A Nanochannel Fabrication Technique Using Chemical-Mechanical Polishing (CMP) and Thermal Oxidation

Choonsup Lee, E.H. Yang, N.V. Myung, and T. George
Jet propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91106
CHOONSUP.LEE@JPL.NASA.GOV

Abstract—We have developed a new nanochannel fabrication technique using chemical-mechanical polishing (CMP) and thermal oxidation. With this technique, it is possible to control the width, length, and depth of the nanochannels without the need for nanolithography. The use of sacrificial SiO₂ layers allows the fabrication of centimeter-long nanochannels. In addition, the fabrication process is CMOS compatible. We have successfully fabricated an array of extremely long and narrow nanochannels (i.e. 10 mm long, 25 nm wide and 100 nm deep) with smooth inner surfaces.

Keywords—nanochannel; bionanotechnology; CMP; Oxidation.

I. INTRODUCTION

Recent advances in ultrasensitive instrumentation development have enabled the detection, identification, and dynamic studies of single molecules of DNA or proteins in the condensed phase [1]. For DNA molecular analysis, gel electrophoresis is the de-facto standard and depends on the separation of DNA strands by length-dependent mobility. However, the efficiency of the gel electrophoresis technique decreases rapidly, the longer the DNA molecule. Alternative techniques include capillary electrophoresis and entropic trap arrays, among others [2,3]. In this work we consider nano-scale fluidic channel-based molecular separation techniques, which are based on the physical dimensions of the molecules. A key advantage to this approach is that a very large number of fluidic channel “filters” with variable dimensions can be constructed relatively easily on a single wafer, at low cost, using microfabrication techniques. Thus, using this approach, it is possible to separate similar sized molecules from a mixture of molecules with many sizes.

Among the many requirements for the nanochannel fabrication technique are the following: It should be cost effective, able to precisely control channel dimensions, and CMOS-compatible for ultimate integration with microelectronics. Previously, various nanochannel fabrication techniques based either on e-beam lithography, step sidewalls, and laser machining has been reported [4-6]. However, these techniques suffer from several limitations. For example, e-beam lithography-based processes are relatively expensive [4]. The step sidewall approach has limitations in the maximum possible lengths of the nanochannel because of lateral sacrificial etching effects [5]. Finally, laser machining can only produce nanochannels with minimum widths in the range of a few hundred nanometers and the fabrication process is not CMOS compatible [6].

In this paper, we describe the demonstration of a cost-effective nanochannel fabrication technique with precisely controlled dimensions, using a conventional CMOS fabrication process.

II. FABRICATION

The fabrication process is shown schematically in Figure 1. First, an amorphous silicon layer is deposited over a low-stress silicon nitride film. The Si layer is patterned and etched using RIE. Subsequently, it is oxidized at 1000°C in a dry O₂ ambient. The ultimate width of the nanochannel is essentially controlled by adjusting the resulting oxide film thickness [6]. Dry O₂ based oxidation is a well controlled process that can produce SiO₂ films with thickness as low as 5 nm. Figure 2 shows the experimental data obtained for nanochannel width versus oxidation time. The width of the nanochannel is a well behaved monotonic function of the oxidation time.

![Graph showing nanochannel width versus oxidation time](image)

Figure 2. The width of the nanochannel (after removal of the sacrificial oxide) is plotted versus oxidation time for amorphous silicon in 1000°C dry O₂. As seen above it is possible to have nanometer-level precision in channel width through this process.
Figure 1. (a) The first step is the deposition of a silicon nitride layer followed by an amorphous Si layer (b) The amorphous Si layer is then lithographically patterned, followed by reactive ion etching (RIE) and dry oxidation to create a sacrificial oxide layer with the desired nanochannel width (c) An amorphous Si layer is subsequently deposited over the patterned structure (d) The amorphous Si layer is thinned using Chemo Mechanical Polishing (CMP) until the sacrificial oxide layer is exposed. (e) The oxide layer is then etched away, creating a nanometer-sized channel. (f) Finally, either an overlayer of either Au or oxide is deposited over the nanochannel for sealing purposes.

