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Formulation and Validation of Simulated Data for 
the Atmospheric Infrared Sounder (AIRS) 

E. Fishbein, C.B. Farmer, S.L. Granger, D.T. Gregorich, M.R. Gunson, S.E. Hannon, 
M.D. Hofstadter, S.-Y. Lee, S.S Leroy and L.L. Strow 

Abstruct- Models for synthesizing radiance measurements by 
the Atmospheric Infrared Sounder (AIRS) are described. Syn- 
thetics radiances have been generated for developing and testing 
data processing algorithms. The radiances are calculated from 
geophysical states derived from weather forecasts and climatology 
using the AIRS rapid transmission algorithms. The data contains 
horizontal variability at the spatial resolution of AIRS from the 
surface and cloud fields. This is needed to test retrieval algorithms 
under partially cloudy conditions. The surface variability is added 
using vegetation and IGBP surface type maps, while cloud vari- 
ability is added randomly. The radiances are spectrally averaged 
to create High Resolution Infrared Sounder (HIRS) data and this 
is compared with actual HIRSZ data on the NOAA 14 satellite. 
The data are in agreement to 1-4 K, but the simulated data under 
represent high altitude equatorial cirrus clouds and have too much 
local variability. They agree in the mean to within 1-4 K and global 
standard deviation agree to better than 2 K. Simulated data have 
been a valuable tool for developing retrieval algorithms and study- 
ing error characteristics and will continue to do so after launch. 

Index Terms- data simulation, atmospheric retrieval, algo- 
rithm development, satellite remote sensing, cloud scene modeling, 
HIRS 

I. INTRODUCTION 
HE Atmospheric Infrared Sounder (AIRS) is a new gener- T ation nadir sounder that will measure high-spectral, high- 

spatial thermal infrared (IR) radiances globally from low-earth 
polar orbit. These measurements will provide new information 
on the thermal and compositional structure of the earth’s at- 
mosphere and surface. In doing so, state variables, e.g. atmo- 
spheric temperature and composition will be estimated using 
complex retrieval algorithms. The AIRS science team has cre- 
ated simulated radiances to prepare these algorithms for launch. 
The data described here have been used to develop retrieval 
algorithms, [ 13 test calibration algorithms [2,3,4] and develop 
data processing systems [ 5 ] .  

Creating this data has proven to be a difficult task. The de- 
velopment team wanted data that would realistically test the al- 
gorithms and permit valid error characterization of products. 
However, time constraints necessitated a simple model early in 
the development cycle that has continually been updated as re- 
quired by the algorithm development team. We discovered that 
simulated data would continue to be used for algorithm testing 
after launch, and that interpreting test results would depends on 
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an understanding of the formalism and basis of the data simu- 
lation. We noticed also that while every flight instrument team 
develops simulated data, very few document or validate it in the 
refereed literature. This last activity is extremely important be- 
cause unrealistic data can lead to flawed algorithms. However 
doing so with an instrument, such as AIRS, is difficult because 
data from less sophisticated instruments do not contain as much 
information as will be provided by AIRS. We demonstrate how 
data from the High Resolution Infrared Sounder was used to 
validate our simulated data. 

AIRS is a major advance for this kind of spaceborne instru- 
ment with characteristics unlike any instrument that has flown 
before. We realized that simulated data could not be created by 
manipulating similar radiance data sets, and simulated radiance 
data would not be useful unless we knew the corresponding 
geophysical state. Therefore we took the approach of gener- 
ating realistic geophysical states and using a radiance forward 
model to generate the simulated radiance data. This provided 
radiance data and corresponding geophysical states. The states 
could be compared with retrieval products to assess product er- 
rors, but the assessments would be dependent on the accuracy 
of the forward model. For reasons such as this, the simulated 
data, while a valuable tool for error characterization but, is also 
an incomplete one. 

The kinds of data that are used to construct geophysical states 
depends on the goals and design of the AIRS measurement 
system. The term “measurement system” refers to the suite 
of instruments and calibration and analysis software that as a 
combined system produce the AIRS products. The goals of the 
AIRS measurement system are to produce profiles of air tem- 
perature and water vapor mixing ratio with near radiosonde (in 
situ) quality. This is defined to mean temperature profiles with 
1 K root mean square (RMS) accuracy in 1 km thick layers in 
the troposphere and humidity profiles with 10% accuracy in the 
troposphere [6]. While these are the primary goals of the in- 
vestigation, AIRS radiances will also provide measurements of 
other variables such as cloud and surface properties and atmo- 
spheric trace gases such as carbon dioxide and methane. 

The AIRS measurement system include AIRS and two 
microwave radiometers, the Advanced Microwave Sounder 
(AMSU) and the Brazilian Humidity Sounder (HSB). AMSU is 
a copy of a NOAA operational sounder currently on two NOAA 
Polar Orbiting Environmental Satellites (POES), while HSB is 
derived from AMSU-B, also operating on two POES satellites. 
Descriptions of AIRS, AMSU, HSB and the Aqua platform and 
orbit characteristics can be found in References [7,8,9,10,11]. 
Synthetic data has been derived for all three instruments, but 
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owing to the uniqueness of AIRS, and the special properties of 
its measurements, only the AIRS synthetic measurements will 
be described in this paper. 

The instruments will be mounted on NASA’s Aqua satellite. 
Aqua will be in a 705 km altitude polar orbit, maintained with a 
1 :30 PM local-time ascending equator-crossing. The orbit will 
conform to the Worldwide Reference System with a 233 or- 
bit (16 day) repeat cycle. AIRS cross-track-scans three scan 
lines every 8 seconds. Each scan line contains 90 footprints. 
The field of view (FOV) is 1.1”, producing an approximately 
14 km diameter footprint at nadir. The FOV’s centers in adja- 
cent scanlines are separated by approximately 16 km. AIRS is a 
2378 channel grating spectrometer with three major pass bands, 
650-1140~m-~ ,  1215--1610~m-~ and 2180-2665cm-l. 

The other main component of the measurement system are 
the retrieval algorithms. Retrieval algorithms typically solve 
complicated often under-constrained mathematical problems 
[12],[ 121, which are made solvable by applying constraints and 
smoothing conditions. Assimilation is an advanced form of 
this conditioning which makes use of an atmospheric circula- 
tion model. The AIRS retrievals algorithms are designed to 
demonstrate the capabilities of hyperspectral sounding and are 
not based on this, but it is expected that AIRS data will be as- 
similated at a latter date. A description of the AIRS retrieval 
algorithms can be found in Ref. [l].Briefly, the retrieval al- 
gorithms estimate an optimal geophysical solution by fitting 
model radiances to observations and minimizing the normal- 
ized RMS residual. Simulated data provides both radiances and 
a perfect assessment of the geophysical state (hereafter referred 
to as “truth”). The retrieval problem does not guarantee that the 
optimal solution is also a reasonably meteorological one. How- 
ever, having both radiances and geophysical states allows us to 
specify constraints which produce both an optimal and reason- 
able solution. How applicable these constraints are depends on 
the degree to which the simulated states and radiances are rep- 
resentative of real observations. 

