

3.1 In-flight Estimation of the Cassini Spacecraft’s Inertia 

Tensor3” 

Several attitude control algorithms onboard the Cassini spacecraft 
use knowledge of the spacecraft’s 3x3 inertia tensor. This tensor is used 
by both the AACS fault protection algorithms and the attitude estimator. 
Knowledge of the inertia tensor is also used by the RWA controller that is 
used to maintain precision spacecraft attitude control during imaging of 
science targets. As such, a highly accurate estimate of this inertia tensor 
(matrix) is important. 

Before launch, Cassini’s inertia tensor was estimated by adding 
together the moments of inertia of the individual components of the 
spacecraft. The moments of inertia of individual components were 
computed with respect to the predicted center of mass of the overall 
spacecraft before being summed. After launch, the onboard spacecraft 
inertia matrix is updated periodically using estimates of how much 
propellant has been used to date, as well as any discrete events (for 
example, the deployment of the magnetometer boom) that would affect 
the inertia matrix. The inertia matrix of the spacecraft on March 15, 
2000, using the “sum-of-all-components” method, is estimated to be: 

kg-m2 (1) 1 8810.8 -136.8 115.3 
-136.8 8157.3 156.4 
115.3 156.4 4721.8 

This method of calculating the inertia tensor had not been validated 
against flight estimate using an independent approach until the 
“conservation of angular momentum” approach that was proposed in 
Ref. 3. 

The underlying principle of the “conservation of angular 
momentum” approach is explained as follows. When a spacecraft is 
slewed using the RWAs, the total angular momentum of the spacecraft 
expressed in an inertial coordinate frame is conserved. This conservation 
occurs because the addition of angular momentum on the spacecraft due 
to external torque, such as solar radiation torque, is typically very small 
over the duration of the slew. Approximate magnitudes of the external 
torque experienced by the Cassini spacecraft are given in Ref. 4. On 
March 15, 2000, the largest per-axis external torque due to all sources 
was about the spacecraft’s X-axis, and was less than 1 .5~10”  N-m. The 
conservation of angular momentum allows the total angular momentum 
evaluated just prior to the beginning of the slew to be set equal to the total 
angular momentum evaluated throughout the slew. This equality gives an 
equation for each sample time step throughout the slew with only one 
unknown: I,, that can then be estimated via a least-squares approach. 
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Note that I,, contains the moments of inertia of the three stationary 
reaction wheels. 

Over a spacecraft slew, good estimates of the following quantities 
are available, either from direct measurement prior to launch or from the 
telemetry data sent down from the spacecraft: 

(1)  Spacecraft angular rates (a,, at' and o,), 
(2) RWA spin rates with respect to its spin axis (pl, p,, and p3), 
(3) Spacecraft Euler parameters (q l ,  q2, q3, and q4), 
(4) Inertia matrix of the three RWAs (I,,,), and 
( 5 )  Transformation matrix from the RWA spin axes to the XYZ 

The total angular momentum vector of the spacecraft, as 
expressed in the spacecraft body frame, has two components: 
H,,, = H,, + HRwA. The component due to the spacecraft rates is: 
H,, =I,,@ where l5 = [a,, o,, oJT. To determine the angular 
momentum of the RWAs, first define 3 = [p,, p,, p3IT, where pi is the 
angular rate of the ith RWA about its spin axis. To find H,,,, we simply 
multiply fi  first by the inertia matrix for the RWAs, and then multiply by 

body coordinate frame (T). 

- - - 
- 

the transformation matrix T. Note that the component of H,,due to 
spacecraft rates has already been accounted for in H,,. 

- 

The conservation of angular momentum is only valid in an 
inertial coordinate system. As such, a transformation matrix, P, defined 
here from the J,, inertial frame to the body coordinate frame, must be 
defined. It is computed using the four Euler parameters (ql, q,,. q3, and 
q4). Multiplying the total angular momentum of the spacecraft in body 
coordinates by the inverse of the transformation matrix P gives the total 
angular momentum vector in the inertial coordinate frame. The resultant 
vector, given below, is approximately conserved over a spacecraft slew. 

The spacecraft is quiescent just prior to the slew, with all angular 
rates approximately zero. As such, the initial angular momentum vector 
is given by: 

Invoking the conservation of angular momentum, one gets: 
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Now, for the sake of simplicity, consider the special case in which 
the spacecraft slews about one axis at a time. In this case, the rate 
components about the other two axes go to zero. For example, for a slew 
about the X-axis, Eq. ( 5 )  becomes: 

I s C r ' ' ]  = P(t)P-'(O)TI,,fi(O) - TIRwAfi(t) ( 6 )  

Denote the right hand side of Eq. (6) by a new vector. Q(t) = [Q,(t) Q,(t) 
Q,(t)]'. Using this notation, the first component of the vector-matrix Eq. 
(6) is: IX.px(t)  = Qx(t). In Eq. (6), both q ( t )  and Qx(t) will take on a 
new value for each sample instant, t, throughout the slew, producing a 
separate equation for each sample instant. If a x a n d  Q,  represent N,xl 
column vectors of data points from all sample instances (N, is the total 
number of samples), a least-squares approach can be used to find the best 
estimate of Irx: 

- 

This process can be repeated for I,, and I,, using the pairs of 
vectors [a, Q,] and [a, Qz], respectively. The entire process can then 
be repeated for slews about the Y and Z-axes as well. This process will 
give one estimate for each of the moments of inertia and two estimates for 
each one of the products of inertia (POI). The two POI estimates have 
been averaged together to obtain the best estimate. 

