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Abstract. We develop a theoretical model and carry out simulation of Brillouin spectrum 
of three-dimensional (3D) quantum dot (QD) arrays with a high order of 3D periodicity, 
Le. quantum dot crystals (QDC). The phonon spectrum of Ge/Si QDC is found from 
the numerical solution of the elasticity equation for the whole structure. The developed 
approach is valid for any QD shape and regimentation and allows to include disorder in 
consider at ion. 

Introduct ion 

Raman and Brillouin spectroscopies have proven to be a powerful tool for investi- 
gation of arrays of semiconductor quantum dots, nanoparticles, as well as of nano- 
and microcrystalline multilayers. It is capable of providing information on mod- 
ification of vibration spectra of such structures as well as on carrier confinement 
[1],[2],[3]. Of special interest are phonon confinement effects in QDC, which is a 
very perspective thermoelectric material because it combines the profits of phonon 
scattering on QDs and increased mini-band conductivity [4]. 

When quantum dots form a regimented or partially regimented array [6], the 
interpretation of Brillouin spectra becomes more of a challenge due to possible 
appearance of additional phonon dispersion branches, e g ,  standing waves inside 
or between quantum dots, etc. [5] along with the additional effect of strain, alloying, 
and interdiffusion. This presents a strong motivation for theoretical investigation 
of Brillouin and Raman spectra of quantum dot arrays. 

In this paper we outline our model based on numerical solution of the elasticity 
equation for the whole structure rather than for separate dots, which allows for 
accurate interpretation of Raman spectra of QDC. We argue that it is essential 
to consider the vibration spectrum of the whole structure in order to obtain cor- 
rect peak positions and separate the effect of strain or interdiffusion from phonon 
confinement. 

1 Theoretical model 

To simplify the numerical solution of the elasticity equation for the heterogeneous 
system of QDC we restricted our analysis to orthorhombic periodicity of QDC 
formed by QDs of various shape. The feature size of QDC (3 nm - 9 nm) was 
chosen to  be much smaller than the phonon mean-free path and laser wavelength 
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( A  = 514 nm) yet it is large enough for application of the elastic continuum ap- 
proximation (see applicability limits discussed in Ref. [5]). In the same time, it 
allowes to discretize the elasticity equation on the square grid of monolayer-size 
that ensures the model shape of QD to be very close to the real one. This is es- 
pecially important for piramidal, dome, and “damaged” QDs. On the other hand, 
the expansion of the solution domain onto the several unit cells of QDC allows us 
to introduce a periodical quasi-disorder in the model. 

The finite-difference elasticity equations were obtained using Euler-Lagrange 
equations from the discretized Lagrangian of the system, which ensured the Her- 
miticity of the corresponding matrix constructed on bonds with determined on 
them material parameters (see Ref. [5] for the details). To avoid the uncertainty 
in definition of material parameters we assumed that they change linearly on QD 
boundaries. The corresponding matrix is sparce; it contains only 35 nonzero ele- 
ments per every 3NxNyN,  row. Here N i  denotes a number of nodes in i-direction. 
Thus we used implicitly restarted Arnoldi algorithm [7] to find its eigenvalues. 
The scheme developed ensures the relative error less then 4% for as little nodes as 
N = 15 per QDC period in every direction and less then 1% at N = 30, when QDs 
are rectangular prisms. 

After phonon dispersion is found, we obtain Raman intensities using macro- 
scopic theory for calculating the photoelasticity tensor. It describes the phonon - 
photon interaction in the following way. A periodic displacement of geometrical 
points of the matter U (r, q, 0) = u (r, q, 0) exp (-ifit) causes the periodic change 
of the local strain aij which, in turn, locally modulates the dielectric susceptibility 
c i j  = i- C q i j k l o k l  of the matter. Here fl is the phonon frequency, q is the 
phonon wave vector, eo is an unperturbed susceptibility tensor, which is diagonal 
in the main coordinate system of cubic semiconductors, q i j k l  are components of 
photoelastic tensor. In semiconductors of cubical symmetry there are only 2 in- 
dependent non-vanishing components of the photoelasticity tensor q l l l l  and q1122.  

Thus e i j  perturbed by phonons has only its diagonal components 

dux auY auz 
d X  8Y 

€15 = E L  + q 1 1 1 1 -  + q 1 1 2 2 -  + q 1 1 2 2 - - ,  dZ 

with similar expressions for eyy and e,, obtained by cyclic exchange of x, y, and z .  
Electromagnetic wave with frequency w and wave vector k in optically isotropic 

medium can be characterized by complex amplitude D = E E ~ A  exp (ik . r). Here 
EO is dielectric susceptibility of vacuum, A is the light polarization vector, which 
is perpendicular to the direction of the wave propagation, (k( = 2 ~ d / ~ / A ,  and A is 
the light wavelength in vacuum. 