The retrieval algorithms are formulated to operate on cloud- 
free radiances. Intrinsic to the AIRS measurement system de- 
sign philosophy is a concept called “cloud clearing,” which 
states that clear radiances can be estimated from a set of near- 
located cloudy radiances without a full retrieval. Intrinsic to 
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Fig. I .  Arrangement of AIRS, HSB and AMSU footprints 
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Fig. 2. Cloud Clearing Procedure 

cloud clearing is an assumed spatial scale separation between 
cloud variability and other sources of variability. In particular, 
over distances of around 50km, most of the variability in 15 km 
areas arises from variation in cloud amount while surface prop- 
erties and profile quantities are mostly constant. We refer to 
variability on this length scale as “local.” With this in mind, the 
scans and FOV’s of AIRS, HSB and AMSU are designed to lead 
to an arrangement of footprints in a ‘golfball” pattern shown in 
Figure 1. The retrieval system operates on groups of 19 FOVs 
(9 AIRS, 9 HSB and 1 AMSU) referred to as a retrieval set, and 
retrieves one set of atmospheric profile and surface quantities 
per group, but one cloud fraction for two cloud layers for each 
AIRS footprint. 

The cloud clearing procedure [ 1,13,14] is relatively straight- 
forward for many kinds of clouds, e.g. gray or opaque clouds 
in otherwise optically transparent channels. The observed ra- 
diances for footprints derived from the same state but varying 
cloud amounts are linear combinations of the surface radiance 
and the emission from the clouds. For the case of multiple 
cloud levels, the mapping of cloud amount (fraction) onto out- 
going radiance defines a hyperplane. Figure 2 illustrates the 
plane in radiance-cloud fraction space. The two horizontal axes 
are cloud amount and the vertical axis is outgoing radiance. 
The outgoing radiance is the linear combination of radiance 
from the surface, and from the two cloud layers weighted by 
the amounts of viewed surface and cloud. Once the plane is 
determined, the radiance when the cloud fractions are zero is 
known. The problem is to determine the plane from nine cloud 
amounts-radiance measurements. There are three possible mea- 
surement scenarios illustrated in Figure 2. The first is when the 
measurements are distributed over a plane, i.e. the covariance 
matrix has two unique axes. The second is when the measure- 
ments lie on a line, i.e. the radiance covariance matrix has one 
unique axis, and the last is when all measurements are at one 
point, i.e. the covariance matrix is zero. In all but the first case, 
the plane is not constrained by the measurements and the cloud 
clearing problem is ill conditioned. The cloud clearing problem 
is further complicated because the cloud fractions are not di- 
rectly measured, but are retrieved from infrared and microwave 
radiances together. Later under cloud models, we will discuss a 
parameter for characterizing the stability of cloud clearing. 

Since the cloud-clearing algorithms are based on assump- 
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tions of horizontal variability, the simulations must have real- 
istic correlations over 50 km. Global data sets typically resolve 
scales larger than 50km. This means that the assumptions of 
cloud clearing could not be tested globally with available data. 
We therefore created ad hoc models for sub 50km variability 
for these simulations. 

11. FORMALISM OF THE SIMULATIONS 

A. Radiance Generation 

Radiances are generated using a 1-dimensional rapid trans- 
mission algorithm (RTA) described in [15] with an enhance- 
ment for two layers of optically thick clouds. The AIRS RTA 
parameterizes channel averaged transmittances across 100 at- 
mospheric layers in terms of predictors which includes products 
and powers of the local zenith angle, layer mean temperature 
and layer amounts of water vapor, ozone, methane and carbon 
monoxide. Variability of transmittance from variations in car- 
bon dioxide is also included through a scaling in column-mean 
carbon dioxide mixing ratio. 

Clouds, like the surface, are treated as gray emitters and 
Lambertian reflectors. Clouds radiate with a temperature of 
the ambient air at the cloud-top. The outgoing radiance is a 
linear combination of clear sky and cloudy radiances weighted 
by the cloud fractions. The cloud fraction of the lower layer 
is the amount of cloud unobscured by the upper cloud layer 
when looking along the zenith angle; the angle dependence re- 
sulting from cloud thickness is not included. The cloud-top to 
space transmittances are interpolated from the clear sky trans- 
mittances and the incoming transmittance are approximated by 
the outgoing ones using a regression based correction factor 
[ 151. The correction factors are derived from transmittance to 
the surface and are less accurate when applied at cloud-top pres- 
sures. 

The reflected solar component of the radiances, important 
in the high wavenumber channels, is not accurately calculated 
using the approximate transmittances and reflectivities of this 
model. In particular the down welling thermal radiance and the 
incoming solar radiance are reflected off the clouds and surface 
with the same reflectivities; sun glint is not modeled by these 
approximations. 

The radiative transfer algorithms used in the retrieval and 
simulated data are equivalent and therefore errors and approx- 
imations are self consistent (closed). Although each footprint 
sees an ensemble of states, one radiative calculation is per- 
formed per footprint, using average surface and atmospheric 
conditions. 

The set of parameters needed to generate radiances include 
satellite attitude and ephemeris, solar ephemeris, instrument 
view geometry and geophysical data. All parameters derived 
from digital geography models (DGM) and satellite and solar 
ephemeri, e.g. location of footprint, mean elevation and land 
fraction, and position of the sun and satellite relative to the cen- 
ter of the footprint are calculated using the EOS scientific data 
processing toolkit [ 16].Geophysical parameters include atmo- 
spheric profiles, cloud properties and surface properties, and 
are listed in Table I. These are derived from operational global 
forecasts and climatologies. Cloud amounts, emissivities and 

reflectivities; and surface emissivities and reflectivities with the 
required local variability are generated using ad hoc models de- 
scribed later. 