An alternative to the approach described above is to estimate all 
six independent components of the inertia matrix simultaneously using 
all the slew data (X, Y, and Z-axis slews) at the same time. The "axis-by- 
axis" approach described above was used because of its relative 
simplicity. 

At the time when this study was made, only one maneuver had 
been done with the Cassini spacecraft using the RWAs. This maneuver 
was done on March 15, 2000 and lasted four hours. The maneuver 
consisted of a slew about the Y-axis, followed by a slew about the X-axis, 
another slew about the Y-axis, a slew about the Z-axis, and finally a very 
small slew about the Y-axis. Telemetry data for the Euler parameters, 
spacecraft per-axis rates, and RWA spin rates are available over the entire 
slew duration, at a sample frequency of 0.25 Hz. 

The data from March 15, 2000 were analyzed using the proposed 
methodology. The resulting best estimate for the inertia matrix of the 
spacecraft was: 

- -  
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(8) 1 8655.2 -144 132.1 
-144 7922.7 192.1 kg-m2 
132.1 192.1 4586.2 

When compared to the inertia matrix obtained using the existing 
method (see Eq. (l)), this result validates the existing method, as they are 
reasonably close. The current results are consistently lower than their 
counterparts given in Eq. (1) by at most 3%. This offset could point to a 
bias in the estimate of the spacecraft inertia matrix prior to launch. A 
bias in the pre-launch estimate is possible because the knowledge 
requirement for the MOI of the “dry” spacecraft is quite large: 210%. 
Also, the POI estimates are within 40 kg-m2 of their counterparts given in 
Eq. (1). The magnitudes of the POI estimates are all larger than their 
counterparts given in Eq. (l), which again could be evidence of a bias. 
Pre-launch, the knowledge requirement for the POI of the “ d r y ”  
spacecraft is +75 kg-m2. The estimation uncertainty matrix associated 
with I,, is derived in Ref. 4. 

In conclusion, we note that the least squares estimate of the 
Cassini spacecraft’ s inertia matrix obtained through the conservation of 
angular momentum method described above agrees closely with that 
determined by the existing method. This agreement validates the 
“conservation of angular momentum” method. Using this method, the 
moments and products of inertia of a spacecraft could be easily estimated 
whenever telemetry data associated with slewing the spacecraft by the 
reaction wheels is available. 

A 

3.2 Model-based Thruster Leakage Monitor Design5 

Cassini uses a set of eight thrusters to maintain three-axis attitude 
control of the spacecraft. Figure 4 shows the locations of the four thruster 
pods. On each and every one of these pods are mounted two primary 
thrusters and their “backups.” Pointing controls about the Spacecraft’s 
X and Y axes are performed using four Z-facing thrusters. Controls about 
the Z-axis are performed using four Y-facing thrusters. The mono- 
propellant propulsion system for Cassini is of the blow-down type. With 
this system, the hydrazine tank pressure, which is ~ 2 5 5 0  kPa at launch, 
will decay slowly with time as hydrazine is depleted through thruster 
firings. 
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y?l c.m . 
Y3 

Z S  
Figure 4. Cassini Thruster Pod Location 

If one of the eight prime thrusters leaks, e.g., becomes stuck open, 
the expulsing hydrazine will impart momenta on two of the three 
spacecraft axes. In response to the resultant attitude control errors that 
appeared on the affected axes, appropriate thrusters will be fired to 
maintain the commanded spacecraft attitude. Obviously, the draining of 
the hydrazine, the excessive firing of the opposing thrusters, and the 
accumulation of angular momentum on the spacecraft cannot be allowed 
to persist indefinitely. To protect Cassini against the occurrence of a 
leaky thruster (an unlikely event), a set of three thruster leak-detection 
monitors has been designed, tested, and implemented in the flight 
software. 

The main requirement on the thruster leakage-detection monitor 
design is as follows6: 

“In the Cruise, Earth approach, and Venusmarth flyby phases, the 
attitude control subsystem shall be able to detect any single 
thruster leak that applied an average torque of at least 0.005, 
0.001, and 0.05 Nm, respectively, about any spacecraft axis, and 
shall isolate the single thruster leak before it applies more than 
100 Nms of angular momentum about any spacecraft axis.” 

Conventional fault detection methods typically involve the 
monitoring of one or more of the following quantities: measured system 
outputs, estimated system states, and estimated process parameters. These 
measured or estimated quantities are then compared with their nominal 
values, and their deviations are computed. If any of these deviations 
persistently exceeds its pre-selected allowable tolerance, an error monitor 
is triggered to report this abnormality. 