We limit our consideration to one-phonon anti-Stokes processes. Substituting 
expression for D, taking into account that I D i )  and ID,) correspond to electromag- 
netic wave in QDC with dielectric susceptibility perturbed by phonons (Eq. (1)) 
and applying quasi-periodic boundary conditions, we find the probability of the 
scattering from inital to the final state with the phonon assistance that in egective 
optical medium approximation correlates with conventional Raman tensor 8 for 
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Figure 1: Modification of Raman Figure 2:  Modification of Raman 
spectrum of Ge/Si cubic QDC with spectrum of Ge/Si tetragonal QDC 
L, = L, = L, = 3.0 nm and with L, = L, = 3.0 nm, D, = D, = 
D, = D, = D, with change of the 9.0 nm, and D, = 2L, with change 
distance between QDs. of the QD height in [[OOl]] quasi- 

crystallographic direction, i.e. along 
the direction of light propagation. 

the whole QDC structure Pfi 0; IAf .!R. Ailz, where 

!TIzx 0; 1 exp (-iq. r) (qI111AbA,f + q1122 ( A t A i  + AtAf))  
EC 

Expressions for !Ryy and R,, can be obtained by cyclic change of x, y, and z. The 
intensity of Stokes peaks in experimental spectra can be found by scaling with the 
corresponding Boltzmann factors. 

2 Results and discussion 

It is usually assumed that in normal-incidence back-scattering configuration the 
Raman spectroscopy probes the zone-center phonons since transfer momentum is 
very small compared with the Brillouin zone size, e.g. the wavelength of light 
is several orders of magnitude larger than the lattice constant. The specific of 
Raman spectroscopy of regimented arrays of quantum dots is that the momentum 
JqI "= 2JkiJ (- 0.085 nm-l for the Ar laser) is comparable with the size of the 
quasi-Brillouin zone (QBZ), which is about 0.35 nm-' for QDC period along the 
direction of the light propagation D = 9.0 nm. Thus, it is important to know 
the phonon states accurately when analyzing Brillouin spectra of QDC. Note, that 
each phonon branch changes the symmetry of the corresponding vibration in the 
regions of QBZ where it interacts with other branches. 

A change in the inter-dot distance between cubical Ge in Si matrix (see Fig. 1) 
causes nonlinear redistribution of intensities. In two limiting cases of infinitely 
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small and infinitely large inter-dot distances QDC evolves to bulk Ge or Si, respec- 
tively. Correspondingly, only the lowest longitudinal mode is active. The upper 
longitudinal and mixed modes are most intensive when the symmetry breaking is 
highest. It is achieved when the dot size L is comparable with the inter-dot distance 
H .  The shrinking of the QBZ with increasing D = L + H results in the red shift 
of these peaks since folding of the acoustic phonon dispersion branches is attained 
at lower energies. When the symmetry of regimentation of QDs is preserved the 
general structure of the Raman spectrum is the same. 

Fig. 2 illustrates the effect of the dot shape, i.e. the symmetry breaking, on 
Brillouin spectra. The presented results are for the dots with constant base (L ,  = 
L, = 3.0 nm and D, = D, = 9.0 nm) and changing height of the quantum dot 
along [[OOl]] quasi-crystallographic direction. The inter-dot distance is fixed at 
H, = L,. One can see significant redistribution of the peaks intensity and strong 
shift of some peaks, which is a combined effect of the QBZ size decrease in [[OOl]] 
quasi-crystallographic direction and strong modification of phonon dispersion with 
change of the symmetry. The position of each peak can be traced to the shift of 
the folded acoustic and quasi-optical phonon branches as discussed in Ref. [5]. 

One should note here that the simulated Brillouin spectra have more compli- 
cated structure than typical doublets observed in Raman scattering from folded 
acoustic phonons in quantum well superlattices. The position of these peaks 
could not be deduced from Lamb-type models that use eigenmodes of freestanding 
nanocrystals. 

In conclusion, our approach allows for an accurate analysis of experimental 
Raman spectra of 3D quantum dot arrays. It can be used to  account for the effects 
of dot shape, regimentation, matrix materials and assist in separation of the spatial 
confinement effects from alloying and interdiffusion. 
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