Quantity 
Surface pressure 
Surface skin temperature 
IR Surface Emissivities 
iR Surface Reflectivities 
Carbon dioxide volume mixing ratio 
Air temperature 
Water vapor volume mixing ratio 
Ozone volume mixing ratio 
Liquid water volume mixing ratio 
Carbon monoxide volume mixing ratio 
Methane volume mixing ratio 
Viewed cloudiness 
Cloud-top pressure 
Cloud emissivities 
Cloud reflectivities 

Units 
hPa 

Kelvin 
0-1 .o 
0-1 .o 
PPmv 
Kelvin 
PPmv 
PPmv 
PPmv 
PPmv 
PPmv 
0-1.0 
hPa 

0-1 .o 
0-1 .o 

TABLE I 
GEOPHYSICAL STATE PARAMETERS 

B. Geophysical Parameter Modeling 

The geophysical state at each footprint is interpolated in 
space and time from gridded synoptic and monthly climatolog- 
ical data. Methane and carbon monoxide profiles are global 
time-independent climatologies. For all other fields, the grids 
are first interpolated to the footprint time using either forecasts 
derived from a single analysis, or climatologies from bracket- 
ing months; the climatologies are assumed to be synoptic at 
1200 UT on the fifteenth of the month. For example, a footprint 
at 0430UT in the second half of December would use the 3 
and 6 hour forecasts from a 00 UT run and climatologies from 
December and January. A linear or bilinear interpolation is ap- 
plied within latitude bins or grid boxes. in the vertical, profiles 
are interpolated, linearly in log pressure, to a standard 101 level 
grid described in [ 151. 

I )  Data Sources: Geophysical data are obtained from the 
NCEP global aviation forecasts and Advanced Very High Res- 
olution Radiometer (AVHRR) composite Normalized Differen- 
tial Vegetation Index (NDVI) imagery. Climatologies are used 
in regions of the atmosphere not contained in the forecast; these 
include the Upper Atmosphere Research Satellite (UARS) cli- 
matology, the Harvard tropospheric ozone climatology and the 
ATMOS methane climatology (the average of profiles obtained 
by the ATMOS investigation [ 171. The carbon monoxide pro- 
file is from the U.S. standard atmosphere. Vertical-mean carbon 
dioxide mixing ratio is obtained from a simple empirical model 
described later. 

The U.S. National Center for Environmental Prediction 
(NCEP) produces global operational aviation analyses and fore- 
casts (GBLAV) four times daily at O U T  , 6UT, 12UT and 
18 UT; outputting 3 hour forecasts at least three days forward. 
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The products are mostly synoptic fields on 1" longitude by 1" 
latitude grids. We use the surface fields of wind, pressure, 
geopotential height and skin temperature; atmospheric profiles 
of air temperature, relative humidity and ozone mass mixing 
ratio, and the three hour average fields of low, middle and high 
cloudiness and the cloud-top and cloud-base pressure from the 
forecasts. Temperature, relative humidity and ozone profiles 
are parameterized on 26, 21 and 6 levels from 1000 hPa (ozone 
from I00 hPa) to 10 hPa (relative humidity to 100 hPa). Land 
skin temperature is the upper level of a two layer soil model 
that includes radiative and conductive heat transport, soil mois- 
ture transport and evaporation Reference [ 181. Sea surface tem- 
perature is the temperature at 1 m depth from a daily analy- 
sis of AVHRR and buoy data; no correction has been made 
for the difference from skin temperature. There are 4 kinds 
of stratiform clouds (high, middle, low and planetary boundary 
layer) and cumulus clouds from the convective scheme. The 
amounts, heights and radiative properties of stratiform clouds 
are derived from statistical relations between cloud amount and 
relative humidity binned by location and height [ 19].The cu- 
mulus convective scheme is described in Reference [20],and the 
cumulus cloud model is described in Reference [19].Further de- 
tails of the aviation forecast model can be found in References 
[21,21,23]. 

The UARS climatology was derived from the Middle Atmo- 
sphere Program climatology prior to the launch of the Upper 
Atmosphere Research Satellite in September 1991. It contains 
monthly zonally-averaged means of temperature and 18 species 
including, H20, 0 3 ,  CH4 and CO. The model has 10" resolu- 
tion with grid points at -80" S, -70" S . .  . . We have used the 
temperature and ozone climatologies above 10 hPa and the wa- 
ter climatology above 100 hpa. 

The Harvard climatology is described in Reference [24]and 
contains monthly tropospheric ozone values from pole to pole 
in 5" longitude bins and 4" latitude bins on 13 pressure levels 
from 1000 hPa to 100 hPa. This climatology is used to complete 
the ozone profile below 100 hPa. 

NDVI is a scaled color index and measures the amount of 
chlorophyll in a pixel. The imagery are 10-day cloud-free 
composites derived from AVHRR data. Cloud-free pixels are 
mapped onto an Interrupted Goode Homolosine projection (av- 
eraged if multiple pixels exist) using a procedure described 
in Reference [25,26]. We have used an 8 km product from 
the NOAA/NASA Pathfinder project produced from July 1981 
through September 2001 and a 1 km product produced by the 
USGS Eros Data Center from April 1992 through May 1996. 
The amount of the globe that has useful NDVI information de- 
pends on season and equator crossing time of sun synchronous 
satellites. The most complete NDVI imagery are taken during 
equinox by satellites in noon equator-crossing orbits; the worse 
are at solstice by satellites in 600PM equator crossing orbits. 

2 )  Profile Quantities: Profiles are constructed from several 
sources covering different levels of the atmosphere. One of the 
problems when profiles are from different sources are joined 
together is maintaining the correlations observed in the atmo- 
sphere; this is especially true when profiles are not consistent 
at common levels. We have addressed this issue by imple- 
menting a smoothing procedure where profiles are extrapolated 

over common levels and then combines them using a smoothing 
function f ( P ) .  The combined profile X(P)is 

X ( P )  = f ( P ) X l ( P )  + (1 - f ( P ) X u ( P )  

where P is pressure, Xl is the lower profile and X u  is the upper 
profile. The smoothing function is 

where P* is the tie-point pressure where each profile con- 
tributes equally to the output and H is the smoothing width. 
Profiles were joined at lOhPa and lOOhPa using smoothing 
widths of 1 and 0.5 respectively. These widths are smaller than 
the correlation widths we have calculated for the aviation fore- 
cast products. 

Water profiles are constructed using two approaches. One, 
discussed above, combines the UARS climatology with the 
forecast relative humidity at 100 hPa. The profiles are inter- 
polated in units of specific humidity (i.'e. water vapor wet mass 
mixing ratio). Specific and relative humidities S and Rh are 
related by 

O.OIRSs 
S =  

1 - (1 - O.OIRh)Ss 

where S, is the saturation specific humidity, provided by a func- 
tion fit to the Smithsonian Meteorological Tables 127l.A second 
approach employs power law extrapolation of the forecast spe- 
cific humidity in pressure. 