This conventional error detection approach is not applicable here 
because there is not any single measured or estimated quantity that 
signals the presence of a leaky thruster. A different approach must be 
taken in designing the thruster leakage monitors. To this end, we first 
note that the rotational motion of the spacecraft is governed by the 
following Euler equation: 

- d - - - 
Isc& + i3 x (Isc& + H,,,) = TRWA + TpMs + TEN” + TEAK + E‘ (9) 
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In Eq. (9), I,, is the S/C’s inertia tensor. The spacecraft angular 
rate vector6 is estimated by an onboard attitude estimator. However, it is 
typically noisy. Hence, the commanded angular rate vector generated by 
the on-board Attitude Commander is used instead. The spacecraft’s 
angular acceleration vector is also estimated by the Attitude 
Commander. Reaction torque exerted on the spacecraft by the reaction 
wheels, TRWA, are estimated onboard by an RWA “manager.” Torque 
exerted on the spacecraft due to thruster firing, TPMs, is not available 
directly. Instead, the on-board propulsion “manager” estimates the force 
impulse due to all prime thruster firings. Using the estimated thruster 
moment arms, these force impulses are next converted into three per-axis 
torque impulses. In effect, what we have estimated is jTpMS(t)dt. 

Environmental torque due to gravity gradient, solar radiation, 
magnetic field, atmosphere, etc. is captured in TEN”. This torque is 
typically very small except during planet and Titan flybys. Torque due to 
a leaky thruster is denoted by TLE,,. For example, if the Z, thruster leaks, 
there will be a negative and a positive torque acting on the S/C’s X and Y 
axes, respectively (but with no torque about the Z-axis). Finally, E‘ is used 
in Eq. (9) to account for both the knowledge uncertainties associated with 
various S/C’s parameters (e.g., inertia tensor) and estimation error 
associated with various derived spacecraft variables (e.g., thruster 
momentum impulses). 

The error monitor design takes advantage of the fact that the 
dynamical motion of the spacecraft is governed by Euler’s equation. The 
occurrence of a leaky thruster will impart torque on the spacecraft, upset 
the “balance” of the Euler’s equation. The monitoring of angular 
momentum that is generated by torque from a leaky thruster is one 
effective way to detect the presence of a leaky thruster. To this end, let us 
define the following residual angular momentum vector: 

R(t) = Ji{TLEAK + Z}dt 

- 
- 

- 

t - 
=[{Isc&+6 X(I~C~+HRWA)-TRWA -T;Ms}dt (10) 

0 

- ‘f Here, TpMs is a low-pass-filtered version of the noisy raw data and TEN” 
has been neglected in Eq. (10). With no leak, R contains only small zero- 
mean random fluctuations, due to E‘. Whenever a leak appears, two of 
three TLEAK components will be nonzero. If the leak persists, the resultant 

- 
nonzero components of R(t) will grow (either increase or decrease) with 
time. In time, one of these components will exceed a pre-selected angular 
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momentum threshold (R,): (R,(>R, (where i = x, y, or z axis), triggering 
the error monitor for that particular spacecraft axis. Note that the 
polarities of Ri (where i = x, y, or z axis) reveal the identity of the leaky 
thruster. 

To detect a leak before it imparts more than 100 Nms on any 
spacecraft axis, we select R T  to be 50 Nms. The rationale for this selection 
is as follows. The first time the 50-Nms threshold is exceeded, a fault 
protection activation rule, in attempting to stop the leak, will reset the 
controller unit for the thruster valve drive electronics. At the same time, 
all three components of fi are reset to zero. If the reset of the controller 
unit does not stop the leak, the same two R components will continue to 
grow with time. The second time the 50-Nms threshold is exceeded, fault 
protection response will initiate a swapping of the thruster branches, 
which will stop the leak. In this way, we will be able to stop the leak 
before it imparts a total of 100 Nms on any spacecraft axis. The selected 
50-Nms angular momentum threshold is changeable via command. 

- 

3.3.1 Coping with Uncertainties 

Not all the uncertainty terms that affect 6 are random in nature. 
In particular, the thruster-to-thruster variation can impart systematic 
errors to the Euler equation, causing the R components to grow with 
each thruster firing, even without a leak. As such, prolonged thruster 
firings could trigger the lRil 2 RT criterion. Two modifications to the 
described leak detection scheme work to avoid such a false alarm. 

is estimated to account for angular 
momentum accumulation due to thruster-to-thruster variation. The 
estimation of the X-axis component of R is given here as an 
illustration. Rotation about the spacecraft X-axis is made using either the 
Z, and Z, thruster pair or the Z, and Z, thruster pair. Hence, the X-axis 
component of RCom is proportional to both the differential thrusters’ 
impulses and the size of the thruster-to-thruster variation: 

- 

- Corr First, a correction vector R 

- Corr 

AJx =I AJz3 + AJz4 - AJ,, - AJ,, 1 
RC,““ = ~ x ~ x ~ . ~ x A J ,  (1 1) 

Where AJzj is the accumulated impulses due to the Zj thruster over the last 
sample time. These accumulated impulses are estimated by the onboard 
propulsion “manager.” The thruster-to-thruster variation q is estimated 
to be 0.05 (i.e., 5%)  at launch. If a better estimate is available post-launch, 
the current value could be updated using the same command that was 
used to alter R,. The factor 1.6 represents the average magnitude of the 
four Z-facing thrusters’ moment arms (in meters). The factor 2 is used to 
account for the standard deviation of a variable that is the suddifference 
of four variables, each with a standard deviation of 0, being 20. The Y 
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and Z component of E''"' are computed similarly. The correction vector 
ECom is then added to E, and the modified e is used in the momentum 
threshold check. 