The depth of the nanochannel is determined by the thickness of the amorphous silicon film. The total length and any meanders in the nanochannels are controlled by the photolithography process. Subsequently, an overlayer of amorphous silicon is deposited on the oxidized film. The overlayer thickness is approximately five times that of the amorphous silicon layer, in order to minimize “dishing” effects. Next, a Chemo Mechanical Polishing (CMP) step is conducted to thin the overlayer down to the oxide layer. The slurry used for the CMP process is Chemlox which has about 20:1 selectivity between silicon and silicon dioxide. Following the CMP step, the vertical oxide layer between the amorphous silicon layers is etched in a (10:1) Buffered Oxide Etch (BOE) solution for 20 min. Since this oxide layer is fully exposed (no covering layer to “burrow” under) even a 10 mm long channel takes just 20 min for complete etching. Figure 3 (a) contains scanning electron micrographs of an array of nanochannels after the oxide etch process. A higher magnification image shows a single nanochannel with a width of 50 nm (Figure 3 (b)). The processing also yields smooth inner surfaces for the nanochannels. The surfaces of the nanochannels can be changed from hydrophobic to hydrophilic by means of an additional oxidation step prior to “sealing”. It should be noted that during this oxidation step, the nanochannels become even narrower due to the growth of the oxide on the sidewalls. Finally, the nanochannels can be sealed by depositing an overlayer of evaporated gold or PECVD SiO₂. SiO₂ sealing is very attractive option for biomedical applications, because the oxide can serve as a transparent window for fluorescence detection schemes. The sealing process also results in a reduction of the nanochannel widths due to sidewall deposition. Scanning electron micrographs of Au sealed (Fig. 4) and PECVD oxide sealed (Fig. 5) are shown.

Figure 3. (a) Scanning electron micrographs of an as-etched nanochannel array (b) a higher magnification view of a single nanochannel. The width of the nanochannel is approximately 50 nm.
III. RESULTS

We have successfully fabricated nanochannel arrays without the use of nanolithograph. Figure 4 (a) contains a scanning electron micrograph of the Au-sealed nanochannel array. The Au overlayer is evaporated using an e-beam evaporation process. Figure 4 (b) shows a magnified view of a single, 50 nm wide nanochannel. The nanochannel is tilted due to lateral etching in the RIE process. The inner surfaces of the nanochannel are hydrophobic since they consist of amorphous silicon. Figure 5 shows a magnified view of a nanochannel sealed with PECVD oxide. The width of the nanochannel is about 25 nm. The narrowing of the nanochannel is caused by the deposition of PECVD oxide on the sidewalls. In addition, the oxide coating renders the inner surfaces of the nanochannel hydrophilic. Table 1 contains a comparison of our work with the existing state-of-the-art for nanochannel fabrication. Compared to the conventional technologies our proposed technique is capable of making nanochannels that are a few tens nanometer wide, in a cost-effective manner, without the use of nanolithography. There is also no limitation in the nanochannel lengths and the number of meanders. Finally, our process is CMOS-compatible.

Table 1. Comparison of the various nanochannel fabrication techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Width [nm]</th>
<th>Length</th>
<th>Cost</th>
<th>CMOS-compatible</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-beam lithography</td>
<td>50</td>
<td>Unlimited</td>
<td>High</td>
<td>Yes</td>
<td>[4]</td>
</tr>
<tr>
<td>Side-wall of a step</td>
<td>40</td>
<td>Limited</td>
<td>Low</td>
<td>Yes</td>
<td>[5]</td>
</tr>
<tr>
<td>Laser machining</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>[6]</td>
</tr>
<tr>
<td>Our work</td>
<td>25</td>
<td>Unlimited</td>
<td>Low</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

IV. SUMMARY

We have successfully demonstrated a cost-effective, CMOS compatible, nanochannel fabrication technique capable of producing nanochannels with widths as short as 25 nm. The width, depth, and length can be precisely controlled by the combination of thermal oxidation, deposited amorphous silicon film thickness, and standard photolithography, respectively. The sacrificial SiO₂ layer is etched prior to the nanochannel being sealed, allowing for easy removal of the sacrificial oxide and thus have no limitations on their lengths. The proposed application for these nanochannel arrays are for separating molecules based on size selection.
ACKNOWLEDGMENT

The authors would like to Ronald Ruiz in JPL for SEM observations and Huynh Do at the UCLA Nanoelectronics Research Facility for CMP processing. The research described in this paper was carried out by the Jet propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.

REFERENCES