3)  Carbon Dioxide: Carbon dioxide amount is included in 
the simulation using a model that has temporal and latitude de- 
pendence. The model is based on ground observations and in- 
cludes a positive trend, seasonal variability and a surface source 
whose rate is slow compared to transport. The trend (Xtrend)  
and seasonal (Xseasonal ) terms are: 

xgzd(e) = 331 x i.oo4i(T-1976) 

Xg6Tna'(0, P )  = [7.9erf (2sinO) + 6.41 

sin (27rT - 7r/6) ( P o / P ) ~ . ~ ~ ~ ~  , 
where mixing ratios X are in ppmv, time T is in common years 
(from 0 CE), e is the latitude in radians and pressure P is in 
hPa. The reference pressure PO is 1000 hPa and the exponent 
is the ratio of the COz vertical mixing length (3.3 km) to the 
scale height 7.817 km. Variability is largest in late winter and 
smallest in late fall. The vertical, pressure-weighted average 
mixing ratio is 

Xcoz = xgzd(e) + (0.4222/1.4222) xg;yal(e, 
The model is based on observations at ground stations at 

Mauna Loa and the South Pole and its transport (see Ref- 
erence [28]).Figure 3 compares the model concentrations at 
the Mauna Loa observatory to observed monthly means. The 
model agrees well with the observations, although the minimum 
in early November is about 10 ppmv lower in the model and oc- 
curs 1 month later. The amount of spatial variability is shown 
in Figure 3 by the difference between values at the poles. The 
maximum amount of variability is about 4%, but is only 2% in 
late December and zero in late January and July. 
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Fig. 3.  C02 Surface Mixing Ratio Time Series 

4)  Surface Properties: Skin temperature, surface pressure 
and geopotential height are interpolated from the forecast. Sur- 
face geopotential height is converted to elevation and surface 
pressure is corrected for local elevation. Mean elevation and 
land fraction are calculated from approximately 100 samples of 
a 30" DGM. The surface pressure correction adjusts the fore- 
cast surface pressure for the differences in elevation between 
the interpolated forecast elevation and the elevation from the 
DGM. The correction assumes a dry adiabatic surface layer (see 
Reference [29]).The skin temperature is the interpolated value 
from the forecast and is not corrected for local variations in sur- 
face properties such as soil moisture or coast line crossings. 

Surface emissivities and reflectivities are represented as a 
piecewise linear function in frequency, specified at 39 hinge 
points (the hinge points are indicated by '+' in Figure 4). Land 
is a Lambertian emitter (emissivity is independent of emission 
angle) and both land and water are Lambertian reflectors. The 
emissivity of water depends on surface temperature, emission 
angle, salinity and surface wind speed and is based on theoreti- 
cal calculations described in References [30,3 1,32,33]. Surface 
wind speed is obtained from the forecast, while salinity is fixed 
at 34.3%~. 

Land emissivity is considerably more variable and depends 
on soil composition, vegetation type, amount of vegetation and 
snow and ice coverage, but the single largest source of emis- 
sivity variability is the vegetation density. The land emissivity 
model is based on a scheme described in Reference [34]where 
land is composed of a mixture of ground and vegetation, but 
the amount of vegetation varies according to NDVI. A vegeta- 
tion model is adopted that relates vegetation coverage f v  lin- 
early to NDVI. Vegetation fraction is zero when NDVI is less 
than 0.1 and 1 when NDVI is greater than 0.6. This relation 
is consistent with the observed range of NDVI reported in Ref- 
erence [35].NDVI is sampled from the AVHRR image at the 
center of the footprint without any averaging over the area of 
the footprint to reduce computations. The model assumes that 
the amount of vegetation observed at visible frequencies and 
correlated with chlorophyll amount, is equal to the amount of 
vegetation observed in the thermal IR and correlated with water 
amount. 

The types of ground and vegetation are estimated from the 
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Fig. 4. Infrared Spectral Emissivities of Land Surface Materials 

17 International Geosphere Biosphere Programme (IGBP) land 
use classes [36].The number of land classes has been simpli- 
fied to 9: 1) deciduous forest, 2) evergreen forests, 3) mixed 
deciduous and evergreen forests, 4) grasslands, 5) marsh, 6) 
urban landscape, 7) mosaic, 8) tundra, and 9) ice. There are 
three vegetation materials: grass, conifer and deciduous, and 
five ground materials: water, soillrock, wet snow, dry ice and 
black material (e.g. asphaltkoncrete). Land can contain a mix- 
ture of the three vegetation types and one ground material. Al- 
though the amount of vegetation is specified by NDVI, in those 
land classes containing more than one vegetation type, the rel- 
ative amount of each vegetation type is random (i.e. derived 
from a uniform random variate). Soil and rock emissivities are 
highly dependent on composition, but typically have a strong 
absorption feature (restrahlen band) in the 8 to 10pm spectral 
region [37].Soils composition is approximated by pure quartz 
sand which has one of the strongest absorption features. The 
forests (first three classes) are mixtures of forest over quartz 
sand, grassland, a mixture of grass over quartz sand; marsh, a 
mixture of grass and water; and urban, a mixture of grass and 
black material. Mosaic is a mixture of all three vegetation types 
over quartz sand; tundra, a mixture of conifer forest over wet 
snow; and ice is grass over dry ice. Footprints can contain a 
mixture of land and water as specified by the land fraction. 

The spectral emissivities of water, dry ice, conifer foliage, 
deciduous foliage, grass, quartz sand, water and wet snow are 
shown in Figure 4; black material is unity and is not shown. 
The quartz emissivity is from Reference [38]and is plotted on 
the right. The remaining models (excluding water) are inter- 
polated from Reference [ 341 .The water emissivity is shown for 
nadir viewing of a calm (zero wind) surface. With this model, 
most of the variability occurs between 800 and 1300 cm-' and 
mostly from quartz sand. Vegetation provides some variabil- 
ity although much smaller. Emissivities at frequencies between 
2000 and 3000 cm-' are extrapolated from longer wavelength 
and are less reliable. 

Cloud parameters have proven to 
be the most difficult field to simulate reliably, owing to their 
dependence on instrument scan pattern and instrument FOV. 
Moreover, since these conditions cannot be replicated with ex- 
isting measurements or synthesized from other data, we have 
adopted simple models of cloud variability based on reasonable 
assumptions described below. Several approaches were consid- 

5)  Cloud Properties: 
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ered including, generating fractal cloud distributions (see Ref- 
erence [39]) or running a dynamical high resolution weather or 
convection model (see Reference [40]). We deemed either pro- 
cedure impractical and ultimately settled on applying random 
perturbations to cloud properties interpolated from forecast. 

Cloud models have been developed using three different per- 
turbation schemes. In all cases only the cloud amounts were 
perturbed. All models use the two highest stratiform cloud lay- 
ers from the forecast; this reduces the total cloudiness slightly, 
but includes those layers producing the largest radiance signa- 
tures. The first model applies a 30% Gaussian random pertur- 
bation to each amount. Perturbations are regenerated when- 
ever the perturbed amount is greater than one or less than zero. 
The clouds are assumed to be small and spatially uncorrelated; 
therefore the amount of th? lower layer seen from above is 
f y a e w e d  = (1 - fu)f i .  fu and fi are the perturbed cloud 
amounts in the upper and lower layers. Note that because the 
clouds are randomly distributed in the two layers, the viewed 
cloud amount in the lower layer is anti-correlated with the up- 
per; this gives rise to singular cloud clearing situations as ex- 
emplified in Figure 2. 