Next, after the angular momentum threshold is exceeded, a 
second condition T T  5 TIimit, is checked before any fault protection 
action is initiated. Here, TjTrigger (i is the spacecraft axis whose IRjI 
exceeded RT) is the time it takes lRjl to exceed R, since it was last reset. 
The TIimic threshold is a time-domain threshold that is to be pre-selected. 
If T F e r  is larger than TIim", then we conclude that the threshold was 
exceeded not because of a thruster leak but is rather due to a systematic 
accumulation of an ular momentum from rolonged thruster firings. On 
the other hand, if T!'gger is smaller than TIim' then there is a real leak, and 
corrective action from the onboard fault-protection logic is needed. This 
time domain trigger criterion is illustrated in Figure 5. 

Ttrigger > T limit 

This is not a leak. 
Ttrigger < T limit 

This is a leak. 

Figure 5. Leak Detection Scheme 

For the Cruise phase, we select TIki1 to be 10 hours. Note that this 
value is larger than 50/0.005/3600 = 2.8 hours. Hence, the Cruise phase 
leak detection requirement of 0.005 Nm could be met. Early Cassini 
flight data indicate that hydrazine is being consumed at a rate of about 
1.0 to 1.5 grams per day. This consumption rate is likely to decrease 
once the spacecraft gets farther away from the Sun. Using a worst-case 
hydrazine consumption rate of 1.5 gramdday, an upper bound on the 
per-axis angular momentum (due to thruster-to-thruster variation) that is 
accumulated over 10 hours is about 0.05 Nms. It is about three orders of 
magnitude smaller than R, (50 Nms). As such, the TIimit = 10 hours is a 
good choice for the Cruise phase of the Cassini mission. The time 
threshold TIimt is changeable using the same command that is used to alter 
R,. It is to be changed several times throughout the mission to reflect the 
changing torque detection requirements described above. 
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3.3.2 Simulation Results 

The coded leak-detection error monitor design was tested using 
the Cassini Flight Software Development Test bed. Attitude control 
actuators (e.g., thrusters), attitude determination sensors (e.g., 
gyroscopes), and the spacecraft itself are represented by validated 
analytical models in this test bed. This test bed can simulate both the 
pulse-to-pulse and thruster-to-thruster variations, as well as disturbance 
torque such as that due to a leaky thruster. 

The leak-detection monitor is designed to perform its function in 
many spacecraft scenarios. It must work when the spacecraft is in a 
quiescent state with its attitude controlled by thrusters (or RWA) as well as 
when the spacecraft is being slewed about an axis using thrusters (or 
RWA). As such, its performance in all these scenarios has to be evaluated. 
In each of these scenarios, test variants that represent combinations of the 
following conditions must be generated and tested: 

(1) One of the eight prime thrusters is selected as the leaky thruster. 
(2) The leaky thruster is from the prime or backup thruster branches. 
(3) Leakage levels may vary from 0.1 to 100% of the nominal thrust of 

(4) The time at which the leak occurred must also be considered. 
A multitude of test variants has to be generated and tested to 

provide a comprehensive validation of the performance of the thruster 
leak-detection monitor design. For brevity, only results for a scenario in 
which the Z, thruster develops a 10% leak while the spacecraft is being 
slewed about the Y-axis are given here (see Fig. 6) .  

With reference to Fig. 6,  we see that a 10% leak in the Z, thruster 
will generate a disturbance torque of -0.158 and +0.124 Nm about the 
S/C’s X and Y axes, respectively. This torque will cause the X and Y 
components of the residual momentum vector to grow with time. About 6 
minutes (which is well below TIimit) later, lRxl first exceeded R,, causing the 
X-axis error monitor to be triggered. In this particular simulation, we 
assume that the first corrective action initiated by the fault protection 
logic (the reset of the controller unit of the thruster valve drive 
electronics) does not stop the leak. Accordingly, both R, and R, will 
continue to grow with time after having been reset to zero. The next 
triggering of the error monitor will lead to the swapping of the thruster 
branches, which stopped the leak. 

In this work, a thruster leakage monitor is designed based on the 
simple fact that a leaky thruster will upset the “balance” of the Euler’s 
equation of motion of the spacecraft. The computational effort involved 
in executing this set of monitors by the flight computer is moderate. With 
only two thresholds to select, this set of monitors could be easily managed 
by Mission Operations controllers. Simulation results indicated that the 
design meets all the requirements. In particular, the design can detect 
thruster leaks that are comparable to 0.1% of the thruster magnitude and 
does so quickly before an unacceptable level of angular momentum is 
imparted on the spacecraft. The robustness of the design against 
knowledge uncertainties of various spacecraft parameters as well as 

the thrusters. 
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estimation errors of various derived variables has also been confirmed via 
extensive simulations and five years of flight experience. 

Leak Detected 

-4- - - - - - 3 - - 
/ I  

.~ - ’ O r -  3 - - - / I  

Figure 6. Time Histories of Residual Momentum 

3.3 Cassini Pointing System 

All spacecraft pointing needs could be stated as follow: “align a 
body vector with an inertial vector.” We call the two vectors involved the 
“primary” vector pair. This is the fundamental requirement of a 
pointing goal. However, to uniquely define the spacecraft inertial attitude, 
the pointing of a second pair of vectors (called secondary vector pair) 
must also be specified. The spacecraft pointing control system will align 
the secondary vectors as close as possible subjected to the constraint 
imposed by the primary vector pair. 

Inertial pointing of various oriented objects that are mounted on 
the spacecraft is a central part of spacecraft operations. The pointing 
system on the Cassini spacecraft serves many “customers.” Examples are 
the pointing of a science instrument (such as the narrow angle camera) at 
Saturn, the pointing of the high gain antenna at the Earth, the pointing of 
the Huygens Probe axis in a pre-determined Probe ejection attitude, and 
others. In the narrow angle camera example, the primary body vector is 
the bore sight vector of the camera, which is “fixed” on the spacecraft’s 
base body. The primary inertial vector is a vector from the spacecraft to 
Saturn, which varies slowly in time. 

The Cassini pointing system is a “general purpose” pointing 
engine. It accepts generic pointing commands regardless of whether the 
commands involved are for the purpose of science pointing, antenna 
pointing, or others. The engine consists of several inter-connected 
software “objects” working together as a team. Some are collections of 



18 Allan Y. Lee 

Target Table Propagator 

Body Vector Table 

Base Attitude Generator 

algorithms that run periodically. Others are tables with associated 
algorithms that run when changes to the tables are commanded. Table 1 
and Figure 7 (both are adapted from Reference 7) capture the principal 
components of the Cassini pointing system design. 

Evaluates members of the Target Table 

A commandable list of fixed body vectors 

Evaluates the base attitude for the commanded target 

Table 1. Principal Components of the Cassini Pointing System Model 

Constraint Table 

Constraint Monitor 

I Inertial Vector Table A commandable list of time-varying inertial vectors which I I are related to one another in a tree topology 

A commandable list of pointing geometric constraints 

Detects and corrects violations of constraints by the 
commanded attitude 

I Evaluates active members of the Inertial Vector Table I Inertial Vector I Propagator 

I A list of paths through the inertial vector tree that are I currently needed for target pointing 
Target Table I 

I Offset Profile Generator Evaluates commanded pointing profiles which are offsets I I relative to the base attitude 

Inertial Vector Table Target Table Body Vector Table 

Commands 

Autonomous Entries 

Time (All Components) fn 

1 

Generator 

0 

Constraint Table 

P$ 
Constraint 

Monitor 
c 

Figure 7. Cassini Pointing System Model’ 

In this paper, for brevity, only the Inertial Vector Propagation 
(IVP) object is described in details. Readers who are interested in the 
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details associated with other components of the entire Cassini pointing 
system model should consult Ref. 7. 

Consider the pointing scenario in which we would like to point 
the narrow angle camera at Saturn. This pointing could be achieved if we 
have knowledge of the spacecraft-to-Saturn vector in an inertial 
coordinate frame. This inertial vector could be computed onboard if we 
have knowledge of the spacecraft and Saturn positions. Hence, we need, 
in some form, knowledge of the spacecraft trajectory, ephemerides of the 
planets (for example, Saturn) their moons (for example, Titan), and the 
motion of target-body features with respect to the target bodies (for 
example, the predicted landing site of the Huygens probe on the surface 
of Titan). It will be shown in the following sections that the spacecraft 
trajectory and the celestial-body ephemerides could be adequately 
“fitted” by conic sections (called “conics”) and Chebyshev 
polynomials. 

As depicted in Fig. 7, three tables are maintained inside IVP. 
These are the Inertial Vector Table (IVT), the Body Vector Table (BVT) 
and the Target Table (TT). The IVT stores propagated values of (in 
general) time-varying inertial vectors. The BVT stores body-fixed unit 
vectors for various objects (such as the bore sight vector of the camera) 
identified in the BVT. The TT carries the list of “bases” and ”heads” 
and the information allowing a base-to-head vector to be constructed. 
Each entry in the table contains two names, one for the object at its head, 
the other for the object at its base. The remaining data for each entry is a 
description of the motion of the vector and the time interval over which 
this description is accurate. 

To determine the location of a target from the spacecraft, it may 
be necessary to follow a path through two or more vectors. During Tour, 
the Earth is usually found by following a vector path through three tree 
“branches”: spacecraft to Saturn, Saturn to Sun, and Sun to Earth. This 
path is depicted in Fig. 8. During a close flyby of Titan, the path would 
contain one more entry: spacecraft to Titan, Titan to Saturn, Saturn to 
Sun, and Sun to Earth. Once the path to a target is known the vectors 
along the path are added (with the appropriate sign) to produce the target 
location. 

Most vectors (the arrows in the Fig. 8) could be modeled 
accurately as conics. Vectors from the Sun to the planets and from the 
planets to their moons are all well described by conics for long periods of 
time. When the spacecraft is far from the intersection between spheres of 
influence of two celestial bodies, conics could also be used to propagate 
the spacecraft trajectory. Only seven parameters (and time) are necessary 
to define conics. 
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\ . 

Cassini Spacecraft 

Figure 8. A Representative IVP Vector “Tree” (from Ref. 7) 

Because conics do not always suffice, polynomial vectors are also 
used by the IVP, with each axis up to twelfth order. This propagation 
approach is not only more expensive (in terms of computational 
resources), but polynomials also tend not to fit accurately over as long a 
time interval as do conics. Polynomials will be used mainly to cover 
transitional periods in the spacecraft’s trajectory as gravitational 
dominance shifts from one body to another. Titan flyby is a frequent 
example. These two vector propagation approaches are described in 
details in the following paragraphs. 