A second model was introduced to reduce the number of sin- 
gular cloud fields found in Model 1. In the second model the 
amounts are scaled by a normalized uniformly-distributed ran- 
dom variable. Mean cloud amounts and heights are evaluated 
for the nine footprints in a retrieval set. The perturbed amounts 
in the upper or lower layer are 

where n{,,l} are numbers from a uniform random variable 
and f i{.,~) are averages over retrieval set (9 footprints) in each 
layer. Subscripts indicate upper or lower layers and un-accented 
amounts are the interpolated forecast amounts averaged over re- 
trieval sets. Whenever the perturbed amount exceeds one, it is 
reduced by the mean amount f i { u , ~ } .  The viewed amount in the 
lower layer is reduced,by the forecast amount in the upper level, 
flvzewed = (1 - fu) f i ,  and not the perturbed amount. This in- 
troduces some correlation between the perturbations, but not 
the total cloud amounts. 

The third model applies perturbations to cloud amount using 
a relation between mean cloud amount and cloud amount vari- 
ability derived from Monte-Carlo simulation. The Monte Carlo 
simulation populated a plane with randomly distributed non- 
overlapping clouds until a mean cloud amount was obtained. 
AIRS footprints were next randomly overlain on the cloud field 
and cloud amount in each footprint was determined. Lastly the 
density function was estimated. This was repeated as a func- 
tion of mean cloud amount. AIRS footprints and clouds were 
approximated by circles with effective radi (T,R = d w ) ,  
and the problem was recast in terms of one parameter, the ra- 
tio of cloud and footprint radii. Figure 5 shows cloud amount 
density for 25% average cloudiness for a 15 km AIRS footprint 
and 3 km and 7.5 km clouds. Distributions of bounded random 
variables often obey beta distributions [41],The smooth curves 
in Figure 5 are beta distributions fit to the observed densities 
and are in very good agreement. We therfore fit beta distribu- 
tions to the observed density functions and constructed a rela- 
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Fig 5 Cloudiness Distnbutions from Monte Carlo Simulation 

tion of standard deviation versus mean. The width of the den- 
sity functions rapidly decreases as cloud radius becomes small 
relative to the footprint radius; this is the limit where the foot- 
print samples the average cloud field. Figure 6 shows the de- 
pendence of cloud fraction standard deviation on mean cloud 
fraction for an effective cloud radius of 7.5 km. We found that 
the density functions became unlike a beta distribution as the 
mean cloud amount approached 0.5. This arose because higher 
mean cloud amounts were possible only when the clouds be- 
came organized. In fact, mean cloud amount for non overlap- 
ping circular cloud can never be greater than (7r/4 = 0.785) and 
this occurs only when the clouds are arrange in closest packing. 
To simulate higher mean cloud amounts, we reverse the simula- 
tion by randomly distributing non overlapping holes. It became 
clear that the minimum in variability near 0.5 is an artifact of 
the cloud size and shape distributions. We there fire adopted a 
cloud amount variability model shown by the solid line in Fig- 
ure 6. 

The third cloud model assumes a fixed ratio of AIRS foot- 
print effective radius which is adjustable. However we present 
results only when the footprint radius to cloud effective radius is 
2. The cloud amounts are random numbers from a beta random 
variate with a mean cloud amount obtained from forecast, as in 
the second model, and a standard deviation from Figure 6. The 
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Fig. 6. Monte Carlo Simulated Cloudiness Variability 
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viewed lower cloud layer is the same as in model 1 as described 
above. 

An ensemble of perturbed cloud fields were generated as 
functions of forecast cloud amount for the three models. Fig- 
ure 7 show the mean and standard deviation of the perturbed 
cloudiness as a function of forecasted total cloud amount (to- 
tal forecasted cloud amount assumes small uncorrelated clouds, 
i.e. fu + (1 - fu)fi). The third model preserves the mean 
amount, but the other two models tend to reduce the cloudi- 
ness under mostly cloudy conditions. This arises from the nor- 
malization conditions employed in both models. The first two 
models also tend to have less variability under almost clear con- 
ditions. Variability has a strong impact on the accuracy of the 
cloud clearing, and the three models produced different accu- 
racies. Although all three models are equally valid, we were 
interested in assessing the quality of cloud clearing in terms of 
the tractability of cloud clearing per retrieval set. 

We have developed a parameter which most closely indicates 
when a cloud scene can be cleared. This parameter is an es- 
timate of the uncertainty of the cloud cleared radiances. For 
known cloud fractions, The measured radiance in an idealized 
surface channel, e.g. one with zero clear-sky absorption, is a lin- 
ear combinations of the radiances from surface R,, and the two 
cloud layers R{,,J). The least squares surface radiance solution 
has uncertainty 

where E R  is the measurement noise and F is the matrix of 
viewed cloud and surface amounts 

Solving for the surface radiance uncertainty must be performed 
using singular value decomposition because the matrix inver- 
sion becomes singular along with the cloud clearing problem. 
The amount of uncertainty, represented by the amplification 
of the original radiance noise is the noise amplification factor 
NAF = ER,/ER. For a clear retrieval set when all nine foot- 
prints are cloud free, NAF is '/3 and increases to inf when the 
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Fig. 8. Cloud Noise Amplification Factor 

cloud clearing problem is singular. Generally, retrieval sets with 
NAF greater 4 cannot be cloud cleared. 

Figure 8 shows the noise amplification factor as a function of 
model total cloudiness, i.e. fu + fyiewed for the three models 
(dotted for Model 1, dashed for Model 2 and solid for Model 3). 
Both the mean NAF (upper curves) and standard deviation of 
NAF (lower curves) are shown. Model 1 has significantly larger 
NAF and therefore poorer retrieval results than either of other 
models, and had greater variability in the amount of NAF for 
a given amount of total cloudiness. More scenes can be cloud- 
cleared for the third model when total cloudiness is less than 
25%, while the second model had fewer singular cloud scenes 
for higher amounts of clouds. Model 2 does not produce signif- 
icant numbers of retrieval sets with total cloudiness greater than 
70%, but states having cloudiness greater than 70% have NAF 
greater than 3 in the other models and produce states which are 
not not useful for algorithm development. 