3.3.1 Conic Background Propagation’ 

By conics we mean the relative motion which satisfies the 
differential equation: r = -pr/lrl . Here, ? is the inertial position vector 
of the orbiting body relative to the dominant central body and p is a 
gravitational parameter (product of the universal gravitational constant G 
and the sum of the masses of the orbiting and the central bodies). When 
no other bodies are present the motion ?(t) follows a true conic (the 
“Two-body’’ problem). Perturbing influences of other bodies cause ?(t) 
to deviate from a true conic. However, the true motion may still be 
approximated very well by a series of patched conic where each conic is 
chosen such that across one segment the deviations of the true path from 
the conic approximation are kept small. 

Conic propagation is really Kepler’s problem where given the 
position F0 and velocity Goof one body relative to the other at some time 
to, the position ( T )  and velocity (0) are required at some other time t 
(future or past). A well-known universal formulation proposes the 
solution to the Kepler’s problem as the following nonlinear vector sum: 

- - - 3  
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F(), F() , G() and G()  are time and initial state-dependent scalars whose 
values depend on the solution of Kepler’s equation. Kepler’s equation is 
a transcendental equation and it must be solved iteratively. In the Cassini 
AACS flight software, Kepler’s equation is solved using the Goodyear’ 
algorithm. The Goodyear algorithm was selected because of its 
robustness, its compactness, and its speed. It never fails to provide a 
solution. The algorithm solves Eq. (12) in three steps: 

[ 1 J Solve the following form of Kepler’s equation for the parameter Y: 

(t - to)- 1 %  I SI - O0S, - ps, = 0 

Oo = p0 
a=?;oT?0-221U/IG I 

SI = Y + aY3/3!+a2Y5/5!+a3Y7/7!+ ... 

s, = Y3 /3!+M5/5!+a2Y7/7!+a3Y9/9!+ ... 

(1 3) 
where : 

so = 1 + aY2/2!+a2Y4/4!+a3Y6/6!+ ... 

s, = Y2 /2!+aY14/4!+a2Y6/6!+a3Y8/8!+ ... 

[2] Once Y has been evaluated, construct scalars F, G, F,  and G :  

F = l - p 2 / I & I  
G = (t - to)-  /AS, (14) 

F’ = -pI /(I i 11 $, I), where 171 = lGlso + oos1 + ps, 

G’=l-/AS2/l?l  

[3] Substitute F, G, F,  and G in Eq. (12) to arrive at the desired solution. 
Note that if only the first terms are retained in the F, G solutions 

of Eq. (14), Eq. (12) simplifies to: ?(t) = $, + (t - to)T0 and ?(t) = To. 
This is the degenerate straight-line motion. 

3.3.2 Polynomial Background Propagation9 

When the conic approximation fails to keep the approximation 
errors small over a reasonable time segment, other means of fitting the 
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relative position vectors are exercised. Polynomial fits are the logical 
choice. Among all polynomials, the polynomial with perhaps the most 
attractive fitting characteristics is the Chebyshev polynomial. The 
Chebyshev polynomial T,(z) of the first kind is a polynomial in z of 
degree k, defined by the relation: 

Tk(z) = cos(k0) where z = cos0 (1 5) 

We can immediately deduce from Eq. (15) that the first few Chebyshev 
polynomials are: 

To(z) = 1 
TJz) = z 
Tk(z) = 2flk_,(z) - Tk-2(z), for k 1 

Here, ‘I: is the normalized time, which is related to the end-time t, and the 
start-time ts by: z = (2t - t, - t,)/(tf - ts). Chebyshev polynomials can 
be evaluated recursively using Eq. (16). 

Chebyshev polynomials play a pivotal role in the uniform (or e,) 
approximation of functions. They produce the best e, approximation of 
a time-varying function f(z) of ephemeris. The -!?,-norm (also called the 
Chebyshev norm) of a fitting error function e(z) is defined as: 

To fit a time-varying function f(z) of ephemeris by Chebyshev 
polynomials, we must compute coefficients Ci of the expansion COTo + 
C,T, + C2T2 + ... + C,T, such that for a given “n”, the [,-norm given in 
Eq. (17) is smaller than the 40-prad IVP modeling accuracy requirement. 
Over the time range IT!< 1, the fitting error e(2) generated with Chebyshev 
polynomials attain its absolute maximum value with alternating signs. 
This is the so-called “equi-oscillation” property. That is, Chebyshev 
polynomials will distribute the fitting error e(z) almost uniformly from 
one end of a segment to the other. This is a highly desirable feature. 

The minimax property is remarkable enough but the Chebyshev 
polynomials have a second and equally important property, in that they 
are a family of orthogonal polynomials. That is, they satisfy the following 
condition: 
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Thus the Chebyshev polynomials have an important role in l ,  or 
least squares approximation too. Its importance among orthogonal 
polynomials is perhaps only second to the Legendre polynomials. 