111. RESULTS 
A week of simulated data was created starting on 10 Decem- 

ber 2000. We used the operational global aviation forecasts 
from NCEP and the 1 km composite AVHRR imagery for 11- 
20 December 1995. The 8km December 2000 AVHRR data 
was not suitable because the data during this time was from the 
AVHRR on the NOAA 14 satellite, NOAA 14 was in a 0430 
equator-crossing time orbit then and most of Europe and half 
of North America and Asia were in darkness when the satel- 
lite was overhead. The geophysical states uses the second wa- 
ter vapor model and the second cloud model. For each day, 
2,9 16,000 geophysical states and radiance spectra were gener- 
ated, grouped into 324,000 retrieval sets. These are divided 
into 240 six minute granules of 45 scan sets. HSB and AMSU 
radiances were also simulated and these are discussed in Ref- 
erence [42].Results of retrieval from these data are discussed in 
Reference [ 11. 

Figure 9 shows global mean brightness temperatures for the 
radiance data generated for 15 December 2000. Uncorrelated 
Gaussian noise has been added to each radiance; the RMS noise 
is channel-dependent, but otherwise fixed, and is derived from 
pre-launch calibration data (see Reference [43]). 

The channels fall into four major groups, channels with fre- 
quencies less than 900 cm-' (group 1) are primarily sensitive to 
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Fig. 9. Average AIRS and HIRS2 Brightness Temperatures 

emissions from carbon dioxide, but have contributions from the 
water vapor continuum and the surface; these are used primar- 
ily for temperature sounding and cloud clearing. Channels be- 
tween 900 and 1100cm-l (group 2) are sensitive to ozone and 
the surface. The channels between 1200 and 1 7 0 0 ~ m - ~  (group 
3) are primarily sensitive to water vapor, and channels greater 
than 2100cm-l (group 4) are primarily sensitive to emissions 
from carbon dioxide and the surface. The radiances in group 
4 contain both thermally emitted and solar back-scattered com- 
ponents, but are primarily used for temperature sounding and 
cloud clearing. In the case of the temperature and ozone sound- 
ing groups, channels tend to sound higher in the atmosphere to- 
wards the center of the band. Therefore their brightness temper- 
atures decreases through the the troposphere, increases through 
the stratosphere, and then decreases through the mesosphere to- 
wards the center of the band. The decrease associated with the 
mesosphere is not observed in the ozone bands because of the 
rapid decrease of ozone mixing ratio above the middle strato- 
sphere. The atmosphere is never opaque for channels in the 
ozone sensing group and are always sensitive to the surface. 
Water is an asymmetric rotor with a nearly random distribution 
of lines. This explains why channels in the water sensing group 
fluctuate rapidly with frequency, but tend to sense higher in the 
atmosphere towards 1550 cm-'. 

During the chosen week, the High Resolution Infrared 
Sounder (HIRS2) was operating on the NOAA 14 satellite. 
NOAA 14 is in a polar orbit very similar to Aqua, but was at an 
altitude of 8 O O k m  and an equator crossing time around 0430. 
HIRS2 is the infrared sounder currently used for operational 
weather analysis and forecasting. The HIRS2 scan is similar 
to AIRS and extends from f49.5", but contains only 56 foot- 
prints. The FOV is 1.25"and are separated by 1 .go. HIRS2 scan 
lines are spaced 42 km between footprint centers. HIRS2 has 19 
thermal IR channels, nine in AIRS group 1, one in group 2, two 
in group 3 and 7 in group 4. The global-mean HIRS2 bright- 
ness temperatures are shown in Figure 9 as bars over the chan- 
nel spectral passband. In each channel, the corresponding AIRS 
channels show considerable variability. This is because the low 
spectral resolution of HIRS2 (as compared with AIRS) does 
not reveal the detailed opacity structure of the atmosphere The 
AIRS detectors are actively cooled and AIRS signal to noise ra- 
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Fig. 10. Error in Fittting AIRS SRF to HIRS2 SRF 

tio is comparable to that of HIRS2 even with its higher spectral 
resolution and shorter integration time (and smaller FOV). 

Comparisons between AIRS simulated radiances and actual 
HIRS2 radiances can be used to assess the realism of the AIRS 
simulation. Although the two instruments have different spec- 
tral resolutions, the AIRS spectral resolution can be averaged to 
the HIRS resolution. Similarly differences in spatial sampling 
can be approximated by binning AIRS and HIRS footprints into 
retrieval sets of comparable size. Lastly, differences in footprint 
location can be addressed by binning data into a daily fixed spa- 
tial grid. Therefore, while HIRS2 and AIRS are very different 
instruments, it possible to construct comparable data sets. 

AIRS radiances can be averaged over many channels to re- 
construct the spectral response functions (SRF) of HIRS2. The 
SRF of HIRS2 channel z, S,(v,z) is represented as a linear 
combination of AIRS SRF's SA(V, j )  with weights Wi,j. 

sH(v , i )  = c W t , j s A ( v , j )  
j 

The weights W are found using a least square fit with an uncer- 
tainty of 

The uncertainty is unity when the fit is orthogonal and zero 
when perfect. Figure 10 shows the fitting error. Channels are 
ordered by type and location of sensitivity. Channels sensitive 
to temperature and the surface are shown first, ordered from 
those that are sensitive to the middle atmosphere (channel 1) 
through the lower stratosphere and to the surface. Short wave 
channels are displayed first when multiple channels are sensi- 
tive to the same level. The two water channels (1 1 and 12) are 
shown next followed by the ozone channel (9). Generally we 
have not attempted to interpret the water or ozone channels be- 
cause of the large amount of spectral smoothing indicated by 
the AIRS data. Eleven HIRS2 channels can be fit by AIRS 
channels to better than 0.1. The SRF of the other HIRS2 chan- 
nels extended into gaps in the AIRS spectral bandpass. HIRS2 
channels 1, 4, 11, 14, 16 and 18 were particulaly well fit with 
errors less than 0.02. Even when the HIRS2 SRF's are well fit, 
there is some uncertainty in the reconstructed radiances because 
of uncertainty in the HIRS SRF's. The HIRS spectral calibra- 
tion is not performed under nominal operating conditions and 
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the SRF depend on ambient temperature. NCEP typically ap- 
plies radiance bias corrections to HIRS data. The corrections 
are typically less than 1 K but are as large as -4 K, for channel 
15. 

Figure 11 shows the mean difference between HIRS2 bright- 
ness temperatures and those reconstructed from the simulated 
AIRS radiances (hereafter referred to as reconstructed). The 
mean HIRS2 radiances corrected by the NCEP mean bias ad- 
justments are shown by the thick solid line with plus signs. 
Channel 15, as mentioned previously, is particularly sensitive 
to SRF uncertainty. After the bias correction, it agrees with 
channel 6; both channels sees roughly the same level of the at- 
mosphere. Channels 17, 18, 19, 10 and 8 are surface channels. 
Channels 10 and 8 have sensitivity to water vapor while chan- 
nels 18 and 19 are sensitive to reflected solar radiance and there- 
fore differences in local solar time. Generally long wavelength 
tropospheric/surface temperature channels (4,5,6,8,10) are bi- 
ased warm while short wavelength channels (13-19) are biased 
slightly cold. 