In the Cassini implementation, we have chosen to fit the three 
Cartesian position elements (as expressed in an inertial coordinate frame) 
of the relative position vector between the two points of interest. Three 
separate fits are required for the three axes and all use the same order 
polynomial fit (i.e., n is the same for the x, y, and z components). An n - 
order fit therefore requires 3(n+ 1)+1 coefficients to propagate the relative 
position vector in an inertial coordinate frame. Between these two 
propagation methods (conics and polynomials), trajectories during the 
complicated tour can be fit to better than 40 p a d  (20.0023 degrees) with 
only a handful of segments over several weeks. Many entries can be fit 
accurately enough with a single segment for months or even years. 

th 

3 .3 .3  Conclusions 

It must be apparent that quite a few calculations are required to 
support the Cassini inertial vector propagator. A practical solution to this 
problem has been found in a multi-tier evaluation system that exploits the 
smooth variation in most of these vectors. Most of the complicated vector 
calculations, such as the evaluation of conics, are performed very 
infrequently. Even for the most rapidly varying trajectory segments we 
have examined, an update interval of 100 seconds is adequate. Most 
could be updated much more infrequently and still meet the tightest 
accuracy requirements. Between updates, they are only interpolated 
linearly, and then only once per second when the base attitude and its rate 
are calculated. 

The Cassini attitude control algorithms run eight times per 
second, so the base attitude is actually required at the same rate, but again, 
this is done by interpolation. The arithmetic necessary to perform these 
functions is accomplished mostly in a mixture of standard and extended 
precision MIL-STD- 1750 floating point, the latter required primarily for 
vector calculations. While not ideal, all accuracy requirements have been 
met with this capability. 

4. DISCUSSIONS 

4.1 Uses of Physical Laws and Conservation Principles 

Physical process is governed by physical law(s). Often times these 
physical laws lead to conservation principles that should be used to 
advantage in solving a physical problem. 

Unfortunately, unless each and every physical effect that 
influence the angular motion of a spacecraft is taken into consideration, 
the angular momentum of the spacecraft, for example, might not 
conserved. However, in many physical situations, the conservation 
principle involved is violated only slightly due to the presence of small 
disturbance terms. Since relatively small terms in an equation will have 
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little effect on the solution to that equation, we should investigate whether 
an approximate application of these conservation principles can still be 
made. Else, we might m i s s  out an opportunity to greatly simplify the 
mathematical solution of a physical problem. In the example given in 
Section 3.1, on the estimation of spacecraft’s inertia matrix, we did 
exploit the conservation of angular momentum principle even though it is 
held true only approximately. 

In Section 3.3, Rasmussen, Singh, Rathbun, and Macala7 took 
advantage of the fact that the motion of a planet (or a spacecraft) under 
the influence of a dominant central body is almost a conic section. But it 
is only when no other bodies are present that the motion of an object 
follows a true conics. But this did not stop us from using the conics 
because the on-board implementation of a “more” exact solution is 
likely to be prohibitively expensive. The approach taken then is to limit 
the use of conics to both Cruise and Tour scenarios in which they fit the 
actual trajectory very accurately. However, during a close encounter with 
Titan, when the spacecraft is under the influence of both Saturn and 
Titan, the conic approximation can introduce unacceptably large error. In 
these scenarios, alternative mathematical treatments such as the uses of 
high-order polynomials (which are relatively more computational 
intensive) become necessary. 

The assertion that relatively small terms in an equation will have 
little effect on the solution to that equation is often true, but is not true in 
general. To be certain, one should perform a few “spot” checks of the 
effects of the neglected terms on the solution of the problem. In the case 
of inertia tensor estimation, the solar radiation torque might be small but 
it isn’t constant (due to the changing spacecraft attitude). Nevertheless, we 
can still incorporate a representative constant solar radiation torque into 
Eq. (6) in our estimation of the spacecraft’s inertia tensor. If the resultant 
change in the estimated inertia tensor is larger than the desired estimation 
accuracy, then one might want to consider the inclusion of this second- 
order effect in the estimation process. 

4.2 Exact Solutions: They are Expensive and Unnecessary 

A mathematical model of a physical situation is often a simplified 
description of many complex physical’ effects involved. Model 
simplifications must be made if there is any hope of solving the resultant 
problem formulated. One way to simplify a physical situation is to obtain 
informal estimates of the numerical significance of various physical 
effects that affect the physical situation. After obtaining the required 
estimates it then makes sense to simply remove the relatively small terms 
from the mathematical model. 

Knowing that the mathematical model is just an approximate 
description of the physics involved, does it then make sense to find an 
exact solution to this approximately formulated model? The answer is N o  
especially when the exact solution is expensive. By expensive we meant it 
is costly to find that exact solution (in both time and money). We also 
meant that the exact solution might require the use of hard-to-measure or 
hard-to-estimate data input. The implementation of an exact solution that 
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requires the uses of unavailable computer CPU time and memory is also 
not possible. Not all of these constraining factors apply in any specific 
situation but it is rare for a number of them not to apply. In this regard, 
one prefers an approximate solution that is good enough because it 
satisfies all the applicable accuracy requirements (see Section 4.3). The 
on-board implementation of a solution method that achieves significantly 
better than the requirement is a waste of the limited on-board computing 
resources and is unnecessary. 

4.3 A Model is Good if it meets All Applicable Requirements 

To answer the question on whether a particular approximation 
solution to a formulated problem is adequate we must first define what is 
“adequate.” An approximate solution is adequate if it satisfies all the 
applicable requirements. We will use the 40-pad IVP accuracy 
requirement as an example to illustrate the process. 