The difference between short and long wavelength channels 
can be explained by three possible hypotheses, an error in the 
simulated solar reflected component, an error in the water va- 
por continuum or an error in the cloud emissivities. An error 
in cloud amount without a spectral slope in cloud emissivities 
can not explain the difference. There is a weak trend of increas- 
ing negative bias with channel number in the short wavelength 
channels, but the trend is tied more with the level in the at- 
mosphere where the channels sounds rather than its frequency. 
This is not consistent with originating from reflected solar radi- 
ance. An error in the water continuum could account for some 
of the error, but there is no evidence that the error decreases 
away from the water absorption band (channel 10 is worse than 
8 which is worse than 12, see Figure 9 for spectral position 
of HIRS2 channels). On the other hand, the brightness tem- 
perature of scenes containing thin cirrus tend to increase with 
frequency [44],while the simulations assume that the emissivity 
is uncorrelated with frequency. Because of this, the simulated 
data does not capture the frequency-dependence of clouds in 
low sensing channels at the level of around 4 K. 

The standard deviation of radiance over the globe is an in- 
dication of the amount of variability. The difference between 
the global standard deviation of HIRS and the reconstructed 
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Fig. 11. Mean Difference between HIRS2 and AIRS Brightness Temperatures 

HlRS Channel 1 Radiance 
0.12 v---j 

Average: 235.6 
HlRS 

Average: 231.1 
Std. Dev.: 9.8 I Li Std. Dev.: 10.5 

---..______- 

i Max. Val.: 257.1 j Max. Val.: 256.1 

0.06 1. Bin Width: 1 .OK 

210 220 230 240 250 260 
0.00 

Radiance (K) 

Fig. 12. 
Brightness Temperatures 

Comparison between the Density Functions of HIRS2 Channel 1 

brightness temperatures (shown in Figure 11 as a dotted line) 
is negative when the simulated data have too much variability. 
Generally the simulated radiances have 1 K of excess variabil- 
ity compared to the total amount around 30K. Therefore the 
simulated data does capture the global variability. 

Channel 1 senses temperature in the middle atmosphere and 
shows a -4K bias. This could impact temperature retrieval 
in the troposphere and is explored further with Figure 12. 
Figure 12 shows the density functions of brightness tempera- 
ture from HIRS2 channel 1, a primary upper middle atmosphere 
sounding channel. The density function of the reconstructed 
brightness temperatures (dashed line) and the HIRS2 radiances 
(solid line) are very similar, but with three differences: the den- 
sity of reconstructed brightness temperatures has a cold peak at 
214 K that is absent in the HIRS2 density, the peak near 230 K 
in the reconstructed brightness temperature density is narrower 
and shifted 5 K colder in the HIRS2 brightness temperature 
density, and the warm peak in the reconstructed brightness tem- 
perature density is smaller and 3 K colder in the HIRS2 density. 
These differences arise because the temperature field on 15 De- 
cember 2000 was slightly different from the climatology. 

The primary sources of variability from climatology are 
inter-annual variability and planetary wave activity. The lat- 
ter causes variability around the zonal mean. Planetary waves 
occur primarily in the winter hemisphere and to a lesser ex- 
tend as Kelvin waves in the tropics. Figure 13, shows zonal 
mean brightness temperature and the zonal standard deviation 
(width of the gray bands) for the HIRS2 data (solid line) and 
simulated (dashed line). The differences in the warm peak 
arise from inter-annual variability in the summer hemisphere 
temperature. The middle peak is associated with tropical re- 
gions and the cold peak is associated with polar winter condi- 
tions. In the summer hemisphere, the amount of variability in 
the two fields are roughly equivalent, but the HIRS2 brightness 
temperatures show greater variability in the tropical and winter 
hemisphere. This is because the simulated brightness temper- 
atures contains some zonal variability from temperature below 
10 hPa, but this is attenuated by the contribution which is pro- 
vided by climatology. Therefore the differences arise because 
1) the middle atmosphere is not climatological on 20 December 
2000 and 2) zonal variability in the winter hemisphere is not 
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Fig. 14. Histogram of HIRS2 Channel 18 Brightness Temperatures 

suitably modeled. Extrapolating back to the simulated AIRS 
radiances, channels which peak above 10 hPa do not contain 
sufficient variability to test the retrieval algorithms in the win- 
ter. However, this should have minimal effect on troposphere 
parameters. 

Next, a surface channel that is sensitive to clouds through- 
out the troposphere is examined. Channels that sense the sur- 
face and lower troposphere are consistently warmer in the re- 
constructed radiances. Figure 14 shows the density func- 
tions of brightness temperatures for HIRS2 channel 18. Chan- 
nel 18 is a surface channel that shows a combination of sur- 
face emission, cloud emission and solar back-scattering from 
clouds and the surface. Although the means and standard de- 
viations for the two densities agree to better than l K, the den- 
sities show many differences. The densities are most similar at 
the warm end. High brightness temperatures are generally as- 
sociated with cloud-free footprints. The agreement at this end, 
indicates that in the absence of clouds, reconstructed radiances 
are consistent with observations. In both data sets, the highest 
brightness temperatures occur in the Kalahari desert of Africa, 
but the simulated brightness temperature can be 45 K smaller 
than HIRS2. Diurnal variations can not explain the difference, 
because the HIRS observes Africa at a time when the surface 
temperature should be cooler than when AIRS makes its mea- 

surements. The difference is indicative of limitations of forecast 
surface model which seem to be pronounced for the dry sands 
of the Kalahari desert. 

Figure 15 is a scatter plot of channel 18 brightness temper- 
ature versus latitude. The upper panel shows the reconstructed 
brightness temperatures, the lower panel are HIRS2 data. The 
vertical axis is reversed so that brightness temperatures from 
clear footprints are plotted below cloudy footprints. Similarly, 
cloudy footprints with high altitude clouds plot above footprints 
containing low altitude clouds. Partially cloudy footprints plot 
in between. The warm cloud-free footprints show a similar pat- 
tern in both panels with a few differences. The warm foot- 
prints near 30" S are more irregular in the HIRS2 data and 
have larger values; these are from the Kalahari desert of Africa. 
Generally throughout the southern hemisphere, the fuzziness of 
the bottom of the scatter shows greater variability in the sur- 
face emission in the HIRS2 data. Brightness temperatures at 
the top of the scatter are associated with footprints which are 
mostly cloudy or contain high altitude clouds. In the tropics, 
the HIRS2 data shows many cloudy footprints with brightness 
temperatures less than 260 K. Many have brightness tempera- 
tures close to 200 K corresponding to fully opaque clouds near 
the tropopause (the tropopause is highest in the tropics and its 
temperature is typically around 195 to 200K). This indicates 
that the simulations do not contain enough equatorial high al- 
titude clouds. Footprints from Antarctica are typically much 
colder in the simulation. This could arise from excess high alti- 
tude cloud or that real polar clouds are more transmissive. The 
simulation does a remarkable good job of modeling brightness 
temperatures in mid-latitude, especially in the northern hemi- 
sphere. Therefore, while the reconstructed and real HIRS2 ra- 
diances have similar statistical properties, regionally, e.g. in the 
tropics and near the poles, there are differences that could be 
significant in future uses. 

The amount of variability within a retrieval set can be charac- 
terized in several ways. We use the standard deviation over the 
9 footprints within the set, and calculate the RMS standard de- 
viation over global ensemble of retrieval sets. Figure 16 shows 
the RMS standard deviation within retrieval sets for the recon- 
structed radiances (solid line with plus signs). In the middle at- 
mosphere, the local variability is small and grows as the chan- 
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nels become more sensitive to clouds and the surface. Short 
wavelength channels 14, 17, 18 and 19 have slightly less vari- 
ability than long wavelength channels 7, 8 and 10, even though 
both sets are sensitive to similar levels (below 600 hPa). This is 
because the long wavelength surface channels are most sensi- 
tive to surface heterogeneity associated with the quartz absorp- 
tion feature (see Figure 4). In contrast, the short wavelength 
spectral emissivities of surface materials are relatively flat. 

Local variability for the HIRS2 brightness temperatures are 
also constructed. The HIRS2 scan pattern and NOAA-14 orbit 
are slightly different from those of AIRS and Aqua. A 2x2 array 
of HIRS2 footprints is approximately 50 km wide (across track) 
by 84 km across track at nadir while AIRS retrieval sets at nadir 
are 42 km by 50 km. However 4x5 arrays of AIRS footprints are 
54 km by 85 km and are comparable to HIRS 2x2 arrays. The 
local variability in HIRS2 2x2 arrays and AIRS reconstructed 
4x5 arrays are shown in Figure 16 as the dotted line with plus 
signs and the solid lines with diamonds. Local variability in 
HIRS2 4x4 arrays is also shown as a dotted line with diamonds 
(the difference between 2x2 and 4x4 arrays provides a measure 
of the dependence on distance). 

Local variability on HIRS and AIRS are in good agree- 
ment in the stratosphere, but the AIRS data shows increasing 
more local variability towards the surface, and preferentially 
in those channels (6,7,8,10) affected by the quartz restrahlen 
band. Channels 16 and 4 are the lowest channels with sur- 
face contributions less than 15% and show some disagreement. 
This suggests that local variability of cloud amount is slightly 
over represented in the simulation. Local variability in chan- 
nels sensing the surface show much greater variability in the 
simulations. This arises from footprints over land where local 
variability arises from the varying vegetation. Also, local vari- 
ability increases with area (2x2 versus 4x4) in the HIRS data, 
but is independent of size in the simulated data. This lack of 
spatial correlation arises because the vegetation amount is sam- 
pled from the NDVI image rather than averaged over the AIRS 
FOV. Local variability in the simulation over land derives from 
the vegetation of 1 km pixels separated by 15 km, hence the ab- 
sence of correlation. 

The primary sources of local variability are clouds and the 
surface. The simulations slightly overestimates local variability 
in cloud amount and considerably overestimates surface local 

variability. The AIRS retrieval algorithms assume that local 
variability comes just from clouds. Therefore the AIRS simu- 
lated data is an overly difficult test of the algorithms. In sum- 
mary, local variability can be make more realistic by using an 
averaged NDVI and using cloud model 3 with an effective cloud 
radius slightly less than 7.5 km. 

IV. CONCLUSIONS 
Simulations provide a tool for developing algorithms, and 

evolve to serve the needs of development. In the case of these 
simulations, we started with interpolated forecasts and simple 
surface and cloud models based entirely on random numbers 
and gradually added other data sets and more elaborate mod- 
els. One of the most difficult problems with simulated data is 
knowing when it is sufficiently realistic. As we collected prob- 
lematic retrieval sets with common characteristics, we assessed 
why the retrieval algorithms were unsuccessful. In rare cases 
we attributed the problem to the simulated data, but we resisted 
changing the simulation to solve algorithmic problems. Rather 
we added additional data or developed quasi-physical models 
that might produce qualitatively different data. In particular, 
we adopted a physical surface model so that local variability 
would have realistic horizontal variability. The cloud-models’ 
variability have repeatedly been adjusted to address instabil- 
ity issues we believed would not be present in nature. Cloud- 
clearing noise amplification factor has been found to be a good 
indicator of impact on retrieval, and we have presented results 
for a cloud model which has moderate values of noise amplifi- 
cation factors. 

Much later in the development cycle, we began looking at 
HIRS2 data and identifying methods for validating the sim- 
ulated data. We have provided evidence that to within a 
few Kelvin, the simulated brightness temperatures are realis- 
tic. Generally the average radiances are biased less than 4 K; 
simulated radiances are warmer than HIRS2 radiances at long 
wavelength and colder at short wavelength. We have suggested 
that this could arise from a wavelength-dependent cloud emis- 
sivity or possibly an error in the amount of water vapor. Global 
variability is generally realistic. The simulated data has 1-2 K 
more global variability, but this is a small fraction of the total. 
Local variability is high in the simulated data especially at the 
surface and the derived retrieved product assessments based on 
this data are pessimistic. 

The data has not addressed realism in vertical correlation or 
structure within the simulated data because such information 
is not present in HIRS2 data. Vertical resolution in the model 
forecasts may be insufficient to resolve 1 km thick features in 
the atmosphere. Therefore issues concerning the actual vertical 
resolution of AIRS data will need to be addressed by compar- 
ing real data with radiosonde and other high vertical-resolution 
correlative data after launch. 

We expect that simulated data will continue to serve a role 
in AIRS algorithm development even after launch. It will still 
provide perfect knowledge about the geophysical state associ- 
ated with the measurements and will allow us to compare obser- 
vations with truth both in geophysical parameter and radiance 
space. Real data will provide the basis for adjusting the simu- 
lated data and will provide insight concerning how to interpret 
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retrievals from simulated data. Lastly since simulated data is 
derived primarily from forecast, we see an early role for using 
simulated radiances as part of the validation process and for as- 
sessing the additional information AIRS will provide. 
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