The Cassini spacecraft carries science cameras that are charge- 
coupled-device imager. These “staring” sensors have “electronic” 
shutters that snap open quickly so that all parts of the frame are exposed 
at the same time. For these science instruments, science pointing control 
requirements are commonly selected to be smaller than one-third the size 
of the field of view (FOV) of the imaging sensor. In so doing, one can be 
certain that the science target is captured inside the picture frame. For the 
Cassini spacecraft, the narrow angle camera has a FOV of 6.2 milli- 
radians (lo = 17.45 mrads). The gointing control requirement for science 
pointing is 2 mrads (radial 99%). 

Table 2. Cassini Science Pointing Control Error Budget 

To assess whether we can meet this pointing control requirement, 
a system engineer must build an error budget such as that shown in Table 
2. Since the camera is aligned with the spacecraft’s Y axis, only the 
pointing errors associated with the spacecraft’s X and Z axes are 
considered in Table 2. There are altogether seven pointing error sources. 
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Some of these errors are large (such as the star tracker geometric 
distortion error) and others are small (such as the IVP modeling error). 
Together, the overall pointing capability of the spacecraft, 1.03 mrads, is 
significantly better than the pointing control requirement (2.0 mrads, 
99% radial). Hence, there just isn’t any compelling reason to tighten the 
IVP modeling error requirement from its current allocation of 40 prad to 
a smaller number. As such, knowing that the Goodyear algorithm can 
meet the 40-prad accuracy requirement, no other “better-than- 
requirement” algorithms to the Kepler’s problem need to be considered. 

4.4 Manipulation of A Model into A Responsive Form 

A model may have been formulated with perfect propriety but it 
is almost always a mistake to jump in with an extensive series of 
computations using that model. Instead, it is better to live with it for a bit, 
to view it from different angles, and mould it into a form that is more 
“responsive” to the problem that we want to solve. 

In Section 3.2, we note that the spacecraft angular motion is 
governed by Euler’s equation. The presence of a leaking thruster will 
introduce a non-zero TLmK term on the right hand side of Eq. (9). 
However, any attempt to compute TLEAK using the following equation will 
encounter difficulty: 

- 
- 

This is because the “size” of fmAK could be as small as O.l%xl 
Nx1.234 m=1.234~10-~ Nm. It is larger than the magnitude of TENv but 
it is smaller than that of E‘. As such, the non-zero TLEAK term due to a 
leaking thruster will be “buried” in the “noise” generated by E‘. Any 
attempt to detect thruster leakage via the monitoring of Eq. (19) will be 
difficult. 

To overcome this difficulty, we took advantage of the following 
two physical facts. Firstly, a thruster leak will introduce a persistent fLEAK 
term. As such, while its magnitude might be small, but over a long period 
of time, the angular momentum accumulated due to TEAK will be sizable 
and detectable. Secondly, the angular momentum accumulation due to 
zero-mean random fluctuations 2 will be small (the presence of any 
systematic errors is taken care of in Section 3.3.2). Hence, it is easier to 
detect the presence of a rising angular momentum vector instead of the 
presence of a small leak-induced torque. Therefore, we transformed the 
original Euler’s equation (Eq. (9)) into the angular momentum equation 
(Eq. (10)) which is more “responsive” to the problem we want to solve. 

- 

-. 
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4.5 Iterative Refinements of A Model 

A mistake commonly made by engineers is their attempts to 
incorporate a long list of physical effects in the model created to solvie a 
physical problem. The result of such an approach is usually confusion 
and frustration. It is almost always more practical to start by choosing one 
or a few dominant effects and creating a model which accounts for these 
effects only. When such a model has been created and evaluated, it is 
much easier to add other secondary effects to this “backbone” model in 
an incremental refinement process. 

The thruster leakage-detection monitor design described in 
Section 3.2 is such a “backbone” model. It has captured the most 
dominating physical effect involved, the Euler’s equation of motion of a 
rigid body. In Section 3.2.1, effects on Eq. (10) due to various secondary 
factors such as the thruster-to-thruster and pulse-to-pulse variations of the 
thruster magnitude were considered. Judgement was then used in the 
corporations of some of these secondary effects in the model. The 
resultant refined model will be robust against these variations but might 
be harder to use. The refinement process is stopped when the final model 
is usable (i.e., it meets all applicable requirements) for the purpose in 
hand. 

5. CONCLUSIONS 

In this paper, the mathematical treatments of three engineering 
problems related to the Cassini spacecraft attitude and articulation control 
system designs are described. Common among these mathematical 
treatments is our emphasis on the need to have a good understanding of 
the underlying physical principles that governed the physical processes 
involved. In all cases, these understandings led us to simple yet adequate 
solutions to seemingly complex engineering problems. Also, we 
emphasized the need to establish a set of clearly defined requirements for 
the problem. These requirements represent clear “targets” that the 
engineers could use to judge whether the solution in hand is good 
enough. A sophisticated algorithm that generates “better than 
requirement” solution is a waste of resources. Both Huygens and Cassini 
are preeminent mathematicians who had mastered the art and science of 
applying mathematics to the solutions of physical problems. In all cases, 
they introduced relatively simple mathematical models for describing 
complicated physical situations. Within the models introduced, they 
drawn ingenious conclusions from the mathematical solution and 
elaborated their consequences by means of advanced mathematics. When 
it is combined with a good understanding of the physics involved, and in 
the hands of trained engineers, mathematics is indeed a powerful tool in 
solving “real-life” engineering problems. 
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